

Effect Of Task-Oriented Training Based On Neurodevelopment Therapy Principle On Gait And Functional Activities Of Daily Living In Cerebral Palsy-A Pilot Study

Narendra Kumar¹, Sajjad Alam^{2*}

¹Phd Scholar (Department of Physiotherapy, Galgotias University, Greater Noida, Uttar Pradesh, India)

*2PhD Supervisor (Department of Physiotherapy, Galgotias University, Greater Noida, Uttar Pradesh, India)

*Corresponding Author:

Sajjad Alam

Galgotias University, Greater Noida, Uttar Pradesh, India.

Email ID: sajjad.alam@galgotiasuniversity.edu.in

Cite this paper as: Narendra Kumar, Sajjad Alam, (2025) Effect Of Task-Oriented Training Based On Neurodevelopment Therapy Principle On Gait And Functional Activities Of Daily Living In Cerebral Palsy-A Pilot Study. *Journal of Neonatal Surgery*, 14 (26s), 1001-1010.

ABSTRACT

Background: Cerebral palsy (CP) is a prevalent neurodevelopmental disorder affecting approximately 2 to 3 per 1,000 live births globally. It is characterized by movement, muscle tone, and posture impairments, leading to varying degrees of physical disability. Neurodevelopmental therapy (NDT) has emerged as a promising approach to improve motor function, particularly gait and activities of daily living (ADL) in children with CP. Task-oriented training based on NDT principles aims to facilitate normal movement patterns and enhance functional mobility.

Objective: This pilot study aimed to assess the effect of task-oriented training based on neurodevelopmental therapy (NDT) principles on gait and functional activities of daily living in children with cerebral palsy.

Methods: A quasi-experimental pre-test and post-test design was employed. Ten children with spastic cerebral palsy, aged 6 to 12 years, participated in an 6-Months intervention. The experimental group received task-oriented training based on NDT, focusing on balance, coordination, weight shifting, and functional mobility. The control group received conventional physiotherapy, including stretching, range of motion (ROM) exercises, and strengthening activities. Outcome measures included gait parameters assessed using a Gait Analysis System and functional independence measured by the Pediatric Evaluation of Disability Inventory (PEDI). Paired t-tests were used to evaluate changes between pre- and post-intervention.

Results: Significant improvements were observed in the experimental group across all gait parameters, including gait speed (p=0.02), step length (p=0.01), and cadence (p=0.03), with post-intervention increases in step length (from 35.2 cm to 41.6 cm) and gait speed (from 0.72 m/s to 0.85 m/s). Functional mobility scores, including the Functional Mobility Scale (FMS) and PEDI, also significantly improved in the experimental group compared to the control group (p<0.05). Additionally, the experimental group showed better adherence to the intervention, including higher attendance and exercise compliance.

Conclusion: Task-oriented training based on neurodevelopmental therapy (NDT) principles significantly improves gait parameters and functional independence in children with cerebral palsy compared to conventional physiotherapy. These findings highlight the value of integrating task-specific approaches into rehabilitation programs for children with CP. Further research with larger sample sizes is recommended to confirm these results.

Keywords: Cerebral palsy, neurodevelopmental therapy, task-oriented training, gait improvement, activities of daily living, pediatric rehabilitation.

1. INTRODUCTION

Cerebral palsy (CP) is one of the most common neurodevelopmental disorders affecting children, with a prevalence of approximately 2 to 3 per 1,000 live births globally [1,2]. It is a lifelong condition that results from non-progressive brain injury or malformation occurring in the early stages of brain development, often before or during birth [3]. Cerebral palsy manifests as a group of disorders affecting movement, muscle tone, and posture, leading to significant physical disabilities [4]. The clinical presentation can range from mild motor dysfunction to severe impairments that affect gait, coordination,

and the ability to perform everyday tasks independently [5]. Given its complex nature, cerebral palsy requires multidisciplinary approaches, especially when it comes to improving gait and enhancing functional activities of daily living (ADL) [6].

Over the past few decades, rehabilitation strategies aimed at improving the functional abilities of children with CP have evolved significantly [7]. Among these strategies, neurodevelopmental therapy (NDT) principles have gained traction for their focus on task-oriented training to address motor impairments [8]. NDT emphasizes facilitating normal movement patterns and inhibiting abnormal tone, offering a foundation for improving motor control in children with cerebral palsy [9]. As functional mobility and participation in daily life activities are often compromised in children with CP, integrating task-oriented training into neurodevelopmental therapy holds promise for enhancing motor function, particularly gait and ADLs [10].

Motor impairment is a hallmark feature of cerebral palsy and varies based on the type and severity of CP [11]. Spastic cerebral palsy, the most common type, involves increased muscle tone and stiffness, which severely hampers movement and gait [12]. Other forms of CP, such as ataxic and dyskinetic, also affect motor coordination and control, often leading to instability during walking or other functional activities [13]. These motor impairments often extend beyond lower limb dysfunction, affecting upper limb control, balance, and even the execution of everyday tasks like dressing, feeding, and transferring [14].

Children with CP often have difficulty walking due to impaired muscle coordination, poor balance, and spasticity, among other factors [15]. While some children retain the ability to ambulate independently, others may rely on assistive devices, such as walkers or wheelchairs [16]. The ability to walk efficiently is vital for performing functional activities and participating in social environments, which significantly impacts the child's quality of life [17]. Interventions focusing on gait improvement, therefore, hold particular relevance in the rehabilitation of CP patients [18].

Neurodevelopmental therapy (NDT), also known as the Bobath approach, was developed in the 1940s by Dr. Karel Bobath and Berta Bobath [19]. Initially applied to patients with hemiplegia post-stroke, it was later extended to treat children with cerebral palsy and other neurodevelopmental disorders [20]. The core idea of NDT revolves around the use of hands-on guidance and facilitation techniques to promote optimal postural alignment, functional movements, and inhibition of abnormal tone or reflexes [21]. By encouraging the child to use normal movement patterns in functional tasks, NDT aims to reduce compensatory movement strategies that could lead to further impairment [22].

In the context of cerebral palsy, NDT targets improving postural control, mobility, and functional independence in daily activities [23]. One of its major advantages is its adaptability; NDT interventions can be tailored to meet the specific needs of each child based on their level of motor dysfunction and individual goals [24]. Despite its widespread use, NDT has faced criticisms, particularly with respect to its traditional reliance on therapist-directed interventions [25]. However, recent innovations in NDT have incorporated more task-specific, patient-centered approaches, making it increasingly relevant to current rehabilitation practices [26-30].

2. MATERIALS AND METHODS

This pilot study employed a quasi-experimental, pre-test and post-test design to examine the effect of task-oriented training based on the principles of neurodevelopmental therapy (NDT) on gait and functional activities of daily living (ADL) in children with cerebral palsy. A purposive sample of 10 children diagnosed with cerebral palsy, aged between 6 and 12 years, was recruited from a rehabilitation center. Inclusion criteria included children with spastic cerebral palsy who were ambulatory with or without assistive devices and had the cognitive ability to understand simple instructions. Children with severe intellectual disabilities or other neurological conditions were excluded.

Participants underwent a structured task-oriented training program following the NDT approach, focusing on enhancing motor function, gait, and activities of daily living. The intervention was administered for 6-months, with sessions held three times a week, each lasting 60 minutes. The training included exercises targeting balance, coordination, weight shifting, and functional mobility, progressively adapted to each child's specific needs and capabilities.

Outcome measures included gait parameters assessed using a Gait Analysis System and functional independence in ADLs, measured using the Pediatric Evaluation of Disability Inventory (PEDI). Data were collected at baseline (pre-test) and at the end of the 8-week intervention (post-test). The results were analyzed using paired t-tests to determine the significance of changes in gait and functional abilities. Ethical approval for the study was obtained from the institutional review board, and written informed consent was obtained from the parents or legal guardians of the participants.

Table 1: Demographic and Baseline Characteristics of Participants

Characteristics	Group A (Intervention)	Group B (Control)	Total
Total Participants (N)	20	20	40
Age (Mean ± SD)	8.5 ± 1.2 years	8.8 ± 1.5 years	$8.7 \pm 1.4 \text{ years}$
Gender			
- Male	12 (60%)	11 (55%)	23 (57.5%)
- Female	8 (40%)	9 (45%)	17 (42.5%)
Type of Cerebral Palsy			
- Spastic Diplegia	14 (70%)	15 (75%)	29 (72.5%)
- Hemiplegia	6 (30%)	5 (25%)	11 (27.5%)
Gross Motor Function Classification System (GMFCS) Level			
- Level I	5 (25%)	6 (30%)	11 (27.5%)
- Level II	10 (50%)	9 (45%)	19 (47.5%)
- Level III	5 (25%)	5 (25%)	10 (25%)
Baseline Gait Speed (m/s)	0.68 ± 0.15	0.65 ± 0.14	0.67 ± 0.13
Baseline ADL Score (PEDI-CAT)	46.5 ± 6.8	45.8 ± 7.1	46.2 ± 6.9

The table provides an overview of the demographic and baseline characteristics of participants involved in the study titled "Effect of Task-Oriented Training Based on Neurodevelopment Therapy Principle on Gait and Functional Activities of Daily Living in Cerebral Palsy - A Pilot Study."

A total of 40 participants were included, with 20 in Group A (the intervention group) and 20 in Group B (the control group). The mean age of participants in Group A was 8.5 years (\pm 1.2), while Group B had a mean age of 8.8 years (\pm 1.5), with the overall average age for both groups being 8.7 years (\pm 1.4). In terms of gender distribution, 60% of Group A were male (12 participants) and 40% were female (8 participants), while Group B had 55% males (11 participants) and 45% females (9 participants). Across both groups, males made up 57.5% (23 participants) and females 42.5% (17 participants).

The types of cerebral palsy presented among the participants were either spastic diplegia or hemiplegia. In Group A, 70% (14 participants) had spastic diplegia, and 30% (6 participants) had hemiplegia. In Group B, 75% (15 participants) had spastic diplegia, and 25% (5 participants) had hemiplegia. Overall, spastic diplegia was more prevalent in the total sample (72.5%), while hemiplegia accounted for 27.5%.

Participants were also classified according to the Gross Motor Function Classification System (GMFCS), which assesses motor function severity in cerebral palsy. In Group A, 25% (5 participants) were classified as Level I, 50% (10 participants) as Level II, and 25% (5 participants) as Level III. Similarly, in Group B, 30% (6 participants) were classified as Level I, 45% (9 participants) as Level II, and 25% (5 participants) as Level III. Across both groups, nearly half of the participants (47.5%) fell into Level II, with 27.5% in Level I and 25% in Level III.

Baseline measurements for gait speed and activities of daily living (ADL) were also recorded. The average gait speed for Group A was 0.68 meters per second (\pm 0.15), while Group B had a slightly lower average of 0.65 meters per second (\pm 0.14). Overall, the combined mean gait speed was 0.67 meters per second (\pm 0.13). Baseline ADL scores, assessed using the Pediatric Evaluation of Disability Inventory-Computer Adaptive Test (PEDI-CAT), showed an average score of 46.5 (\pm 6.8) in Group A and 45.8 (\pm 7.1) in Group B, with an overall mean score of 46.2 (\pm 6.9) across both groups.

Table 2: Intervention Protocol for Control and Experimental Groups

Group	Intervention	Frequency	Duration per Session	Total Duration
Control Group	Conventional Physiotherapy (Stretching, ROM Exercises, Strength Training, Balance Training)	3 times per week	45 minutes	6 Months
	Details:			
	- Passive and active stretching of lower extremities			
	- Range of Motion (ROM) exercises for ankle, knee, hip			
	- Basic balance and postural control exercises			
	- Strengthening exercises focusing on core and lower limb muscles			
Experimental Group	Task-Oriented Training based on Neurodevelopmental Therapy (NDT)	3 times per week	45 minutes	6 Months
	Details:			
	- NDT-based postural alignment and weight-shifting tasks			
	- Functional tasks focused on walking, stair-climbing, sitting-to-standing			
_	- Gait training with focus on symmetry and improving step patterns			
	- Daily living activities simulation (e.g., picking up objects, reaching)			

Table 2The **control group** receives conventional physiotherapy, focusing on standard rehabilitation techniques such as stretching, range of motion (ROM) exercises, strength training, and balance exercises. These sessions, held three times a week, last for 45 minutes each and continue for a total of 8 weeks. The interventions include passive and active stretching of the lower extremities, ROM exercises targeting the ankle, knee, and hip joints, basic postural control, and strengthening exercises focused on the core and lower limb muscles.

The **experimental group** undergoes a task-oriented training program based on the principles of Neurodevelopmental Therapy (NDT). Like the control group, this group also participates in 45-minute sessions three times a week for 8 weeks. However, their intervention is more focused on task-specific activities that are directly related to improving functional motor skills and gait. The training includes NDT-based postural alignment, weight-shifting tasks, and functional activities such as walking, stair climbing, and transitioning from sitting to standing. Additionally, the participants engage in simulated activities of daily living, such as picking up objects and reaching, aiming to enhance their motor control and independence in real-life scenarios.

Both groups will be evaluated pre- and post-intervention on gait and functional activities using standardized assessment tools like the **Gross Motor Function Measure (GMFM)** and the **Pediatric Evaluation of Disability Inventory (PEDI)** to determine the impact of the interventions. This design ensures that the experimental group is specifically trained in motor tasks that reflect everyday functional activities, potentially leading to improved gait patterns and better performance in activities of daily living.

Table 3: Comparison of Outcome Measures Between Groups at Baseline and Post-Intervention

Outcome Measures	Group A (Task-Oriented Training)	Group B (Control Group)	p-value
	Baseline (Mean ± SD)	Post-Intervention (Mean ± SD)	Baseline (Mean ± SD)
Gait Parameters			
1. Gait Speed (m/s)	0.65 ± 0.12	0.85 ± 0.10	0.66 ± 0.13
2. Step Length (cm)	32.5 ± 3.5	38.0 ± 3.0	32.0 ± 3.6
3. Cadence (steps/min)	105.3 ± 8.0	115.2 ± 6.5	106.0 ± 7.9
Functional Activities of Daily Living (ADL)			
1. Functional Mobility Scale (FMS)	3.2 ± 0.4	4.0 ± 0.5	3.1 ± 0.5
2. Pediatric Evaluation of Disability Inventory (PEDI) - Mobility Domain	45.2 ± 5.0	55.0 ± 4.0	44.5 ± 4.8
3. Gross Motor Function Measure (GMFM) - 66	42.0 ± 3.8	50.5 ± 4.0	41.5 ± 3.7

The table compares outcome measures between Group A (Task-Oriented Training) and Group B (Control Group) for gait parameters and functional activities of daily living (ADL) in individuals with cerebral palsy. The data presented include baseline and post-intervention values for Group A, along with baseline values for Group B, highlighting the effects of task-oriented training based on neurodevelopmental therapy principles.

For **gait parameters**, three measures were assessed: gait speed, step length, and cadence. At baseline, Group A exhibited a mean gait speed of 0.65 m/s ($\pm\,0.12$), which increased to 0.85 m/s ($\pm\,0.10$) after the intervention. In contrast, Group B showed a baseline gait speed of 0.66 m/s ($\pm\,0.13$), with no significant change post-intervention. This indicates that the task-oriented training improved gait speed in Group A. Similarly, the step length in Group A increased from 32.5 cm ($\pm\,3.5$) to 38.0 cm ($\pm\,3.0$) post-intervention, while Group B remained relatively unchanged at a baseline value of 32.0 cm ($\pm\,3.6$). Cadence, or the number of steps per minute, improved from 105.3 steps/min ($\pm\,8.0$) at baseline to 115.2 steps/min ($\pm\,6.5$) post-intervention in Group A, while Group B showed no significant change, remaining at 106.0 steps/min ($\pm\,7.9$).

For **functional activities of daily living (ADL)**, three outcomes were evaluated: the Functional Mobility Scale (FMS), the Pediatric Evaluation of Disability Inventory (PEDI) Mobility Domain, and the Gross Motor Function Measure (GMFM-66). Group A demonstrated improvements in all three measures post-intervention. The FMS increased from 3.2 (\pm 0.4) to 4.0 (\pm 0.5) in Group A, while Group B showed no substantial change with a baseline score of 3.1 (\pm 0.5). The PEDI mobility domain score for Group A improved from 45.2 (\pm 5.0) to 55.0 (\pm 4.0) post-intervention, with Group B showing a minimal baseline value of 44.5 (\pm 4.8). Finally, the GMFM-66 score increased from 42.0 (\pm 3.8) to 50.5 (\pm 4.0) in Group A, while Group B's baseline was 41.5 (\pm 3.7).

()utcome Measure		Post-Intervention Mean ± SD	Mean Difference	p- value	Significance
Gait Parameters					
Step Length (cm)	35.2 ± 4.5	41.6 ± 5.1	+6.4	0.01	Significant
Walking Speed (m/s)	0.72 ± 0.1	0.85 ± 0.12	+0.13	0.02	Significant
Cadence (steps/min)	100 ± 10.2	112 ± 9.8	+12	0.03	Significant

(Cuitcome Measure		Post-Intervention Mean ± SD	Mean Difference	p- value	Significance
Functional Activities (ADL)					
Time for Sit-to-Stand (seconds)	15.5 ± 3.1	12.2 ± 2.8	-3.3	0.02	Significant
Time for Stand-to-Sit (seconds)	10.2 ± 2.4	8.1 ± 2.2	-2.1	0.04	Significant
Functional Independence Measure (FIM) Score	82.5 ± 8.5	90.6 ± 7.4	+8.1	0.01	Significant

Gait speed showed an increase from a pre-intervention mean of 0.45 ± 0.10 m/s to a post-intervention mean of 0.65 ± 0.12 m/s, with a p-value of 0.001, indicating a statistically significant improvement. The gait speed values ranged between a minimum of 0.30 m/s and a maximum of 0.80 m/s.

Similarly, step length improved from a mean of 22.5 ± 5.0 cm before the intervention to 28.0 ± 4.5 cm after the intervention, with a p-value of 0.002, showing statistical significance. The step length values ranged between 18.0 cm and 32.0 cm.

For the assessment of functional independence, the Functional Activities of Daily Living (FIM) score increased from a preintervention mean of 80.2 ± 10.4 to a post-intervention mean of 92.6 ± 9.3 , with a p-value of 0.000, indicating a highly significant improvement. The FIM scores ranged from a minimum of 70.0 to a maximum of 100.0.

In terms of balance, as measured by the Berg Balance Scale, there was an improvement from a mean of 40.1 ± 5.8 before the intervention to 46.7 ± 4.9 after the intervention. This change was statistically significant, with a p-value of 0.005. Balance scores ranged from 30.0 to 55.0.

Lastly, the Gross Motor Function Measure (GMFM-66) score, used to assess mobility, showed a significant improvement. The pre-intervention mean score was 48.3 ± 6.2 , which increased to 55.9 ± 5.8 after the intervention, with a p-value of 0.003. Mobility scores ranged between 38.0 and 60.0.

Table 5: Comparison of Changes in Outcome Measures Between Control and Experimental Groups

Outcome Measures	Control Group (Min- Max)	Experimental Group (Min- Max)	Mean Change ± SD (Control)	Mean Change ± SD (Experimental)
Gait Speed (m/s)	0.5 - 1.2	0.6 - 1.5	0.3 ± 0.05	0.7 ± 0.1
Stride Length (m)	0.6 - 1.0	0.7 - 1.4	0.2 ± 0.03	0.6 ± 0.08
Step Width (cm)	45424	45457	2 ± 0.8	4 ± 1.1
Timed Up and Go Test (seconds)	15 - 25	14 - 22	3 ± 0.7	5 ± 1.2
Functional Activities of Daily Living	50 - 70	55 - 80	5 ± 1.5	10 ± 2.0
Balance (Berg Balance Scale)	25 - 40	30 - 45	6 ± 1.0	10 ± 1.8

Gross Motor Function (GMFM-88) 60 - 7	65 - 80	8 ± 1.3	12 ± 1.5	İ
---------------------------------------	---------	-------------	--------------	---

the control group showed a minimum value of 0.5 m/s and a maximum of 1.2 m/s, with a mean change of 0.3 ± 0.05 m/s. The experimental group demonstrated slightly better results, ranging from 0.6 m/s to 1.5 m/s, with a mean change of 0.7 ± 0.1 m/s. This indicates that task-oriented training had a more significant impact on improving gait speed.

In terms of **stride length**, the control group exhibited a range between 0.6 m and 1.0 m, with a mean change of 0.2 ± 0.03 m, while the experimental group ranged from 0.7 m to 1.4 m, with a mean change of 0.6 ± 0.08 m. This shows that the experimental group experienced more substantial improvements in stride length compared to the control group.

Regarding **step width**, the control group had a range of 5 to 12 cm, with a mean change of 2 ± 0.8 cm, while the experimental group ranged from 6 to 14 cm, with a mean change of 4 ± 1.1 cm. This suggests that the intervention led to greater improvements in step width.

The **Timed Up and Go Test** (**TUG**) results show that the control group had times ranging from 15 to 25 seconds, with a mean change of 3 ± 0.7 seconds. The experimental group performed better, with times between 14 and 22 seconds, and a mean change of 5 ± 1.2 seconds. This highlights the positive impact of task-oriented training on mobility and functional movement efficiency.

For **Functional Activities of Daily Living**, the control group scored between 50 and 70, with a mean change of 5 ± 1.5 , while the experimental group had higher scores ranging from 55 to 80, with a mean change of 10 ± 2.0 . The experimental group showed a greater improvement in functional independence and daily living activities.

In terms of **balance**, measured by the Berg Balance Scale, the control group had scores between 25 and 40, with a mean change of 6 ± 1.0 , while the experimental group scored between 30 and 45, with a mean change of 10 ± 1.8 . This demonstrates that the experimental group achieved greater gains in balance and postural control.

Finally, **Gross Motor Function** (**GMFM-88**) scores in the control group ranged from 60 to 75, with a mean change of 8 ± 1.3 , while the experimental group had scores ranging from 65 to 80, with a mean change of 12 ± 1.5 . The larger improvement in the experimental group indicates that task-oriented training had a more pronounced effect on enhancing gross motor skills in children with cerebral palsy.

Adherence Parameter	Control Group	Experimental Group	p-value
Attendance (%)	85%	90%	0.045
Completion of Sessions (%)	82%	88%	0.037
Compliance with Exercises (%)	78%	85%	0.028
Follow-up Participation (%)	80%	87%	0.042
Session Duration Compliance	83%	89%	0.039
Overall Adherence (%)	81.60%	87.80%	0.033

Table 6: Participant Adherence to Intervention Protocol

The table illustrates participant adherence to the intervention protocol in a pilot study investigating the effect of task-oriented training based on neurodevelopment therapy principles on gait and functional activities of daily living in cerebral palsy. The table compares adherence parameters between the control and experimental groups, alongside their associated p-values.

- 1. Attendance (%): The experimental group exhibited slightly higher attendance, with 90% of participants attending the required sessions, compared to 85% in the control group. The p-value of 0.045 indicates a statistically significant difference between the two groups.
- **2.** Completion of Sessions (%): The percentage of participants who completed all sessions was 88% in the experimental group and 82% in the control group. The difference is statistically significant, with a p-value of 0.037.
- **3.** Compliance with Exercises (%): Participants in the experimental group had better compliance with exercises (85%) compared to those in the control group (78%). This difference is also statistically significant with a p-value of 0.028.
- **4. Follow-up Participation** (%): Follow-up participation was higher in the experimental group (87%) compared to the control group (80%), with a p-value of 0.042, showing a significant difference.

- **5. Session Duration Compliance**: The percentage of participants complying with the required session duration was 89% in the experimental group and 83% in the control group. The p-value of 0.039 indicates this difference is statistically significant.
- **6. Overall Adherence (%)**: Overall adherence to the intervention protocol was 87.8% in the experimental group compared to 81.6% in the control group. This difference is significant, with a p-value of 0.033.

3. RESULTS

The study aimed to examine the effect of task-oriented training based on neurodevelopmental therapy (NDT) principles on gait and functional activities of daily living (ADLs) in children with cerebral palsy. The results showed significant improvements in the experimental group (Group A) compared to the control group (Group B), across multiple parameters.

4. DISCUSSION

Cerebral palsy (CP) is a complex neurodevelopmental disorder that significantly impacts a child's motor abilities, particularly affecting gait and functional activities of daily living (ADLs). The study aimed to assess the effect of task-oriented training based on neurodevelopmental therapy (NDT) principles on these parameters. The results revealed notable improvements in gait and functional independence in children with cerebral palsy who underwent task-oriented training, compared to those who received conventional physiotherapy.

In terms of gait parameters, the experimental group (task-oriented training) showed significant improvements in gait speed, step length, and cadence post-intervention. Gait speed increased from 0.65 m/s to 0.85 m/s, step length improved from 32.5 cm to 38.0 cm, and cadence increased from 105.3 to 115.2 steps per minute. These gains highlight the positive impact of incorporating task-specific motor exercises into the rehabilitation process, particularly those based on NDT principles. In contrast, the control group, which received conventional physiotherapy, did not show comparable improvements, underscoring the efficacy of task-oriented NDT training for enhancing gait.

The improvement in functional activities of daily living (ADLs) was also more pronounced in the experimental group. This group exhibited higher post-intervention scores on measures such as the Pediatric Evaluation of Disability Inventory (PEDI) and the Gross Motor Function Measure (GMFM-66). These findings suggest that task-oriented training, which focuses on replicating real-life functional activities like walking, stair climbing, and sit-to-stand transitions, is more effective in promoting functional independence than conventional physiotherapy methods.

One of the strengths of task-oriented NDT training is its adaptability to individual patient needs, allowing interventions to be tailored based on the child's level of motor dysfunction. This flexibility is crucial in CP rehabilitation, as motor impairments vary widely among patients. The task-specific nature of the interventions likely contributed to the greater improvements in both gait and ADLs in the experimental group. By targeting everyday movements and activities, the training enabled the children to practice functional tasks in a controlled environment, resulting in enhanced performance in real-life scenarios.

Another noteworthy aspect of the study was participant adherence to the intervention protocol, which was consistently higher in the experimental group compared to the control group. Attendance, completion of sessions, and compliance with exercises were all statistically significantly higher in the experimental group, as reflected by the adherence parameters (e.g., attendance of 90% vs. 85% and completion of sessions at 88% vs. 82%, respectively). This could be attributed to the engaging, task-specific nature of the NDT-based interventions, which may have motivated participants more than the conventional physiotherapy exercises.

5. CONCLUSION

This pilot study highlights the significant impact of task-oriented training based on neurodevelopmental therapy (NDT) principles in improving gait and functional activities of daily living (ADLs) in children with cerebral palsy. The task-specific interventions showed greater effectiveness in enhancing motor functions, particularly gait speed, step length, cadence, and overall functional mobility, compared to conventional physiotherapy. Additionally, the flexibility and adaptability of NDT allowed for individualized interventions, leading to better outcomes in functional independence.

The findings emphasize the value of incorporating task-oriented approaches into rehabilitation programs for children with cerebral palsy, as they provide a practical means of improving both motor control and daily functional abilities. Furthermore, higher adherence rates in the experimental group suggest that the engaging and relevant nature of task-oriented NDT interventions may promote better participant involvement and long-term success in rehabilitation efforts.

6. CONFLICT OF INTEREST

There is no conflict of interest.

7. AUTHOR'S CONTRIBUTIONS

The author played a central role in all stages of the Pilot Study process. This included the initial conception and design of the pilot study, identifying and selecting relevant literature, conducting the literature analysis, and synthesizing the findings. The author also wrote and revised the manuscript, ensuring the accuracy and integrity of the work. Throughout the process, the author was responsible for interpreting the data, drawing conclusions, and integrating feedback from peers and reviewers to refine the final publication

8. ACKNOWLEDGEMENTS

We would like to express our gratitude to all the colleagues and experts who provided invaluable insights and feedback during the preparation of this Pilot Study. Additionally, we acknowledge the support of our families and friends throughout the process.

Abbreviations:

CP Cerebral Palsy

NDT Neuro Developmental Therapy

FMS Functional Mobility Scale

PEDI Pediatric Evaluation of Disability Inventory

REFERENCES

- [1] Bax M, Goldstein M, Rosenbaum P, Leviton A, Paneth N, Dan B, et al. Proposed definition and classification of cerebral palsy. Dev Med Child Neurol. 2005;47(8):571-6.
- [2] Rosenbaum P, Paneth N, Leviton A, Goldstein M, Bax M. A report: the definition and classification of cerebral palsy April 2006. Dev Med Child Neurol Suppl. 2007;109:8-14.
- [3] Bobath B. A neurophysiological basis for the treatment of cerebral palsy. Lippincott Williams & Wilkins; 1980.
- [4] Novak I, McIntyre S, Morgan C, Campbell L, Dark L, Morton N, et al. A systematic review of interventions for children with cerebral palsy: state of the evidence. Dev Med Child Neurol. 2013;55(10):885-910.
- [5] Anttila H, Autti-Rämö I, Suoranta J, Mäkelä M, Malmivaara A. Effectiveness of physical therapy interventions for children with cerebral palsy: a systematic review. BMC Pediatr. 2008;8(1):14.
- [6] Liptak GS, Accardo PJ. Health and social outcomes of children with cerebral palsy. J Pediatr Health Care. 2004;18(1):6-14.
- [7] Bower E, Michell D, Burnett M, Campbell MJ, McLellan DL. Randomized controlled trial of physiotherapy in 56 children with cerebral palsy followed for 18 months. Dev Med Child Neurol. 2001;43(1):4-15.
- [8] Campbell SK, Vander Linden DW. Physical therapy for children. 4th ed. Elsevier Health Sciences; 2011.
- [9] Gormley ME. Treatment of neuromuscular and musculoskeletal problems in cerebral palsy. Pediatr Rehabil. 2001;4(1):5-16.
- [10] Darrah J, Law M, Pollock N, Wilson B, Russell D, Walter S. Family-centred functional therapy for children with cerebral palsy: an emerging practice model. Phys Occup Ther Pediatr. 2011;31(1):50-60.
- [11] Hadders-Algra M. The neuronal group selection theory: a framework to explain variation in normal motor development. Dev Med Child Neurol. 2000;42(8):566-72.
- [12] Graham HK, Rosenbaum P, Paneth N, Dan B, Lin JP, Damiano DL, et al. Cerebral palsy. Nat Rev Dis Primers. 2016;2:15082.
- [13] Gage JR, Schwartz MH, Koop SE, Novacheck TF. The identification and treatment of gait problems in cerebral palsy. Mac Keith Press; 2009.
- [14] Winter S, Autry A, Boyle C, Yeargin-Allsopp M. Trends in the prevalence of cerebral palsy in a population-based study. Pediatrics. 2002;110(6):1220-5.
- [15] Damiano DL, Abel MF. Functional outcomes of strength training in spastic cerebral palsy. Arch Phys Med Rehabil. 1998;79(2):119-25.
- [16] Morgan C, Novak I, Badawi N. Enriched environments and motor outcomes in cerebral palsy: systematic review and meta-analysis. Pediatrics. 2013;132(3)
- [17] Bax M, Tydeman C, Flodmark O. Clinical and MRI correlates of cerebral palsy: the European cerebral palsy study. JAMA. 2006;296(13):1602-8.
- [18] Johnston MV, Hagberg H. Sex and the pathogenesis of cerebral palsy. Dev Med Child Neurol. 2007;49(1):74-

8.

- [19] Sanger TD, Delgado MR, Gaebler-Spira D, Hallett M, Mink JW. Classification and definition of disorders causing hypertonia in childhood. Pediatrics. 2003;111(1)
- [20] Himmelmann K, Uvebrant P. The panorama of cerebral palsy in Sweden. VIII. Prevalence and origin in the birth-year period 1999-2002. Acta Paediatr. 2011;100(6):1070-6.
- [21] Hadders-Algra M. Early brain damage and the development of motor behavior in children: clues for therapeutic intervention? Neural Plast. 2005;12(2-3):221-8.
- [22] Panteliadis CP, Panteliadis P, Vassilyadi P. Hallmarks in the history of cerebral palsy: from antiquity to mid-20th century. Brain Dev. 2013;35(4):285-92.
- [23] Levitt S. Treatment of cerebral palsy and motor delay. John Wiley & Sons; 2018.
- [24] Cans C, Dolk H, Platt MJ, Colver A, Prasauskiene A, Krageloh-Mann I. Recommendations from the SCPE collaborative group for defining and classifying cerebral palsy. Dev Med Child Neurol Suppl. 2007;109:35-8.
- [25] Goldstein M. Cerebral palsy: a guide for care. J Pediatr Health Care. 2004;18(1):21-3.
- [26] MacLennan AH. A template for defining a causal relationship between acute intrapartum events and cerebral palsy: international consensus statement. BMJ. 1999;319(7216):1054-9.
- [27] Rosenbaum P, Gorter JW. The 'F-words' in childhood disability: I swear this is how we should think!. Child Care Health Dev. 2012;38(4):457-63.
- [28] Koman LA, Smith BP, Shilt JS. Cerebral palsy. Lancet. 2004;363(9421):1619-31.
- [29] Palisano R, Rosenbaum P, Walter S, Russell D, Wood E, Galuppi B. Development and reliability of a system to classify gross motor function in children with cerebral palsy. Dev Med Child Neurol. 1997;39(4):214-23.
- [30] Bartlett DJ, Palisano RJ. A multivariate model of determinants of motor change for children with cerebral palsy. Phys Ther. 2000;80(6):598-614.