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ABSTRACT

This research focuses on classifying human emotions using a hybrid 1D Convolutional Long Short-Term Memory (CNN-
LSTM) neural network with emotion recognition, a critical aspect of affective computing, benefits significantly from
integrating Electroencephalogram (EEG) signals and peripheral physiological data. This study proposes a novel hybrid deep
learning framework combining enhanced identity-preserving (ID) mechanisms with Convolutional Long Short-Term
Memory (Conv LSTM) networks. Leveraging Transformer-based modules and Al-driven denoising algorithms, the proposed
model enhances EEG signal quality, ensures real-time edge deployment, and integrates multi-domain features (time-series,
frequency, and spatial) with peripheral signals such as galvanic skin response (GSR) and heart rate variability (HRV). To
improve transparency and trust, SHAP (Shapley Additive explanations) is employed for model explainability. EG and
peripheral physiological data. The study utilizes the DEAP dataset, comprising 32 EEG channels and 8 peripheral
physiological channels. The proposed 1D CNN-LSTM model achieved 91.19% accuracy for valence and 91.51% for arousal,
outperforming traditional classifiers such as Support Vector Machines (SVM), K-Nearest Neighbours (KNN), and Random
Forest (RF). The study also investigates emotion classification performance based on different brain lobes and hemispheres,
revealing that the frontal lobe and left frontal region combined with peripheral data deliver the highest accuracy.
Experimental validation on multimodal datasets, including DEAP and AMIGOS, demonstrates that the framework achieves
robust emotion classification accuracies exceeding 95%, outperforming traditional methods. Applications include mental
health monitoring, human-computer interaction (HCI), and adaptive learning systems, highlighting its transformative
potential in real-world settings.

Keywords: LSTM Networks, Transformer-Based Modules, Denoising Algorithms, Multi-, SHAP, Emotion Recognition,
Affective Computing

1. INTRODUCTION

Emotion recognition is an essential aspect of affective computing, with applications spanning healthcare, human-computer
interaction (HCI), and brain-computer interfaces (BCIs). Traditional methods for emotion detection, such as facial expression
and speech analysis, face challenges due to voluntary masking and environmental noise. Electroencephalogram (EEG)
signals, combined with peripheral physiological data, provide an objective and involuntary measure of emotional states,
offering a more reliable foundation for affective computing[1]. However, extracting meaningful information from EEG
signals remains challenging due to noise, inter-subject variability, and the complex nature of brain activity.

The two-dimensional model of emotion, comprising valence and arousal, provides a structured framework for emotion
classification. Valence represents the degree of pleasure or displeasure an individual experiences, while arousal denotes the
level of activation associated with a given emotional state. By categorising emotions within this framework, researchers can
systematically map EEG and physiological signal patterns to specific affective states[2]. Prior studies have shown that
integrating EEG with peripheral signals such as galvanic skin response (GSR) and heart rate variability (HRV) improves
classification accuracy, highlighting the advantages of multimodal approaches.

The human brain plays a central role in emotion processing, with different lobes and hemispheres contributing to affective
responses. The frontal lobe, particularly the prefrontal cortex, is responsible for executive functions, decision-making, and
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emotional regulation. Studies indicate that the left hemisphere is associated with positively valenced emotions such as
happiness and optimism, while the right hemisphere is more involved in processing negatively valenced emotions like fear
and sadness[3]. The integration of EEG signals from specific brain regions with peripheral physiological data offers a more
nuanced understanding of emotional states.

The development of deep learning models has revolutionised EEG-based emotion recognition. Traditional machine learning
techniques, including Support Vector Machines (SVM) and K-Nearest Neighbours (KNN), rely on handcrafted features and
often struggle with the high-dimensional and complex nature of EEG signals. Deep learning models, particularly hybrid
architectures such as 1D Convolutional Neural Networks (1D-CNN) and Long Short-Term Memory (LSTM) networks, have
demonstrated superior performance by automatically extracting spatial and temporal features. These models effectively
capture the dynamic nature of emotional states, surpassing conventional methods in classification accuracy.

This research proposes a hybrid deep learning framework that integrates Enhanced Identity-Preserving (ID) mechanisms
with Convolutional LSTM (ConvLSTM) networks, leveraging Transformer-based modules for improved EEG signal
processing[3]. Al-driven denoising algorithms enhance signal quality, ensuring robustness in real-world applications.
Additionally, SHAP (Shapley Additive Explanations) is employed to improve model interpretability, addressing the 'black-
box' nature of deep learning models. The study utilises multimodal datasets, including DEAP and AMIGOS, to validate the
proposed framework and assess its generalisability across different experimental conditions.

The primary contributions of this research include the development of a state-of-the-art hybrid deep learning model for robust
emotion recognition, the integration of multi-domain features from EEG and peripheral signals, and the demonstration of
real-time edge deployment capabilities. By benchmarking performance against traditional classifiers, this study highlights
the superiority of deep learning-based approaches in affective computing. The findings have broad implications for mental
health monitoring, adaptive learning systems, and real-world emotion-aware Al applications, paving the way for the next
generation of intelligent affective computing systems.
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Figure 1 Valence and arousal circumflex model of affect.

Figure 1 illustrates the valence-arousal circumplex model of affect, which categorises emotions based on two fundamental
dimensions: valence (pleasure-displeasure) and arousal (low-high activation). This model provides a structured framework
for emotion classification, allowing researchers to systematically map EEG and physiological signals to specific affective
states. By analysing the spatial and temporal characteristics of EEG signals within this framework, it becomes possible to
enhance the accuracy of emotion recognition models, improving their applicability in real-world affective computing
systems.
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Figure 2 Different types of lobes in the human brain.

The human brain plays a critical role in emotion processing, with different lobes contributing to cognitive and affective
functions. Figure 2 illustrates the major lobes of the brain—frontal, temporal, parietal, and occipital—each responsible for
distinct neural processes involved in emotional regulation. Understanding the functional specialisation of these lobes enables
researchers to optimise EEG-based emotion recognition by identifying key brain regions associated with specific affective
states.

Figure 3. 10-20 International system

EEG signal acquisition follows a standardised electrode placement system to ensure consistent and reliable data collection.
Figure 3 depicts the 10-20 International EEG Electrode Placement System, which is widely used for recording brain activity
by positioning electrodes at specific scalp locations. This systematic arrangement helps capture neural oscillations from
different brain regions, facilitating accurate feature extraction for emotion classification in EEG-based studies.
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Figure 4 Proposed 1D CNN-LSTM architecture.

Deep learning models have significantly enhanced the accuracy of EEG-based emotion recognition by capturing complex
spatial and temporal dependencies. Figure 4 presents the proposed 1D CNN-LSTM architecture, which integrates
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convolutional layers for extracting spatial features and LSTM layers for learning long-range temporal dependencies in EEG
signals. This hybrid framework improves classification performance by effectively modelling the dynamic nature of
emotions, surpassing traditional machine learning approaches.

2. LITERATURE REVIEW

Neural network-based models have significantly advanced time-series data analysis, particularly for emotion recognition
using EEG signals. A major breakthrough in this domain was the introduction of Long Short-Term Memory (LSTM)
networks, which addressed the vanishing gradient problem inherent in recurrent neural networks (RNNs). LSTMs efficiently
capture long-range dependencies in sequential data, making them a fundamental component of neural-based emotion
classification models[3]. Their ability to retain relevant information across long sequences has contributed to their
widespread adoption in affective computing, where emotional states evolve dynamically over time.

EEG-based emotion recognition relies on robust datasets to develop and evaluate machine learning models. One of the most
widely used datasets is DEAP, which provides EEG and peripheral physiological signals for emotion classification. This
dataset has been instrumental in training deep learning models, allowing researchers to test and validate their approaches on
real-world data. In addition, type-2 fuzzy classifiers have been applied to EEG signals for detecting cognitive failures during
driving tasks, demonstrating EEG’s potential for recognising emotional states under real-world conditions[4]. These studies
highlight the importance of high-quality datasets and novel classification techniques in enhancing EEG-based affective
computing.

Deep learning has played a transformative role in emotion recognition, particularly through hybrid models combining CNN
and LSTM architectures. CNN-LSTM models have been demonstrated to be effective in speech-based emotion recognition
by integrating convolutional layers for spatial feature extraction and LSTM layers for temporal dependency modelling[5].
Similarly, bi-hemispheric discrepancy models leverage asymmetrical brain responses to enhance EEG-based emotion
classification. Furthermore, graph neural networks (GNNSs) have been explored to capture the spatial relationships between
EEG electrodes, improving classification accuracy. These advancements underscore the growing sophistication of deep
learning techniques in EEG-based emotion recognition.

Recent research has focused on multimodal deep learning, integrating EEG with peripheral signals to improve emotion
classification. Signal fusion techniques enhance the robustness of EEG-based emotion classification by incorporating
physiological signals such as galvanic skin response (GSR) and heart rate variability (HRV). CNN-LSTM models have also
demonstrated effectiveness in real-time EEG emotion recognition, showcasing their applicability in dynamic
environments[6]. The emergence of Transformer-based models, which excel at capturing long-range dependencies, has
further improved EEG emotion classification. Transformers applied to EEG data have achieved superior accuracy by
modelling global dependencies across EEG channels. These advancements indicate a shift towards multimodal and
transformer-based architectures in emotion recognition research.

The integration of EEG emotion recognition into Brain-Computer Interfaces (BCIs) has opened new avenues for human-
computer interaction. Deep learning in BCls has demonstrated how EEG signals can be leveraged for emotion detection in
adaptive computing systems. Meanwhile, multimodal fusion techniques for BCIs have shown that combining EEG with
peripheral signals enhances robustness in emotion classification[7]. These studies highlight the potential of emotion-aware
BCls in various applications, such as mental health monitoring, assistive technologies, and adaptive learning systems.

With the rise of wearable EEG devices, real-time emotion recognition has become more accessible. Optimised systems for
real-time mobile emotion recognition have made EEG-based emotion classification more practical for everyday use.
Additionally, comparisons of 1D CNN-LSTM models for physiological signal analysis confirm their improved classification
accuracy in emotion recognition tasks. The emergence of hybrid models, integrating CNN, LSTM, and Transformer
architectures, has further enhanced EEG-based affective computing. These developments indicate a growing trend towards
lightweight, real-time, and multimodal solutions for emotion recognition, paving the way for future innovations in wearable
affective computing systems.

This study employs a structured methodology to classify emotions using EEG and peripheral physiological signals, ensuring
robustness, explainability, and real-world applicability. The methodology includes dataset selection, pre-processing, and the
development of a hybrid deep learning framework. The study utilises the DEAP dataset, a widely recognised multimodal
dataset containing recordings from 32 participants (16 males and 16 females). EEG signals were collected from 32 channels,
following the 10-20 International EEG Electrode Placement System, while 8 peripheral signals such as galvanic skin response
(GSR), respiration rate, and skin temperature were recorded. This diverse data collection enables a more comprehensive
analysis of emotional states by integrating brainwave activity with physiological responses.

To ensure high-quality data for model training, a pre-processing pipeline was applied to the raw EEG and peripheral signals.
Baseline removal was performed by discarding the first three seconds of each recording to eliminate transient noise.
Normalization was then applied to scale all signals to a [0,1] range, ensuring uniformity across features. Label encoding was
used to categorise emotional states based on valence and arousal values, assigning labels as low (0) or high (1) with a
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threshold value of 5. These pre-processing steps were critical in enhancing signal clarity and improving the reliability of the
emotion classification process.

A hybrid deep learning framework was developed to extract and classify features from the pre-processed signals. The
framework consists of Al-driven denoising algorithms to filter noise, multi-domain feature extraction from EEG, GSR, and
HRV data, and a deep learning architecture integrating Convolutional Long Short-Term Memory (ConvLSTM) networks
and Transformer modules. Additionally, SHAP (Shapley Additive Explanations) was employed to improve model
interpretability by explaining the impact of each input feature on classification decisions. To facilitate real-time applications,
lightweight models were optimised for deployment on edge devices, ensuring efficient emotion recognition in practical
settings.

The proposed 1D CNN-LSTM model consists of 1D convolutional layers for spatial feature extraction, max pooling layers
to reduce dimensionality, dropout layers to prevent overfitting, and LSTM layers for capturing long-term dependencies. A
dense layer with sigmoid activation was used for final classification. The experimental design was structured into three
phases: Phase | compared the performance of EEG + peripheral signals, EEG-only signals, and peripheral-only signals; Phase
Il examined brain lobe-specific contributions by segmenting data into frontal, parietal, temporal, and occipital regions; and
Phase 111 analysed hemispheric differences by assessing left and right brain regions[8]. This systematic approach, leveraging
multimodal data and advanced deep learning architectures, enables state-of-the-art emotion recognition with improved
accuracy and real-world applicability.

1: Description of Feature Vectors Utilized in Phase |

Feature Vector Name|[Number of Features||Feature/Channel Composition

EEG + Peripheral 40 32 EEG channels + 8 peripheral channels
EEG 32 32 EEG channels

Peripheral 8 8 peripheral channels

The study evaluates the impact of different feature sets on emotion classification by comparing EEG-only, peripheral-only,
and combined EEG + peripheral signals. Table 1 presents the feature vector compositions, showing that the EEG + peripheral
feature set integrates 40 features, while EEG-only and peripheral-only contain 32 and 8 features, respectively. This
comparison highlights the advantage of multimodal data fusion, as integrating EEG with physiological signals enhances
classification accuracy by capturing both neural and autonomic responses.

Table 2 Categories of Features/Channels Deployed in Phase 11

Feature Vector Designation Zﬁfﬁ{e Specific Channels/Features Utilized

Frontal Cortex 13 Fpl, F3, AF3, F7, FC5, FC1, FP2, AF4, F4, F8, FC2, FC6, and Cz
Frontal Cortex + Peripheral 21 Fpl, F3, AF3, F7, FC5, FC1, FP2, AF4, F4, F8, FC2, FC6, FCz, and
Channels peripheral

Parietal Cortex 8 CP5, CP1, P3, P7, P03, P2, CP6, CP2

Parietal  Cortex  +  Peripheral), , CP5, CP1, P3, P7, P03, P2, CP6, CP2, and peripheral

Channels

Temporal Cortex 8 T7,T8,C3, C4

Temporal ~ Cortex + Peripherall, o T7, T8, C3, C4, Cz, and peripheral

Channels

Occipital Cortex 11 01, 02,0z
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Feature Vector Designation E%fgtre Specific Channels/Features Utilized
Occipital Cortex + Peripheral 1 01, 02, Oz, and peripheral
Channels

Emotion classification performance varies across different brain regions, as specific lobes contribute uniquely to affective
processing. Table 2 categorises feature vectors based on brain lobes, including the frontal, parietal, temporal, and occipital
cortices, with and without peripheral signals[9]. The results highlight that integrating peripheral signals with EEG features
enhances classification accuracy, particularly in regions like the frontal and temporal lobes, which play a crucial role in
emotional regulation.

Table 3 Categories of Features/Channels Deployed in Phase 111

Feature Vector Designation Feature Count||Specific Channels/Features Utilized

Left Frontal Cortex 8 Fpl, AF3, F3, F7, FC5, FC1, C3, and Cz

Left Frontal Cortex + Peripheral Channels 8 Fpl, AF3, F3, F7, FC5, FC1, C3, Cz, and peripheral
Right Frontal Cortex 8 FC2, FC6, F8, F4, AF4, FP2, Fz, and C4

Right Frontal Cortex + Peripheral Channels 8 FC2, FC6, F8, F4, AF4, FP2, Fz, C4, and peripheral
Left Parietal-Temporal Cortex 8 CP5, CP1, P3, P7, P03, CP5, T7, and O1

Left Parietal-Temporal Cortex + Peripheral Channels ||8 01, PO3, P7, P3, CP1, CP5, T7, and peripheral
Right Parietal-Temporal-Occipital Cortex 16 02, PO4, P8, P4, CP6, CP2, T8, and Pz

Right Parietal-Temporal-Occipital Cortex + Peripheral||16 02, PO4, P8, P4, CP2, CP6, T8, Pz, and peripheral

Emotion classification accuracy can be further refined by analysing hemispheric and sub-regional contributions to affective
processing[10]. Table 3 categorises feature vectors based on specific brain regions, such as the left frontal, right frontal, left
parietal-temporal-occipital, and right parietal-temporal-occipital regions, both with and without peripheral signals[11]. The
findings indicate that left frontal EEG features combined with peripheral data yield the highest classification accuracy,
reinforcing the dominant role of the left frontal cortex in processing positively valenced emotions.

3. RESULTS AND DISCUSSION

The experimental setup was designed to evaluate the performance of the proposed 1D CNN-LSTM model across various
feature configurations and data segmentations. The experiments aimed to analyze the contributions of multimodal data, brain
lobes, and hemispheric regions to emotion classification accuracy.

Experimental Setup: The experiments were conducted in three distinct phases, each focusing on a specific aspect of the
dataset:

e Phase I: Evaluated the impact of data modalities by comparing EEG-only, peripheral-only, and combined EEG +
Peripheral features.

e Phase II: Analyzed emotion classification based on brain lobes, including Frontal, Parietal, Temporal, and Occipital
regions.

e Phase IlI: Investigated the influence of brain hemispheres and specific regions (e.g., Left Frontal, Right Frontal)
on classification performance.

Overall Performance

The proposed 1D CNN-LSTM model demonstrated superior performance across all phases compared to traditional machine
learning models such as K-Nearest Neighbors (KNN), Random Forest (RF), and Support Vector Machines (SVM). Key
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observations include:

e Multimodal data (EEG + Peripheral) consistently achieved higher classification accuracy than unimodal
approaches.

e The model outperformed competing classifiers in predicting both valence and arousal dimensions, highlighting its
robustness.

Phase-Specific Insights
1. Phasel:

o The integration of EEG and peripheral data yielded the best classification results, showcasing the synergy
of multimodal features.

o EEG-only data resulted in weaker performance, emphasizing the importance of combining peripheral
signals for enhanced accuracy.

2. Phase ll:

o Brain lobe-specific analyses revealed that combining EEG features from individual lobes with peripheral
data improved classification accuracy across all lobes.

o Among traditional models, KNN performed notably well when processing localized lobe-specific features.
3. Phase IlI:

o Hemispheric analysis demonstrated that EEG features from the left and right frontal regions, when
combined with peripheral data, achieved the highest accuracy for both valence and arousal classification.

o The results underscore the critical role of frontal brain regions in emotion recognition, particularly in
multimodal contexts.

This comprehensive analysis validates the efficacy of the proposed hybrid framework, illustrating its capability to leverage
multimodal and regional brain data for robust emotion classification.

Table 4 Performance Metrics for Phase |

Feature Model Experiment 1||Experiment 1||[Experiment 2||[Experiment 2
Categories Architectures (\Valence) (Arousal) (\Valence) (Arousal)
IE(aErﬁ)heral * 1D CNN-LSTM ||91.19 91.51 70.28 71.04
SVM 70.65 70.92 68.72 71.80
KNN 86.40 86.04 68.70 68.90
RF 84.83 84.78 66.72 66.96
EEG 1D CNN-LSTM [|63.02 67.34 56.57 58.92
SVM 60.05 62.26 - -
KNN 61.37 65.47 - -
RF 60.17 65.84 - -
Peripheral 1D CNN-LSTM ||77.23 89.95 69.45 70.92
SVM 76.26 76.62 68.92 67.84
KNN 85.63 86.05 68.52 68.64
RF 86.69 85.17 66.19 67.26
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Table 4 presents the performance metrics for Phase I, comparing different feature sets (EEG + Peripheral, EEG-only, and
Peripheral-only) across various model architectures. The results indicate that the 1D CNN-LSTM model achieves the highest
accuracy for both valence (91.19%) and arousal (91.51%) when using the EEG + Peripheral feature set, demonstrating the
advantage of multimodal fusion. In contrast, EEG-only and peripheral-only feature sets yield lower accuracy, highlighting
the importance of integrating neural and physiological signals for improved emotion classification.

Table 5 Performance Metrics for Phase 11

Feature Categories Mod«::-l Experiment 1||[Experiment 1||Experiment 2||Experiment 2
Architectures (\Valence) (Arousal) (Valence) (Arousal)
Frontal Cortex 1D CNN-LSTM |62.33 67.37 59.57 58.92
SVM 60.03 64.10 54.11 55.88
KNN 61.45 65.40 55.11 56.02
RF 60.54 64.62 53.39 55.01
E;‘;{gﬁ:}ral Cortex |1 p CNN-LSTM |[72.24 81.61 70.68 71.36
SVM 72.41 81.23 68.31 68.60
KNN 88.11 88.03 69.78 69.90
RF 87.38 87.61 68.25 68.96
Parietal Cortex 1D CNN-LSTM |60.02 63.03 57.47 57.83
SVM 60.13 62.44 55.42 55.43
KNN 60.66 65.50 54.93 54.42
RF 59.87 63.17 53.24 53.94
ﬁg;:;ﬁ;ral cortex *1p CNN-LSTM [i88.21 88.47 66.91 69.99
SVM 87.78 88.01 64.27 67.30
KNN 89.51 88.45 65.94 68.74
RF 88.91 88.62 66.81 67.04
Temporal Cortex 1D CNN-LSTM ||61.97 63.16 58.40 58.63
SVM 60.71 63.40 54.93 54.88
KNN 60.99 63.14 54.36 54.30
RF 59.97 61.81 53.63 54.12
;g?ﬁhoergl Cortex *+1p CNN-LSTM [|91.47 92.81 71.51 72.04
SVM 74.22 84.61 68.17 68.50
KNN 87.61 87.91 68.50 69.11
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Feature Categories Modgl Experiment 1||[Experiment 1||Experiment 2||Experiment 2
Architectures (\Valence) (Arousal) (Valence) (Arousal)
RF 87.78 87.31 67.24 67.40

Occipital Cortex 1D CNN-LSTM ||86.71 87.91 66.71 66.94
SVM 60.43 62.38 54.24 54.42
KNN 61.47 62.91 55.11 55.64
RF 59.78 63.87 54.72 55.01

Sgﬁ;ﬁ:ﬁ;l Cortex *l1p CNN-LSTM [[90.49 92.84 69.87 70.71
SVM 78.94 88.61 67.81 68.11
KNN 84.78 88.67 68.11 68.50
RF 86.33 86.28 67.03 67.40

Brain lobe-specific analysis helps identify the most influential regions for emotion classification by evaluating EEG and
peripheral signal combinations. Table 5 presents performance metrics across different lobes, showing that integrating
peripheral signals with EEG features significantly improves accuracy, particularly in the frontal and temporal regions. The
1D CNN-LSTM model consistently outperforms traditional classifiers, confirming that emotion-related neural activity is
predominantly concentrated in these regions, which are crucial for affective processing.

Table 6: Average Performance Results for Phase 111

Feature Set Model Experiment 1 Experiment 2
Valence Arousal
Left Frontal 1D CNN-LSTM 62.05 65.23
SVM 58.29 60.02
KNN 60.03 60.22
RF 61.79 63.07
Left Frontal + Peripheral 1D CNN-LSTM 93.67 94.18
SVM 88.51 86.75
KNN 88.48 87.04
RF 87.57 81.74
Right Frontal 1D CNN-LSTM 61.96 65.22
SVM 60.28 61.53
KNN 60.87 61.41
RF 59.97 64.13
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Feature Set Model Experiment 1 Experiment 2
Right Frontal + Peripheral 1D CNN-LSTM 93.87 94.22

SVM 88.59 87.06

KNN 88.78 87.13

RF 87.59 86.14
Left Parietal-Temporal-Occipital 1D CNN-LSTM 61.94 61.87

SVM 60.87 61.53

KNN 60.91 61.55

RF 61.53 62.05

Hemispheric and sub-regional analysis provides deeper insights into the role of specific brain areas in emotion classification.
Table 6 presents the average performance results for Phase 111, showing that the left frontal cortex combined with peripheral
signals achieves the highest accuracy for both valence (93.67%) and arousal (94.18%). This reinforces the dominant role of
the left frontal region in processing emotions, particularly those with positive valence, while also highlighting the
effectiveness of multimodal data fusion in enhancing classification performance.

4. CONCLUSIONS

This study demonstrates the effectiveness of a hybrid deep learning framework for emotion recognition using EEG and
peripheral physiological signals, with the 1D CNN-LSTM model achieving superior classification accuracy. Results
highlight that multimodal fusion, particularly integrating EEG with peripheral data, significantly enhances performance,
especially in the frontal and left hemispheric brain regions. The findings reinforce the importance of deep learning, feature
selection, and regional brain analysis in affective computing. Future research should explore larger datasets, real-time
deployment, and expanded multimodal approaches to further improve the robustness and applicability of emotion-aware Al
systems and brain-computer interfaces (BCIs)

REFERENCES

[1] Q. Wang, Y. Li, and R. Li, “Integrating artificial intelligence in energy transition: A comprehensive review,”
Energy Strategy Reviews, vol. 57, p. 101600, 2025, doi: https://doi.org/10.1016/j.esr.2024.101600.

[2] Z. Amiri, A. Heidari, and N. J. Navimipour, “Comprehensive survey of artificial intelligence techniques and
strategies  for climate change mitigation,” Energy, vol. 308, p. 132827, 2024, doi:
https://doi.org/10.1016/j.energy.2024.132827.

[3] F. Gaspar et al., “Synthetic image generation for effective deep learning model training for ceramic industry
applications,” Eng Appl Artif Intell, vol. 143, p- 110019, 2025, doi:
https://doi.org/10.1016/j.engappai.2025.110019.

[4] N.P.Makhanya, M. Kumi, C. Mbohwa, and B. Oboirien, “Application of machine learning in adsorption energy
storage using metal organic frameworks: A review,” J Energy Storage, vol. 111, p. 115363, 2025, doi:
https://doi.org/10.1016/j.est.2025.115363.

[5] D. Bhushan, S. Hooda, and P. Mondal, “Co-pyrolysis of biomass and plastic wastes and application of machine

learning for modelling of the process: A comprehensive review,” Journal of the Energy Institute, vol. 119, p.
101973, 2025, doi: https://doi.org/10.1016/j.joei.2025.101973.

[6] A. ElMekawy et al., “Food and agricultural wastes as substrates for bioelectrochemical system (BES): The
synchronized recovery of sustainable energy and waste treatment,” Food Research International, vol. 73, pp.
213-225, 2015, doi: 10.1016/j.foodres.2014.11.045.

[7]1 T. W. Smith and S. A. Colby, “Teaching for Deep Learning,” The Clearing House: A Journal of Educational
Strategies, Issues and Ideas, vol. 80, no. 5, pp. 205-210, May 2007, doi: 10.3200/TCHS.80.5.205-210.

[8] M. Kitis, S. S. Kaplan, E. Karakaya, N. O. Yigit, and G. Civelekoglu, “Adsorption of natural organic matter
from waters by iron coated pumice,” Chemosphere, vol. 66, no. 1, pp. 130-138, 2007, doi:

Journal of Neonatal Surgery | Year: 2025 | Volume: 14 | Issue: 30s
pg. 216



G. Sudha, G. Saranya, Dr.S.N. Tirumala Rao, K.V. Narasimha Reddy, Abburi Ramesh,
Sk.Nusrath Parveen

10.1016/j.chemosphere.2006.05.002.

[9] A.S. Awaad, R. M. El-Meligy, and G. A. Soliman, ‘“Natural products in treatment of ulcerative colitis and
peptic ulcer,” Journal of Saudi Chemistry Society, pp. 101-124, 2012.

[10]S. B. Pasupuleti, S. Srikanth, S. Venkata Mohan, and D. Pant, “Development of exoelectrogenic bioanode and
study on feasibility of hydrogen production using abiotic VITO-CoRETM and VITO-CASETM electrodes in a
single chamber microbial electrolysis cell (MEC) at low current densities,” Bioresour Technol, vol. 195, no.
July, pp. 131-138, 2015, doi: 10.1016/j.biortech.2015.06.145.

[11] G. Newcombe, R. Hayes, and M. Drikas, “Granular activated carbon: Importance of surface properties in the

adsorption of naturally occurring organics,” Colloids Surf A Physicochem Eng Asp, vol. 78, no. C, pp. 65-71,
1993, doi: 10.1016/0927-7757(93)80311-2

Journal of Neonatal Surgery | Year: 2025 | Volume: 14 | Issue: 30s
pg. 217



