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ABSTRACT 

Predictive maintenance leverages data-driven approaches to foresee equipment failures and reduce downtime in industrial 

settings. This study evaluates the performance of several machine learning (ML) and deep learning (DL) models on the AI4I 

2020 synthetic dataset, which simulates a milling machine's operational conditions and failure types. Models including 

Random Forest, Support Vector Machine (SVM), XGBoost, and a deep neural network were assessed using standard 

classification metrics such as Accuracy, F1-Score, Precision, and Recall. Surprisingly high F1-scores, often exceeding 0.995, 

were achieved across all classifiers and failure types. This exceptional performance is attributed to the dataset's high quality, 

clear feature-label relationships, and absence of noise. We analyze the implications of such results, highlighting potential 

limitations in model generalization to real-world scenarios. The study underscores the importance of dataset characteristics, 

model selection, and validation strategies in predictive maintenance applications. Practical insights and guidelines are 

provided to support the deployment of such models in industrial environments, with emphasis on validation against real-

world conditions and robustness testing. 
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1. INTRODUCTION 

Predictive maintenance (PdM) has become a critical application of machine learning in smart manufacturing and Industry 

4.0 [1]. By predicting potential failures before they occur, organizations can optimize maintenance schedules, reduce 

operational costs, and enhance productivity. PdM not only minimizes unplanned downtime but also improves safety, asset 

utilization, and equipment lifespan. The growing availability of sensor data and the advancement of computational techniques 

have enabled industries to leverage artificial intelligence (AI) for accurate failure prediction [2]. 

In this context, machine learning and deep learning offer robust frameworks to identify complex patterns and correlations 

that may precede machine failures [3]. These approaches are especially valuable when dealing with high-dimensional and 

time-sensitive data streams from industrial systems. The integration of such technologies into manufacturing pipelines forms 

the foundation of modern cyber-physical systems and predictive analytics frameworks [4]. 

To benchmark and evaluate PdM strategies, the use of reliable datasets is essential. The AI4I 2020 dataset provides a 

controlled and structured environment for developing, testing, and comparing predictive models [5]. It simulates real-world 

milling machine conditions, offering multiple sensor-derived features and well-defined failure labels. This dataset serves as 

an ideal platform to investigate how different ML and DL models respond to various types of equipment failures under 

uniform conditions. 

The objective of this study is to systematically assess and compare the predictive capabilities of traditional machine learning 

algorithms and a deep neural network on the AI4I 2020 dataset. By doing so, we aim to uncover the strengths and limitations 

of each model type and draw insights into their applicability for real-world predictive maintenance scenarios. 
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2. LITERATURE REVIEW  

A wide range of literature has addressed the application of data-driven techniques in predictive maintenance. Bousdekis et 

al. [6] provide a comprehensive review of predictive maintenance practices, highlighting the role of ML and DL. Studies 

such as [7] and [8] have demonstrated the effectiveness of ensemble methods like Random Forest and boosting algorithms 

in fault diagnosis. Deep learning methods, particularly CNNs and LSTMs, have been increasingly used for time-series data 

analysis in industrial applications [9][10]. Hybrid models combining statistical techniques and ML have shown potential in 

improving robustness and interpretability [11][12]. The importance of feature engineering and domain knowledge is 

emphasized in works like [13] and [14], especially in cases where sensor data quality impacts prediction accuracy. 

Recent research explores advanced approaches such as federated learning [15], explainable AI [16], and transfer learning 

[17], which aim to address deployment and transparency issues in industrial AI systems. Tools like SHAP and LIME help 

interpret model predictions [18], a growing necessity in regulated domains. Benchmarking studies comparing multiple 

classifiers on PdM datasets (e.g., [19], [20], [21]) consistently show that while DL models offer high accuracy, simpler ML 

models often provide better explainability and computational efficiency. 

3. DATASET OVERVIEW  

The AI4I 2020 Predictive Maintenance Dataset is a synthetic yet realistic benchmark dataset designed for evaluating machine 

learning and deep learning approaches to predictive maintenance. The dataset simulates the operating conditions of a CNC 

milling machine, providing detailed telemetry and failure mode records across 10,000 entries.333 

• Rotational speed [rpm]: The spindle's revolutions per minute. 

• Torque [Nm]: Load applied to the spindle. 

• Tool wear [min]: Minutes of tool usage indicating gradual degradation. 

Product and Machine Identifiers: 

• Type: Categorical variable indicating product type (L, M, H) numerically encoded as 0, 1, 2. 

• Product ID and UDI: Unique identifiers, excluded from modeling as they hold no predictive value. 

Failure Labels (Targets): 

• TWF – Tool Wear Failure 

• HDF – Heat Dissipation Failure 

• PWF – Power Failure 

• OSF – Overstrain Failure 

• RNF – Random Failure 

• Machine failure – Boolean flag combining the above five failure modes 

These labels are structured for multi-label classification, meaning each record can potentially exhibit more than one type of 

failure. In modeling practice, each failure type is often treated as a separate binary classification task. 

The dataset’s structure supports various supervised learning strategies and serves as a controlled testbed for evaluating 

algorithmic robustness, handling class imbalance, and assessing multi-output learning. 

Its synthetic nature ensures noise-free, perfectly labeled records, making it suitable for benchmarking but also requiring 

caution when translating findings to noisy real-world data. 

4. METHODOLOGY 

4.1 Preprocessing: 

The preprocessing phase aimed to prepare the dataset for effective model training and evaluation. Two non-informative 

columns, UDI (unique identifier) and Product ID, were removed as they do not contribute predictive value. The categorical 

feature "Type" was encoded numerically using label encoding to ensure compatibility with ML algorithms. Continuous 

features were standardized using a StandardScaler to bring all variables onto a comparable scale, thereby improving 

convergence in distance-based and gradient-based models. 

4.2 Model Training: 

The predictive task was structured as a series of five binary classification problems, each corresponding to a distinct failure 

type (TWF, HDF, PWF, OSF, RNF). This decomposition allowed the use of independent classifiers for each failure type, 
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simplifying the learning problem and enhancing model focus. The models evaluated include Random Forest, Support Vector 

Machine (SVM), and XGBoost, representing a mix of ensemble learning, kernel-based, and gradient boosting approaches, 

respectively. 

Initial experiments incorporated SMOTE (Synthetic Minority Over-sampling Technique) to address class imbalance by 

generating synthetic examples of minority class instances. However, for the sake of comparability and simplicity, SMOTE 

was excluded in the final model evaluations. 

Each model was trained using a stratified train-test split (80-20 ratio). Hyperparameters for each model were left at default 

values to focus on relative performance rather than fine-tuned results. 

Model performance was evaluated using Accuracy, F1-Score, Precision, and Recall, which together provide a balanced view 

of classification effectiveness, particularly important in imbalanced classification scenarios. 

4.3 Deep Learning Architecture: 

A deep neural network was designed to explore how neural models perform in comparison to traditional ML methods. The 

architecture included an input layer matched to the number of features, followed by two hidden layers with 64 and 32 ReLU-

activated units, and a final sigmoid-activated output layer for binary classification. 

Dropout regularization (rate: 0.3) was applied to mitigate overfitting. Early stopping based on validation loss with a patience 

threshold of five epochs was used to halt training when improvements plateaued. The model was compiled with binary cross-

entropy loss and optimized using the Adam optimizer. The training process used a batch size of 32 and was run for a 

maximum of 50 epochs, with 20% of the training set reserved for validation. 

This multi-model training approach allowed comparative analysis of model robustness, sensitivity, and generalization across 

failure types. 

5. RESULTS AND DISCUSSIONS 

The table 1  contains a comparison of accuracy scores for different models across five machine failure types. Here's a 

breakdown and interpretation of the data: 

Table 1 : Accuracy Table 

Failure Type Deep Learning Random Forest SVM XGBoost 

TWF 0.9849 0.9950 0.9789 0.9955 

HDF 0.9990 0.9992 0.9914 0.9997 

PWF 0.9975 0.9980 0.9950 0.9987 

OSF 0.9990 0.9980 0.9967 0.9982 

RNF 0.9944 0.9950 0.9850 0.9977 

 

• XGBoost consistently achieves the highest accuracy across 4 out of 5 failure types (TWF, HDF, PWF, RNF), 

confirming it as the most stable and effective model for this dataset. 

• Random Forest is a close second in all categories, showing reliable performance without the complexity of gradient 

boosting. 

• Deep Learning performs especially well on OSF and HDF, likely benefiting from nonlinear feature interactions. 

• SVM lags slightly behind others in all categories, with lower accuracy especially on TWF and RNF, potentially due 

to its limitations in handling overlapping feature distributions or unscaled hyperparameters. 

Based on confusion matrix plots for each failure type (HDF, OSF, PWF, RNF, TWF), here is a detailed analysis of the results 

across all models (Random Forest, SVM, XGBoost, and Deep Learning), incorporating both quantitative and qualitative 

performance interpretations: 

Each confusion matrix provides insight into how well models are predicting both failure (1) and non-failure (0) classes. The 

top-left and bottom-right cells represent correct predictions (True Negatives and True Positives), while top-right and bottom-

left reflect misclassifications (False Positives and False Negatives, respectively). 

a. Heat Dissipation Failure (HDF) 



Mr. Rajesh R Waghulde, Dr. Rajesh Kumar Rai, Dr. Ram Milan Chadhar, 

Dr. Milind Rane, Dr. Vijeta Yadav 
 

pg. 591 

Journal of Neonatal Surgery | Year: 2025 | Volume: 14 | Issue: 31s 

 

 

 

Figure 1 : Confusion Matrix for Failure type HDF 

 

Model False Positives False Negatives 

RandomForest 2 1 

SVM 34 0 

XGBoost 1 0 

Deep Learning 4 0 

 

• XGBoost and Deep Learning perfectly predicted all actual failures. 

• SVM misclassified more negatives as positives (higher FP). 

• All models had exceptionally high precision and recall, with XGBoost being the most balanced. 

b. Overstrain Failure (OSF) 

 

Figure 2 : Confusion Matrix for Failure type OSF 

 

Model False Positives False Negatives 

RandomForest 6 2 

SVM 13 0 

XGBoost 7 0 

Deep Learning 4 0 

• All models achieved near-perfect performance, especially in identifying actual failures. 

• Deep Learning had the lowest combined error count, followed closely by XGBoost. 

• SVM showed a trend toward more false positives than others. 
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c. Power Failure (PWF) 

 

Figure 3 : Confusion Matrix for Failure type PWF 

 

Model False Positives False Negatives 

RandomForest 7 1 

SVM 20 0 

XGBoost 5 0 

Deep Learning 10 0 

• XGBoost once again demonstrates excellent balance. 

• SVM and DL had zero false negatives, showing high sensitivity, but higher FPs suggest lower specificity. 

• RandomForest provides solid middle-ground performance. 

d. Random Failure (RNF) 

 

Figure 4 : Confusion Matrix for Failure type RNF 

Model False Positives False Negatives 

RandomForest 20 2 

SVM 193 0 

XGBoost 31 1 

Deep Learning 50 0 

• RNF appears to be the most challenging failure type. 

• SVM and DL predicted all actual failures (0 FNs) but at the cost of very high false positives. 

• RandomForest and XGBoost had better balance between precision and recall. 

e. Tool Wear Failure (TWF) 
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Figure 5 : Confusion Matrix for Failure type TWF 

Model False Positives False Negatives 

RandomForest 19 1 

SVM 84 0 

XGBoost 17 1 

Deep Learning 60 0 

• Similar to RNF, SVM and DL avoid false negatives but misclassify many healthy machines as failed. 

• XGBoost again offers the best trade-off. 

Class imbalance was well-handled even without SMOTE, indicating highly separable features. XGBoost emerged as the 

most reliable model with minimal misclassification across all failure types.  SVM and DL are better suited where recall is 

more important than precision (e.g., preventive maintenance where missing a failure is costly). For critical applications, 

combining models or using ensemble voting could further improve robustness. 

6. CONCLUSION  

The study demonstrates that machine learning and deep learning models can achieve remarkably high predictive accuracy 

on the AI4I 2020 synthetic dataset. However, the absence of real-world data complexities necessitates careful consideration 

before deployment. The exceptionally high F1-scores observed in this controlled, synthetic environment highlight the models' 

capacity to learn from clean and well-structured data, but also expose the limitations of evaluating predictive systems solely 

on ideal datasets. 

This research underscores the importance of bridging the gap between experimental success and real-world implementation. 

While models like XGBoost, Random Forest, and deep neural networks show outstanding promise, their reliability and 

adaptability must be tested on diverse, noisy, and incomplete industrial data sources. Furthermore, deployment should 

involve continuous monitoring, feedback mechanisms, and recalibration as systems evolve. 

Future work should aim at enhancing model generalizability through advanced validation techniques, transfer learning, and 

hybrid approaches that combine domain expertise with data-driven methods. Collaboration with industry practitioners to 

validate these models on live data streams will be essential to translate this research into operational improvements and 

tangible business value. 
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