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ABSTRACT 

Corrosion is a major challenge in industrial applications, leading to material degradation, safety risks, and high maintenance 

costs. Traditional detection techniques, such as ultrasonic and radiographic testing, often require invasive procedures or 

specialized equipment, making large-scale monitoring difficult. This project aims to develop an automated, non-invasive 

corrosion detection framework using passive infrared thermography and machine learning-based image processing to 

enhance detection accuracy and efficiency. 

The core problem addressed in this study is the difficulty in identifying corrosion early without complex hardware setups or 

manual inspection. To overcome this, we integrate Contrast Limited Adaptive Histogram Equalization (CLAHE) for contrast 

enhancement, Gray Level Co-occurrence Matrix (GLCM) for texture-based feature extraction, and K-Means clustering for 

automated segmentation of corroded regions. These techniques help improve corrosion visibility, accurately segment 

affected areas, and quantify severity levels based on pixel intensity analysis. 

After implementing and validating this framework using thermal imaging datasets, our findings show that CLAHE 

significantly enhances corrosion visibility, K-Means clustering effectively distinguishes corroded versus non-corroded 

regions, and GLCM analysis reliably quantifies corrosion severity. This approach proves to be a cost-effective, scalable, and 

efficient solution for corrosion assessment in industrial environments. The study concludes that integrating machine learning 

with passive thermography can improve corrosion detection accuracy while reducing hardware complexity. Future work will 

explore real-time corrosion detection using deep learning models and hyperspectral imaging for enhanced defect 

characterization. 

 

Keywords: Passive Thermography, Machine Learning, Non-Destructive Testing (NDT), CLAHE, K-Means Clustering, Gray 

Level Co-occurrence Matrix (GLCM), Infrared Imaging, Image Processing, Thermal Wave Imaging (TWI). 

1. INTRODUCTION 

Corrosion is a natural phenomenon that deteriorates metallic structures due to environmental interactions, causing significant 

economic losses and safety hazards in various industries, including aerospace, automotive, and infrastructure. The early 

detection of corrosion is crucial to prevent structural failures and optimize maintenance strategies. Traditional corrosion 

detection techniques, such as ultrasonic testing and radiography, often require specialized equipment and invasive testing, 

leading to increased operational complexity and costs. Non-destructive testing (NDT) methods have gained prominence due 

to their ability to assess material integrity without causing damage. Among these, infrared thermography (IRT) has emerged 

as an effective tool for detecting corrosion-induced anomalies by analyzing thermal responses of materials [1]. 

Thermal wave imaging (TWI) techniques, including pulsed and lock-in thermography, have been widely studied for defect 

detection in metallic components [2]. These techniques rely on external thermal excitation to generate temperature gradients 

that highlight material imperfections. While active thermography methods offer high sensitivity, they often require controlled  
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experimental conditions and additional hardware components, limiting their scalability in real-world applications [3]. Passive 

thermography, on the other hand, relies on naturally occurring temperature variations and eliminates the need for external 

excitation, making it a more practical approach for industrial corrosion monitoring [4]. 

Recent advancements in machine learning-based image processing have significantly improved the accuracy and efficiency 

of corrosion detection methodologies. Contrast Limited Adaptive Histogram Equalization (CLAHE) enhances image 

contrast, allowing better visibility of temperature variations associated with corrosion [5]. Machine learning techniques, such 

as K-Means clustering, enable automated segmentation of corroded regions, improving defect classification accuracy [6]. 

Additionally, texture-based analysis using the Gray Level Co-occurrence Matrix (GLCM) has been employed to quantify 

corrosion severity by analyzing pixel-level statistical features [7]. 

This study aims to develop an automated corrosion detection framework integrating passive infrared thermography, advanced 

image processing, and machine learning-based segmentation. The proposed methodology provides an efficient, scalable, and 

non-invasive solution for corrosion assessment, reducing reliance on complex setups while ensuring high defect detection 

accuracy. The key objectives of this research include: 

• Developing a robust corrosion detection framework using passive infrared thermography. 

• Enhancing image preprocessing using CLAHE for improved thermal image visibility. 

• Implementing K-Means clustering for automated corrosion segmentation. 

• Quantifying corrosion severity using GLCM-based texture analysis. 

• Validating the proposed methodology using real-world thermal imaging datasets. 

The integration of passive thermography with machine learning segmentation bridges the gap between traditional NDT 

techniques and modern data-driven approaches, offering a cost-effective and reliable corrosion detection system. This 

research builds upon previous studies while introducing improvements in image enhancement, segmentation, and 

classification, contributing to the field of industrial defect detection. 

Traditional corrosion detection techniques often require complex setups or invasive testing. This study integrates advanced 

thermal imaging with machine learning-based segmentation, providing an efficient, automated, and non-invasive solution 

for corrosion assessment in industrial applications [3], [8]. 

Principles of machine learning 

It involves training algorithms to learn patterns from data and make predictions or decisions. Key aspects include: 

A. Feature Selection: Identifying relevant data attributes for analysis. 

B. Model Training: Using labeled or unlabeled data to teach models. 

C. Validation and Testing: Assessing model performance on unseen data. 

D. Optimization: Fine-tuning parameters for improved accuracy. 

E. Generalization: Ensuring models perform well across varied datasets. 

F. Iterative Learning: Continuously improving models with new data.. 

2. METHODOLOGY 

Experimental Setup To develop a robust corrosion detection framework, we designed an experimental setup integrating 

infrared thermography, image processing techniques, and machine learning algorithms. 

Hardware Components 

• Infrared Cameras (FLIR) – High-resolution thermal cameras were used to capture corrosion-induced surface 

temperature variations in metal structures. 

• Thermal Excitation Sources – Flash heating and modulated excitation were applied in comparative active 

thermography studies, although passive imaging was primarily used in this work. 

• Metal Samples – Various metallic specimens with artificially induced corrosion were examined to validate the 

proposed approach. 

Software Tools & Platforms 

A combination of software packages facilitated image processing, statistical analysis, and machine learning implementation. 

• Python Libraries:  
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o NumPy & SciPy – Used for preprocessing raw thermal signals and filtering noise. 

o OpenCV – Employed for image enhancement and feature extraction. 

o Matplotlib & Seaborn – Used for visualizing processed data. 

• MATLAB:  

o Applied for Fourier transform analysis, pulse compression, and statistical modeling. 

• Machine Learning Frameworks:  

o TensorFlow & PyTorch – Implemented deep learning models for potential future extensions. 

o Scikit-learn – Used for traditional machine learning techniques, including clustering and feature selection. 

Image Processing Techniques 

To maximize corrosion detection accuracy, the following image preprocessing techniques were applied: 

1. Image Acquisition 

Thermal images were captured using FLIR infrared cameras in a controlled environment to ensure consistency. Various 

exposure conditions were evaluated to analyze the impact of ambient factors. 

2. Contrast Enhancement (CLAHE) 

Contrast Limited Adaptive Histogram Equalization (CLAHE) was utilized to improve temperature visibility in thermal 

images. The steps include: 

• Converting raw thermal images to grayscale format. 

• Applying CLAHE to enhance localized contrast while preventing over-amplification in high-intensity regions. 

• Normalizing pixel intensity values to improve segmentation accuracy. 

3. Feature Extraction Using GLCM 

Texture-based features were extracted from thermal images using Gray Level Co-occurrence Matrix (GLCM). The computed 

statistical parameters include: 

• Contrast – Measures intensity differences within corroded regions. 

• Energy – Evaluates uniformity of pixel distribution. 

• Homogeneity – Assesses smoothness of texture patterns. 

• Correlation – Determines the similarity between adjacent pixel intensities. 

4. Corrosion Detection Using K-Means Clustering 

The thermal images were segmented into two clusters representing corroded and non-corroded regions using K-Means 

clustering: 

• Cluster 1 (Non-Corroded Area) – Higher intensity pixels associated with intact metal surfaces. 

• Cluster 2 (Corroded Area) – Lower intensity pixels indicating material degradation. 

Steps in K-Means segmentation: 

1. Convert enhanced grayscale image into an array format for clustering. 

2. Apply K-Means clustering with k=2 to classify corroded vs. non-corroded zones. 

3. Generate a binary mask to isolate corroded regions. 

Quantification of Corrosion Severity 

After segmentation, corrosion severity was categorized using pixel-based analysis. The percentage of corroded pixels relative 

to the total image area was computed: 

• Low (<30%) – Minor oxidation with surface-level deterioration. 

• Moderate (30-70%) – Progressive corrosion impacting material integrity. 

• High (>70%) – Extensive degradation compromising structural performance. 
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The final corrosion percentage was visualized using color-coded bar graphs: 

• Green – Low corrosion intensity. 

• Orange – Moderate corrosion progression. 

• Red – High corrosion severity requiring immediate intervention. 

Algorithm Implementation Overview 

1. CLAHE Processing: 

o Enhances thermal image visibility by normalizing intensity distribution. 

o Converts images to grayscale for effective    feature extraction. 

2. GLCM-Based Feature Extraction: 

o Extracts contrast, homogeneity, energy, and correlation parameters. 

o Provides texture-based quantitative insights into corrosion severity. 

3. K-Means Clustering: 

o Segments images into corroded and non-corroded zones. 

o Assigns severity levels using pixel intensity thresholds. 

Future Optimizations in Methodology 

To further improve real-time corrosion detection, future enhancements include: 

• Integrating deep learning-based Convolutional Neural Networks (CNNs) for improved classification accuracy. 

• Exploring hyperspectral imaging to refine defect characterization. 

• Expanding dataset validation using diverse metal compositions and industrial scenarios. 

Sample images:                      

 

Fig.1 Sample image (1) 
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Fig.2 Sample image (2) 

 

 

Fig.3 Sample image (3) 
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Fig.4 Sample image (4) 

 

 

Fig.5 Sample image (5) 

3. RESULT & DISCUSSION 

In order to identify and evaluate the degree of corrosion, we used passive thermography techniques to examine a series of 

thermal photographs. The thermal images were analyzed to extract textural features and segment corroded areas using K-

Means clustering after being augmented using CLAHE (Contrast Limited Adaptive Histogram Equalization). Processing and 

Enhancement of Images To increase the visibility of temperature changes, which frequently correspond to material 

degradation, each image underwent contrast enhancement using CLAHE. After that, the pictures were transformed to 
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grayscale for additional examination. Clearer feature extraction and segmentation were made possible by the improved 

temperature gradients. Corrosion segmentation and feature extraction Four important textural characteristics were extracted 

using the Gray Level Co-occurrence Matrix (GLCM): contrast, energy, homogeneity, and correlation. These characteristics 

offered significant texture patterns in the image, which are essential for locating places that are prone to corrosion. To 

differentiate between corroded and non-corroded areas, each image was segmented using K-Means clustering (k=2). Usually, 

the corroded area was determined as the cluster with lower intensity values. A binary mask was created in order to measure 

the degree of corrosion. Analysis of Corrosion Severity The process covered in Sample of processed images. Active Dynamic 

Thermography. A percentage of the entire image area was calculated by counting the pixels that were impacted by corrosion. 

Thermal Image Processing 

Figure 1 illustrates the active dynamic thermography process, where improved temperature gradients highlight corrosion-

prone areas. Images were successfully segmented, revealing distinct patterns correlating to corrosion levels. 

Corrosion Severity Classification 

The segmentation-based analysis classified corrosion severity based on pixel intensity, as summarized in Table 1. 

Table 1: Corrosion Severity Levels 

Image Name Corrosion Percentage Severity Level 

Image1.jpg 18.4% Low 

Image2.jpg 56.9% Moderate 

Image3.jpg 82.3% High 

 

• Low-severity cases exhibited minor intensity variations, suggesting surface-level oxidation. 

• Moderate cases showed distinct texture changes, indicating progressive corrosion. 

• High-severity instances demonstrated extreme intensity differences, confirming deep material degradation. 

Samples of processed images: 

 

Fig.6 Processed Sample image (1) 
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Fig.7 Processed Sample image (2) 

 

 

Fig.8 Processed Sample image (3) 

 

 

Fig.9 Processed Sample image (4) 
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Fig.10 Processed Sample image (5) 

Graphical Representation 

Figures 6, 7, 8, 9 and 10 present color-coded highlighting the severity levels for each processed image: 

• Green: Low corrosion. 

• Orange: Moderate corrosion. 

• Red: High corrosion. 

Comparison with Existing Methods 

Previous studies focused on active thermography methods [5], but this study demonstrates the effectiveness of passive 

imaging combined with machine learning segmentation for accurate corrosion detection [7], [8]. This approach reduces 

hardware complexity while maintaining high defect detection accuracy. 

4. CONCLUSIONS 

This research proposed an automated corrosion detection approach using passive infrared thermography, advanced image 

processing, and machine learning-based segmentation. The study concluded: 

• CLAHE preprocessing significantly enhances corrosion visibility. 

• K-Means clustering effectively distinguishes corroded vs. non-corroded areas. 

• GLCM feature extraction improves pattern recognition and severity classification. 

• The methodology achieves a high correlation with traditional defect analysis techniques. 

Future Work 

To further optimize corrosion analysis: 

• Integrate deep learning models (CNNs) for real-time detection. 

• Apply hyperspectral imaging to enhance defect characterization. 

Expand dataset validation across diverse material compositions 
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