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ABSTRACT 

Introduction: Single Nucleotide Polymorphisms (SNPs) play a vital role in understanding the genetic basis for several 

complicated human diseases. Additionally, knowing the functions of these SNPs might help us understand the genetics of 

human trait diversity. Identifying functional SNPs in a disease-related gene remains a major challenge. In this study, we 

have applied computational approaches to examine the genetic variation that can affect the SLC11A1 gene's expression 

and functionality. There were 7243 SNPs in all, 536 of them were missense/non-synonymous SNPs. Methods: We have 

employed a comprehensive analysis of the effect of all nsSNPs in the SLC11A1 gene using numerous methods like 

PolyPhen-2, PROVEAN, SIFT, I-Mutant, PANTHER, PhD-SNP, and Meta-SNP. The PolyPhen-2 identified 235 nsSNPs 
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as probably damaging. PROVEAN shows 171 as deleterious nsSNPs. SIFT defines 163 nsSNPs as deleterious. I-Mutant 

has predicted 182 nsSNPs having decreased/increased stability. PANTHER found 262 nsSNPs as probably damaging, 

whereas PhD-SNP and Meta-SNP showed 214 and 243 as disease-associated mutations. Results: Comparing the predicted 

results from all these 7 methods, 11 nsSNPs rs139480250(Ala173Thr), rs141932707(IIe40Thr), 

rs145536242(Leu174Pro), rs150192588(Phe188Leu), rs151164925(Ser46Leu), rs182057473(Tyr395Cys), 

rs182057473(Tyr364Cys), rs201910426(Arg16Cys), rs367630718(Tyr94Cys), rs375775521(Gly271Ser), 

rs377166486(Asn362Ser) were found to be harmful. The study suggests the deleterious efficiency of these 11 nsSNPs in 

the SLC11A1 gene, which needs to be explored in relation to Spinal Tuberculosis. However, homology modeling and 

structural analysis were performed on previously empirically verified nsSNPs to ensure the predictability of projected 

models. The mutant models had higher energy and Root mean square deviation (RMSD) scores. Furthermore, FT-Site 

predicted one nsSNP, rs150192588(Phe188Leu) at the first binding region of the NRAMP1 protein out of the 11 picked-

up nsSNPs. STRING predicted the functional interaction of the NRAMP1 protein. Conclusions: As a result of the current 

computational analysis, anticipated nsSNP may be a better pharmacological target contributing to treating and 

understanding spinal tuberculosis. 

 

Keywords: SLC11A1; NRAMP1; Spinal Tuberculosis; SNPs; Homology modeling; FT-Site; STRING 

1. INTRODUCTION 

Tuberculosis (TB) is caused by Mycobacterium tuberculosis infection and is one of the leading causes of death worldwide. 

It has infected more than one-third of the world's population, but only 10% have developed clinical TB(Jin et al., 2009). 

Nearly 2 billion people are thought to be infected with latent Mycobacterium tuberculosis (Mtb). According to the World 

Health Organization's 2020 Global Tuberculosis Report, TB is still a serious public health issue, claiming nearly 1.4 

million deaths worldwide in 2019 (Organization, 2020). Infections of TB are typically found in the lungs. Although 

multidrug-resistant tuberculosis is uncommon in spinal disease, a few case reports have emerged in recent years(Garg and 

Somvanshi, 2011). Out of 729 tuberculosis patients in 2004 approximately 8% of the cases were found to have 

musculoskeletal involvement, with nearly 50% of these patients having spinal involvement. In most parts of the world, 

the exact incidence and prevalence of spinal tuberculosis are unknown. The incidence is expected to be comparatively 

high in countries with a high burden of pulmonary tuberculosis. Approximately 10% of patients with extrapulmonary 

tuberculosis have skeletal involvement. The spine is usually the most affected skeletal site, followed by the hip and knee. 

Spinal tuberculosis (STB) is also called Pott’s disease, the most prevalent and potentially fatal type of skeletal TB(Rasouli 

et al., 2012). It accounts for approximately half of all musculoskeletal tuberculosis cases. It is more prevalent in teenagers 

and children(Garg and Somvanshi, 2011). The incidence of STB is rising in developed countries. It is responsible 

for 50−75% of STB cases and nearly 4% of all TB cases(Li et al., 2022). STB, which leads to vertebral bone degeneration, 

collapse, and fractures, causes far more destruction and death at a high rate compared to other bone TB and pulmonary 

TB and is a major cause of disability as well as death rates. Fortunately, it was expected that only 10% of individuals 

were infected with Mtb acquire TB, highlighting the role of genetic susceptibility in the development of TB(Li et al., 

2022). 

Recent studies have proven that innate immunity including the SLC11A1 gene, is strongly linked to Mtb infection and 

TB pathogenesis. However, polymorphisms of genes affecting the innate immune response play an important role in TB 

susceptibility and development(Li et al., 2022). The SLC11A1 i.e., solute carrier family 11 proton-coupled divalent metal 

ion transporter membrane1 (formerly known as NRAMP1, natural resistance-associated macrophage protein) has been 

the most extensively investigated main candidate gene associated with TB susceptibility(Jin et al., 2009). It plays a major 

role in the development of immunological responses in TB. The protein function as a divalent transition metal (iron and 

manganese) transporter that is involved in the lysosomal membrane(Patel et al., 2015). Furthermore, iron is an essential 

mycobacterial nutrient and plays an important role in the production of reactive oxygen as well as nitrogen compounds in 

macrophages(Amiri et al., n.d.). Several studies confirmed that NRAMP1 has been involved in many different types of 

inflammatory and infectious disorders. R Bellamy et al. in 1998 employed sequence-defined oligonucleotide crossover 

and microsatellite evaluation to identify SLC11A1 mutations in 410 stain-positive TB patients along with 417 run-matched 

healthy volunteers, illustrating that four mutations occurred in the SLC11A1 gene, 3′ untranslated 

region(3'UTR), 5'(CA)n, D543N, and intron 4(INT4). Each was found to be significantly linked with the disease, and 

Bellamy et al. (1998) were the first to discover that SLC11A1 variations alter susceptibility to tuberculosis in West 

Africans. Wu et al. (2013) performed a case-control research study and found that NRAMP1 gene polymorphisms are 

strongly linked with TB susceptibility in China's Kazakh community(Li et al., 2022). 

However, SNPs, also known as Single Nucleotide Polymorphisms, are the most common form of genetic mutation in 

humans. Approximately 93% of all human genes have been reported to have at least one SNP(Alam et al., n.d.). They 

play an important role in understanding the genetic basis of many complex diseases, but identifying functional SNPs in 

disease-related genes remains a major challenge. Understanding how these genetic variants affect phenotypes could 

therefore be an initial step in determining the cause of many disorders and diseases. SNPs can occur in the intergenic 
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region between two genes, in the coding or non-coding regions of genes(Datta et al., 2015). Although coding and non-

coding SNPs have no phenotypic effects, nsSNPs are thought to have an impact on phenotype by changing the protein 

sequence. SNPs are also markers that can be used to identify the region of the genome that is connected to a particular 

disease. Non-synonymous coding SNPs (nsSNPs) are thought to alter the protein sequence, which has a significant effect 

on phenotype. As they change the amino acids in correspondence to protein products, it may exert negative effects on the 

function, structure, solubility, or stability of proteins(Datta et al., 2015). Besides, these non-synonymous SNPs also change 

the gene regulation by altering DNA and transcriptional binding factors(Rajasekaran et al., 2007). It also maintains the 

structural integrity of cells and tissues (Datta et al., 2015).  Non-synonymous SNPs (nsSNPs) significantly impact the 

functional diversity-coded proteins in human populations, which are frequently linked to human diseases(Akhoundi et al., 

2016). Furthermore, past studies have proven that more than 50 percent of the mutations linked to inherited genetic 

diseases result from nsSNPs(Datta et al., 2015). Thus, many studies have recently concentrated on nsSNPs in tuberculosis-

causing genes. In the present study, we investigated the mutational effect of nsSNPs of the SLC11A1 gene. An extensive 

computational analysis results in the identification of 11 deleterious mutations that may be involved in STB.  

2. MATERIALS & METHODS 

2.1 Search for non-synonymous SNPs (nsSNPs) and mutations 

The non-synonymous SNPs of gene SLC11A1 were taken from the NCBI database(https://www.ncbi.nlm.nih.gov/), 

which is further validated on Gene Cards, a human gene database (http://www.genecards.org/cgi-bin/snp). The impact of 

missense mutations on the structure of the protein (NRAMP1: UniProt id P49279) (http://www.uniprot.org/) was detected 

using PolyPhen, PROVEAN, SIFT, I-Mutant, PANTHER, PhD-SNP & Meta-SNP. The SLC11A1 encodes a protein that 

consists of 550 amino acids. 

2.2 Functional effect of nsSNPs  

Polymorphism Phenotyping-2 (PolyPhen-2) is an online program that predicts the effect of a change in amino acids on 

the structure and function of a human protein(Elnasri et al., 2018). Based on the PSIC (position-specific independent 

count) score, it classifies coding nsSNPs as possibly damaging, probably damaging, or benign (Saleh et al., 2016). 

PolyPhen-2 estimates the genuine positive rate as a proportion of correctly anticipated mutations for a specific threshold 

of naive bayes probability score.  

2.3 Analysis of Deleterious Mutations 

The Protein Variation Effect Analyzer (PROVEAN) is a novel tool that employs an alignment-based scoring technique. 

PROVEAN, unlike most other programs, can predict not only single amino acid changes but also multiple amino acid 

substitutions, insertions, and deletions using the same underlying scoring method. Based on the threshold, this approach 

provides for the best-balanced separation of deleterious and neutral amino acids(Patel et al., 2015). To determine the 

functional effect of nsSNPs, the PROVEAN server was given a query peptide sequence of SLC11A1 in FASTA format. 

2.4 Investigation of Deleterious nsSNPs 

SIFT is another sequence homology-based tool for analyzing deleterious nsSNPs. It evaluates homologous sequences 

using Swiss-Prot/TrEMBL. As previously stated, the program relies on multiple alignments of a wide range of peptide 

sequences. It estimates whether a substitution with any of the other amino acid groups is tolerated or as damaging for 

every single position in the uploaded sequence. It distinguishes between functionally neutral and harmful polymorphisms 

during human mutagenesis investigations, based on earlier published data(Hussain et al., 2012). 

2.5 Identification of Protein Stability 

I-Mutant 2.0 is a Support Vector Machine (SVM) based tool used to predict the stability of protein changes caused by 

single-site mutations(Abd Elhamid Fadlalla Elshaikh et al., 2016). The thermodynamics parameter, free energy changes 

in protein stability due to mutation under various conditions, was calculated in terms of DDG value (kcal/mol)(Datta et 

al., 2015). Further, the reliability index (RI) value was also calculated for the stability of amino acids. 

2.6 Analysis Through Evolutionary Relationships 

Protein Analysis Through Evolutionary Relationships (PANTHER), the very first database, is based on the Hidden 

Markov Model (HMM). It uses evolutionary and functional data to determine protein families with common functions 

and sequences. It analyses the protein's sequence to a family of evolutionarily related proteins and calculates the likelihood 

of harmful (Pdeleterious) nsSNPs dependent on subPSEC (substitution position-specific evolutionary conservation) value 

(Ali Mohamoud et al., 2014).  If the subPSEC value is -3, it equates with a Pdeleterious of 0.5, and the higher the 

Pdeleterious, the more damaging (deleterious) the nsSNPs. 

2.7 Identification of disease-causing nsSNPs 

PhD-SNP (Predictor of Human Deleterious Single Nucleotide Polymorphisms) is a support vector machine (SVM) based 

algorithm that uses protein sequence information to determine whether an nsSNP is disease-related(Elnasri et al., 2018). 

The output is derived from the frequencies of wild as well as mutant residues, the number of matched sequences, and the 
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conservation index computed at the position involved. It predicts whether the polymorphism is illness-related (disease) or 

neutral, with a prediction efficiency of 78%.  

2.8 Detection of disease-associated nsSNPs 

Another tool, the Meta-SNP server, was also used for the prediction of disease-causing variants. It has been developed to 

determine the disease-associated single-point protein variation and gives 79 % accurate results. 

2.9 Homology Modeling and Structural Analysis of wild-type and mutant protein 

SWISS-MODEL was used to predict the three-dimensional (3D) structure of wild-type(native) NRAMP1 protein and 

mutants. Swiss-PDB viewer and PyMOL were applied for the structural analyses (energy minimization, RMSD) 

and visualization of structures (Version 1.7.4, Schrodinger, LLC). VADAR was used to calculate H-bond energy. Further 

to validate the predicted models, the PROCHECK server was used to analyze the stereochemical properties and 

Ramachandran plots. 

2.10 Ligand Binding Site Prediction 

FT-Site was used to identify the ligand binding regions of NRAMP1. It defines the consensus site of ligand binding using 

FT-Map. The molecular binding site is categorized as a hot spot, the strong “main”, considering the proximal probability 

of a hot spot and the possibility of bonded and non-bonded interactions with probes in the consensus clusters.  

2.11 Protein-protein interactions  

The protein-protein interaction analysis was performed using the STRING server, which focused on the networks and 

interactions of proteins in many different species. The analyses include both direct “physical” and indirect “functional” 

interactions(Desai and Chauhan, 2019). It consists of data from the genetic context, scientific databases, and public text 

resources. The protein-protein interactions of NRAMP1 were investigated against the homo sapiens. 

 

Table 1: List of computational tools used for the prediction of the NRAMP1 protein. 

 

Server URL Feature/Prediction Result 

   

Polyphen-2 (Polymorphism 

Phenotyping) 

http://genetics.bwh.harvard.edu/pph2/ Predicts the impact of an amino acid change 

on the structure and function of a protein. 

PROVEAN (Protein Variation 

Effect Analyzer) 

http://provean.jcvi.org/index.php A sequence-based prediction that evaluates 

whether a difference in protein sequence 

affects the functioning of proteins.  

SIFT (Sorting Intolerant From 

Tolerant) 

https://sift.bii.a-star.edu.sg/ Predicts the impact on the function of 

proteins based on sequence homology & 

physical characteristics of amino acids  

I-Mutant 2.0 http://folding.biofold.org/cgi-bin/i-

mutant 2.0 

Estimates the change in stability of proteins 

caused by mutation.  

PANTHER (Protein Analysis 

Through Evolutionary 

Relationships) 

www.pantherdb.org A database of protein families & subfamilies 

that estimates the frequency of the presence of 

amino acids at a specific position in 

evolutionarily related sequences of proteins.  

PhD-SNP (Predictor of human 

Deleterious Single Nucleotide 

Polymorphisms) 

http://snps.biofold.org/phd-snp/phd-

snp 

SVM (support vector machine) based on 

evolutionary data.  

Meta-SNP server (Meta-predictor 

of disease-causing variants) 

http://snps.biofold.org/meta-snp Determine whether a particular single-point 

protein variation is disease-related or a 

polymorphism.  

SWISS MODEL http://swissmodel.expasy.org An automated comparative modeling server 

for three-dimensional (3D) protein structures  

Swiss PDB Viewer (spdbv) https://spdbv.unil.ch/ A program with an accessible interface that 

allows for the evaluation of several proteins at 

the same time.  

http://genetics.bwh.harvard.edu/pph2/
http://provean.jcvi.org/index.php
http://folding.biofold.org/cgi-bin/i-mutant%202.0
http://folding.biofold.org/cgi-bin/i-mutant%202.0
http://www.pantherdb.org/
http://snps.biofold.org/phd-snp/phd-snp
http://snps.biofold.org/phd-snp/phd-snp
http://snps.biofold.org/meta-snp


 

Journal of Neonatal Surgery| Year:2025 |Volume:14 |Issue:29s 
 Pg 926 

Shubhra Sharma, Amaresh Mishra, Rajan Kumar Singh, Amresh Prakash   
  

PyMol https://pymol.org/dsc/ Open source for 3D macromolecule 

visualization.  

VADAR (Volume, Area, Dihedral 

Angle Reporter) 

http://redpoll.pharmacy.ualberta.ca/va

dar 

Program for analysing and evaluating peptide 

& protein structure.  

PROCHECK https://www.ebi.ac.uk/thornton-

srv/software/PROCHECK/ 

A program to check the stereochemical 

quality of protein  

FT-Site  http://ftsite.bu.edu Predicts the ligand binding site of a particular 

protein 

STRING (Search Tool for the 

Retrieval of Interacting Proteins) 

https://string-db.org/ Protein-protein interaction database with 

known & anticipated interactions 

 

3. RESULTS AND DISCUSSION 

3.1 Prediction of nsSNPs for the SLC11A1 gene 

The SLC11A1 gene of homo sapiens consists of 7243 SNPs, among them 536 are reported as missense/non-synonymous 

(nsSNPs), 2337 are non-coding SNPs, 770 are synonymous SNPs, 2337 are non-coding transcript variants and 6175 are 

introns. The extensive computational analyses for the prediction of non-synonymous SNPs involved in STB disease are 

illustrated in a flow chart in Figure 1. Herein, all 536 nsSNPs were taken for further study. The computational methods 

applied for analyses of nsSNPs and their efficacy are enumerated in Table 1. Our collective results suggest that 11 nsSNPs 

may be involved in STB disease (Figure 2). 

 

 

Figure 1. Flowchart of the prediction of non-synonymous SNPs (nsSNPs) belonging to the SLC11A1 gene 

involved in STB disease. 

https://pymol.org/dsc/
http://redpoll.pharmacy.ualberta.ca/vadar
http://redpoll.pharmacy.ualberta.ca/vadar
http://ftsite.bu.edu/
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Figure 2. Prediction of deleterious non-synonymous SNPs of the SLC11A1 gene, applying the different 

computational methods: PolyPhen-2 predicted 235 nsSNPs as probably damaging. PROVEAN shows 171 as 

deleterious nsSNPs. SIFT defines 163 nsSNPs as deleterious. I-Mutant predicts 182 nsSNPs having a 

decrease/increase in protein stability. PANTHER predicted 262 nsSNPs as probably damaging. PhD-SNP and 

Meta-SNP suggested 214 and 243 as disease-based mutations. 

 

3.2 Detection and Comparison of the functional effect of nsSNPs  

To determine the functional effect of SLC11A1 gene nsSNPs, the PolyPhen-2 server was used. The position-specific 

independent count (PSIC) scores indicate the three possibilities of variants, categorized as benign (scores: 0.0- 0.15), 

possibly damaging (scores: 0.15 -1.0), and probably damaging (scores: 0.85 - 1.0), have rigorous effects. PolyPhen-2 

examines the physical attributes of the wild-type and mutant variants to assess the detrimental probability of a mutation. 

It employs multiple sequence alignment and a machine learning-based classifier designed for high-throughput NGS data 

processing. It calculates the variant's PSIC scores and then estimates the difference in PSIC between the mutant and the 

wild-type. The PSIC score >0.90 is considered a deleterious mutation. Results show that out of 536 nsSNPs, 229 were 

predicted as benign, having a score less than or equal to 0.15. The possibly damaging effect was predicted for 72 nsSNPs, 

with a score less than or equal to 1.0. Whereas 235 nsSNPs were predicted as deleterious, having a PSIC score of ~1.0. 

To find non-synonymous or indel variants that are predicted to be functionally significant, PROVEAN is helpful for 

filtering sequence variants. The protein variant is expected to have a "deleterious" effect if the PROVEAN score is equal 

to or falls below a predetermined threshold, such as -2.5. The variant is predicted to have a "neutral" effect if the 

PROVEAN score is higher than the threshold. The alignment scores are calculated to correspond to the sequence clusters. 

Results show that among the 536 nsSNPs, 171 nsSNPs were predicted as deleterious with a score less than -2.5, whereas 

230 were predicted to have a neutral effect, where the score is higher than the threshold > -2.5. 

Another analysis was performed using SIFT to determine the possibilities of induced missense mutations and naturally 

occurring nsSNPs. It examines the influence of amino acid position alterations and substitutions on the function of a 

protein. The SIFT score varies between 0.0 (deleterious) and 1.0 (tolerated). Variants whose scores fall within the range 

of 0.0−0.05 are deleterious. Harmful effects are more confidently predicted for variants with scores that are close to 0.0. 

This analysis results in the selection of 163 nsSNPs as deleterious, whereas 195 nsSNPs are predicted as tolerated. 

Predictions using I-Mutant 2.0 are made either from the protein structure or, more crucially, from the protein sequence. I-

Mutant 2.0 was examined based on the protein sequence, mutational position, and interrelated new residue. In addition, I-

Mutant 2.0 was applied to predict the protein stability in terms of free energy, resulting from a single-point mutation in a 

protein structure or sequence. The predicted free energy change (∆G) output divides the results into two categories: 

decreased stability (DDG < 0) and increased stability (DDG > 0). The cross-correlation validation between the predicted 

observed ∆G values determines the accuracy of I-Mutant results. Out of 536 nsSNPs, a total of 182 nsSNPs were predicted 

to have either decreased or increased stability, which was observed to be consistent with the results obtained using 

PolyPhen-2, PROVEAN, and SIFT, as shown in Table 2. 

PANTHER estimates the probability of a certain altering amino acid non-synonymous coding SNP that will have a 

functional effect on the protein. It computes the amount of time that a certain amino acid has been present in the pathway 

leading to the protein of interest. The possibility of a functional effect may increase with the preservation time. To examine 

the evolutionary preservation, PANTHER-PSEP was applied, which recreates the possible sequences of ancestor proteins 

at points of the phylogenetic tree, and the natural history of all amino acids can be followed from their present state back 
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in time to determine how long that condition has been preserved in their ancestors. Hereby, we explain the PSEP tool and 

evaluate how well it performs on standard criteria for identifying disease-related from neutral variations in human beings. 

On these standards, PSEP outperforms not just previous tools that use evolutionary conservation but also a number of 

widely used tools that use several more data sources. As a result, 262 nsSNPs were predicted as probably damaging, 

having a false rate of approximately 0.2, whereas 66 nsSNPs were predicted as possibly damaging and 124 nsSNPs were 

predicted as probably benign, whereas the remaining 84 nsSNPs showed no score, counted as an invalid substitution. 

Furthermore, SVM-based PhD-SNP was applied to predict possible mutations. It divides mutations into neutral 

polymorphism, where the desired output is set to 1, or disease-related mutations, where the desired output is set to 0. The 

threshold for deciding is set at 0.5, and the reliability index (RI) value was evaluated. The sequence profile is computed 

using an input vector formed from wild-type (WT) and mutant amino acid frequencies, the number of matched sequences, 

and the conserved score in the substituted site. A PhD-SNP score greater than 0.5 suggests the presence of a disease-

causing mutation. Results show 214 nsSNPs as disease-causing mutations, 315 nsSNPs predicted as neutral, and the 

remaining 7 nsSNPs showed no scores. 

Finally, to further affirm the functional diversity of SLC11A1 nsSNPs, a Meta-SNP-based analysis was performed, 

providing an integrated result of PANTHER, PhD-SNP, SIFT, and SNAP. Meta-SNP is a widely accepted tool for GWAS 

analysis. It takes single-predictor outputs as input and was trained and evaluated using a 20-fold cross-validation process 

on the SV-2009 dataset (https://snps.biofold.org/meta-snp/pages/data/SV-2009.txt). The values reported under each 

prediction should be between 0 and 1, and the scores > 0.5 suggest that the predicted nsSNP is associated with disease. 

The SV-2009 dataset contains 17,883 disease-related mutations and a similar number of polymorphisms that have been 

selected randomly. During the cross-validation process, proteins are organized using the blastclust method in the BLAST 

software, and any variants that belong to an identical cluster of comparable sequences are placed in the same set. Using 

Meta-SNP, 243 nsSNPs are predicted as disease-associated, 208 nsSNPs were found neutral, whereas 85 nsSNPs showed 

no scores. 

However, the results of Polyphen-2 analysis suggested the damaging mutation impacts of 235 nsSNPs. PROVEAN shows 

a deleterious mutational effect for 171 nsSNPs, whereas the deleterious mutations estimated by SIFT result in the selection 

of 163 nsSNPs. I-Mutant was applied to examine the impact of mutants on the stability of protein, which categorized 182 

nsSNPs as high-risk mutations. PANTHER-based analysis indicated the damaging effects of 262 nsSNPs. While using 

PhD-SNP, 214 nsSNPs were predicted to be associated with disease, whereas 243 nsSNPs were predicted as disease-

associated by Meta-SNP. Finally, a comparative analysis of applied methods was performed, which provided a consensus 

result of 11 nsSNPs, having deleterious effects. The disease-associated 11 nsSNPs are enumerated in Table 2. 

 

Table 2: Validation of nsSNPs in SLC11A1 gene using PolyPhen-2, PROVEAN, SIFT, I-Mutant, PANTHER, 

PhD-SNP, and Meta-SNP 

 

 

https://snps.biofold.org/meta-snp/pages/data/SV-2009.txt
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3.3 Structural analysis  

The alterations in amino acid sequences by nsSNPs may affect the structure and stability of NRAMP1, thereby increasing 

the susceptibility to disease. Evaluating the effect of nsSNPs on protein may provide an important clue for determining 

the impact of a mutation on disease. Several computational studies followed by experimental analyses provided a 

comprehensive understanding of the biological mechanisms of nsSNPs in a wide range of diseases. Thus, to examine the 

structural and functional aspects, the three-dimensional structure of human NRAMP1 protein was predicted, selecting the 

NRAMP1 protein (PDB ID: 5M8K) of E. coleocola as a template. The sequence alignment with the chosen template is 

shown in Figure 3A. The predicted structure quality assessment of human NRAMP1 shows that 91.20 % of residues are 

in the most favorable region of the Ramachandran plot (RC-plot), 7.60 % of residues are observed in the additional allowed 

region, whereas no residues are found in the disallowed regions. Based on the nsSNPs analysis, the three-dimensional 

structures for all 11 deleterious mutants were predicted, and the structural superimposition with wild-type NRAMP1, total 

energy minimization, and RMSD values were calculated. Further, ASA, Hydrogen-bond energy, and model quality was 

checked by VADAR. To understand the protein structure-function relationship, the ligand binding site of NRAMP1 was 

predicted on FT-Site.  Using the STRING database, network analysis was performed for the prediction of protein-protein 

interactions and associated functions.   

 

 

Figure 3A: Sequence alignment of wild-type protein (NRAMP1) with selected template (PDB ID: 5M8K). The 

overall sequence similarity of NRAMP1 (P49279-2) with template is 99.8 %. 

 

Generation of mutants 

Using the three-dimensional structure of human NRAMP1, the structures for the selected deleterious mutants were 

generated on PyMol. The 3D-structures of NRAMP1 and mutant models are shown in Figure 3B. Due to the mutations, 

changes in the sequence of amino acids may affect the structure, functions, and spatial binding of ligands.   
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(a) Native Model                                                                                 (b) A173T 

                                     

 

(c) I40T                                                                                      (d) L174P 

                              

 

 

(e)  F188L                                                                                         (f) S46L 
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(g) Y395C                                                                                           (h) Y364C 

                                

(i)  R16C                                                                                (j) Y94C 

                                   

 

(k) G271S                                                                       (l) N362S 

                                   

Figure 3B: Three dimensional structures of (a) human NRAMP1 and mutants (b) rs139480250 (Ala173Thr) 

(c)rs141932707(lle40Thr) (d)rs145536242(Leu174Pro) (e) rs150192588(Phe188Leu) (f)rs151164925(Ser46Leu) 

(g)rs182057473(Tyr395Cys) (h) rs182057473(Tyr364Cys) (i)rs201910426(Arg16Cys) (j)rs367630718(Tyr94Cys) 

(k) rs375775521(Gly271Ser) (l) rs377166486(Asn362Ser). 

 

3.4 Energy minimization and RMSD analysis  

The comparative analysis of energy minimization of wild-type and mutants show differences of approximately ~1000 

KJ/Mol (Table 3). The difference in energies indicates less stable structures of mutants as compared to wild-type (WT). 

The 3D structure of a protein is largely stabilized by the various interactions, polar, non-polar, and Vander Waals 
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interactions. The mutation of amino acids influences the dynamic stability of proteins, by the loss of molecular interactions 

results in an increase in entropy. Thus, RMSD values were calculated by superimposing the structures of mutant with WT 

(Figure 4, Table 3). Results show that among the 11 nsSNPs, the structural superimposition with rs182057473 displays 

a higher RMSD value (1.45 Å), suggesting the more deleterious effect of Tyr395Cys mutation.   

 

(a)  A173T                                                                 (b) I40T 

    

         

(c) L174P                                                                               (d)  F188L 

                            

(e) S46L                                                                                       (f) Y395C 
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(g) Y364C                                                                                              (h) R16C 

                                

(i) Y94C                                                                                           (j) G271S 

                                               

 

(k) N362S 

 

Figure 4: Structural superimposition of WT with nsSNPs. 

 

 

 

 

 

 

 

 

 



 

Journal of Neonatal Surgery| Year:2025 |Volume:14 |Issue:29s 
 Pg 934 

Shubhra Sharma, Amaresh Mishra, Rajan Kumar Singh, Amresh Prakash   
  

Table 3: Total energy after minimization of mutant model and RMSD value 

 

 

 

3.5 Estimation of accessible surface area (ASA), H-bond energy, and Model quality  

To investigate the structural stabilities of proteins, we also computed the accessible surface area (ASA) and hydrogen 

bond (H-bond) energy, as shown in Table 4. Comparing the ASA values of (WT)native and mutant structures, results 

show that the overall exposed non-polar ASA of mutants is decreased slightly, except rs151164925(Ser46Leu) and 

rs377166486(Asn362Ser). However, the total ASA of mutants, i.e., rs145536242(Leu174Pro) and 

rs375775521(Gly271Ser) observed slightly less as compared to the native protein. Even the exposed polar ASA values of 

all mutants obtained high as compared to native (3846.9 Å). Whereas the exposed charged ASA results show a marginal 

high ASA of rs182057473(Tyr395Cys). Remarkably, the hydrophobicity of all mutants and native protein remains 

consistent indicating the stable structural folds of protein. The deviation of ASA may contemplate the less stable structural 

dynamics of mutants.  

 

Table 4: Calculation of H-bond energy and accessible surface area (ASA) by VADAR server 

 

 

Model Allele Change RMSD(Å)

Before 

energy 

minimization

After     

energy 

minimization

Native -13938.625 -18691.605

rs139480250 G>A Ala173Thr, A173T -12932.424 -18143.021 0.157

rs141932707 T>C lle40Thr, I40T -13801.278 -18613.67 0.055

rs145536242 T>C Leu174Pro, L174P -13381.668 -18234.27 0.11

rs150192588 T>A Phe188Leu, F188L -12941.581 -18012.076 0.173

rs151164925 C>T Ser46Leu, S46L -12440.779 -17670.008 1.132

rs182057473 A>G Tyr395Cys, Y395C -13774.973 -18567.096 1.456

rs 182057473 A>G Tyr364Cys, Y364C -12493.107 -17706.311 1.132

rs201910426 C>T Arg16Cys, R16C -12650.355 -17951.744 1.134

rs367630718 A>C,G Tyr94Cys, Y94C -12476.471 -17720.584 1.134

rs375775521 G>A Gly271Ser, G271S -13853.552 -18681.996 0.232

rs377166486 A>C,G Asn362Ser, N362S -12169.923 -17521.719 1.131

Energy Calculation RMSD Calculation

Total Energy(KJ/Mol)Amino acid change

Model

Allele 

change

Amino acid 

change Native Mutant Total ASA

Exposed 

non-polar 

ASA

Exposed 

polar 

ASA

Exposed 

charged 

ASA

% side ASA 

hydrophobic

Native 22271.8 Å2 16309.4 Å2 3846.9 Å2 2115.4 Å2 53.56

rs139480250 G>A Ala173Thr, A173T -2.2 -2.35 22303.7 Å2 16180.1 Å2 3919.4 Å2 2204.2 Å2 52.83

rs141932707 T>C lle40Thr, I40T -2.53 -2.7 22288.6 Å2 16305.0 Å2 3848.8 Å2 2134.9 Å2 53.56

rs 145536242 T>C Leu174Pro, L174P -2.85 -2.33 22260.5 Å2 16176.1 Å2 3897.8 Å2 2186.5 Å2 53

rs150192588 T>A Phe188Leu, F188L -2.38 -2.15 22317.8 Å2 16204.3 Å2 3909.1 Å2 2204.5 Å2 53.08

rs151164925 C>T Ser46Leu, S46L -1.33 -1.51 22557.0 Å2 16315.4 Å2 4021.5 Å2 2220.1 Å2 53.07

rs182057473 A>G Tyr395Cys, Y395C -2.09 -2.01 22428.9 Å2 16256.5 Å2 3910.0 Å2 2262.4 Å2 53.72

rs182057473 A>G Tyr364Cys, Y364C -2.01 -2.18 22514.5 Å2 16292.1 Å2 4019.1 Å2 2203.4 Å2 53.5

rs201910426 C>T Arg16Cys, R16C -1.41 -1.62 22399.5 Å2 16229.0 Å2 3951.8 Å2 2218.8 Å2 53.34

rs367630718 A>C,G Tyr94Cys, Y94C -2.27 -2.72 22551.8 Å2 16280.3 Å2 4043.9 Å2 2227.7 Å2 53.17

rs375775521 G>A Gly271Ser, G271S -1.05 -1.46 22196.6 Å2 16237.5 Å2 3873.3 Å2 2085.8 Å2 53.93

rs377166486 A>C,G Asn362Ser, N362S -2.22 -2.75 22536.6 Å2 16328.8 Å2 4003.6 Å2 2204.1 Å2 53.28

H-bond Energy(KJ/M) Accessible Surface Area(ASA)
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3.6 Ligand Binding Site Prediction 

To determine the impact of predicted nsSNPs on the spatial binding of ligands with protein, the active site of SLC11A1 

is define by FT-Site. Furthermore, to resolve the basic challenge related to the understanding of the relation between 

protein structure-function, protein engineering, and drug design, protein binding sites were viewed as hot spot locations, 

particularly for tiny ligand molecules. With an experimental accuracy of 94% and 97% for the LIGSITECSC and 

QSiteFinder sets, FT-Site is a precise computational technique based on the evidence of experiments to identify the 

highest-ranked ligand binding sites(Ngan et al., n.d.). Based on the analyses, three ligand-binding sites are identified. The 

residues around the 7Å from the center of active sites are listed in Table 5. Out of eleven nsSNPs identified, one nsSNP 

i.e., rs150192588(Phe188Leu) was found in the first binding site of the protein shown in Figure and Table 5. Thus, the 

final nsSNP rs150192588(Phe188Leu) of SLC11A1 gene can be a potential drug target for the treatment of spinal 

tuberculosis. 

 

Table 5: Ligand Binding Site Prediction of SLC11A1 

 

 

 

          

Figure 5: Ligand binding site protein (SLC11A1):  The three predicted ligand binding sites are shown in this 

figure. The 1st ligand binding site is coloured in pink. The 2nd ligand binding site is coloured in green, and the 3rd 

ligand binding site is coloured in purple where the rs150192588(Phe188Leu) nsSNP is present at the 1st ligand 

binding site of protein. 

3.7 Protein-protein interactions  

A typical network analysis of SLC11A1 gene was performed using STRING. Results show the network status of 

SLC11A1 consisting of 11 number of nodes that represent proteins, and 19 edges representing protein-protein associations. 

The average node degree value of 3.45 and the average local clustering coefficient of around 0.852, offer a framework for 

analysing the conserved patterns in the organization of the genome which is shown in Figure 6. The protein network 

analyses of SLC11A1 gene show the functional association with SLC11A2 (Natural resistance-macrophage protein-2). 

The genes SLC11A1 and SLC11A2, both belonging to NRAMP family, are involved in metal transportation. The 

SLC11A1 gene is a divalent transition metal (iron and manganese) transporter implicated in iron metabolism and host 

resistance to some infections whereas SLC11A2 gene along with iron also involve in transportation of other metal ions, 

e.g., manganese, cobalt, cadmium, nickel, vanadium, and some extent lead also. It is engaged in absorption of iron into 

duodenal enterocytes, from acidified endosomes into the cytoplasm of erythroid precursor cells and plays a crucial 

function in hepatic iron buildup and tissue iron distribution. 

Binding Site

Site select 1 88 92 184 188 209 212 246 249 253

MET PHE VAL LEU LEU TYR TRP GLY ALA

Site select 2 33 37 209 250 253 310

GLN GLY LEU LEU ALA ASN

Site select 3 27 30 31 33 81 84 88 135 137 177 180 252 256 260 261

ILE SER ASP GLN PHE LEU MET MET HIS SER ILE ALA SER THR GLY

Amino acid Residues
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The solute carrier genes are also involved in metal transportation, SLC40A1 gene is involved in iron export 

from duodenal epithelial cells as well as iron transfer between maternal and foetal circulation and the gene SLC31A2 is a 

copper ion transporter, regulates cellular copper ion homeostasis. SLC25A37 plays a vital role in mitochondrial heme and 

iron-sulfur clusters as an iron importer. SLC34A1 act as phosphate symporter, involved in various functions, including 

phosphate ion homeostasis, phosphate ion transport, and lead ion response. It is involved in several diseases including 

fanconi syndrome; chronic kidney disease; inherited hypophosphatemic rickets with hypercalciuria; hypophosphatemic 

nephrolithiasis/ osteoporosis 1; and nephrolithiasis. 

ATP7A gene encodes a transmembrane protein involved in copper transport across membranes. The mutation in this gene 

leads to X-linked distal spinal muscular atrophy, Menkes disease, and occipital horn syndrome. TTN gene produces a 

considerable amount of striated muscle protein involved in contractile machinery in muscle cells. Mutations in TTN are 

linked to familial hypertrophic cardiomyopathy and autoimmune illness scleroderma. FGA gene encodes the alpha subunit 

of fibrinogen, a coagulation factor and component of blood clots. Several illnesses are caused by mutations in this gene, 

including dysfibrinogenemia, hypofibrinogenemia, afibrinogenemia, and renal amyloidosis. Alternative splicing generates 

numerous transcript variants, at least one of which yields a proteolytically processed isoform. HAMP maintains iron 

homeostasis and mutations in it are characterized by severe iron overload, resulting in cirrhosis, cardiomyopathy, and 

endocrine failure. SPI1 encodes an ETS-domain transcription factor that regulates gene expression throughout the 

development of myeloid and B-lymphoid cells and may control target gene alternative splicing, results in distinct isoforms. 

 

 

Figure 6: SLC11A1 network analysis. (a) Colour nodes indicates query proteins and first shell of interactors. (b) 

White nodes indicate second shell of interactors. (c) Empty nodes indicate proteins of unknown 3-dimensional 

structure. (d) Filled nodes indicates a 3-dimensional structure is known or predicted. 

 

4. CONCLUSION 

In conclusion, the present study focuses on the prediction of disease-associated nsSNPs of SLC11A1 gene. A 

comprehensive analysis of 536 nsSNPs suggests the possible deleterious effects of 11 nsSNPs which may cause STB 

disease. Herein, we determine the phenotypic variations and protein function connected to the structure-function 

relationship of the SLC11A1. Out of eleven nsSNP, nsSNP (Phe188Leu) i.e., rs150192588 has been predicted as high risk 

for STB susceptibility which is located at the active site of SLC11A1 protein, NRAMP1. Identifying the active site residue 

may be bestowed for the structure-based drug development in therapy of spinal tuberculosis in humans.  
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