
Journal of Neonatal Surgery

ISSN(Online): 2226-0439
Vol. 14, Issue 31s (2025)
https://www.jneonatalsurg.com

pg. 767

Journal of Neonatal Surgery | Year: 2025 | Volume: 14 | Issue: 31s

Flask Weather Wizadry: Create a Robust App with Advanced Features and User-friendly,

Mastering the Art of Forecasting

Dr. K.E. Kannammal1, Arcchana V2

1Computer Science Engineering, Sri Shakthi Institute of Engineering and Technology, Coimbatore, India
2Computer Science Engineering, Sri Shakthi Institute of Engineering and Technology, Coimbatore, India.

00Cite this paper as: Dr. K.E. Kannammal, Arcchana V, (2025) Flask Weather Wizadry: Create a Robust App with Advanced

Features and User-friendly, Mastering the Art of Forecasting. Journal of Neonatal Surgery, 14 (31s), 767-775.

ABSTRACT

This study suggests the creation of a weather forecasting app based on Flask, a Python web application framework, with the

addition of IBM Watson API for precise meteorological information. The project aims to create an easy-to-use platform that

integrates several web development technologies, such as SQLAlchemy for database management and Flask-Login for secure

authentication and authorizing. Front-end functionalities, developed using Bootstrap, JavaScript, and AJAX, include

responsive design and dynamic content. Our strategy involves strict validation, safe user input handling, and strong

integration with weather data sources using IBM Watson API to provide data accuracy and application reliability. Thorough

testing and debugging procedures also guarantee the user experience via greater reliability. Findings indicate that applying

Flask in conjunction with IBM Watson API presents a reliable solution for real-time weather forecasting, which is accurate

and scalable. The current work introduces to the literature a systematic process that can be adopted by developers to create

interactive and secure web applications with Flask and third-party APIs, and provides useful guidelines to new as well as

experienced web developers.

Keywords: Weather Forecasting, IBM Watson API, Meteorological Data, Web Development

1. INTRODUCTION

Over the last few years, access to good weather forecasts has become important to individuals and enterprises. Weather

applications allow the user to make the correct decision in a broad spectrum of fields of application from common personal

planning to business operations on a large scale. Since there are more frequent occurrences of weather extremes and climatic

uncertainties affecting societies worldwide, one of urgent demand is weather applications with access to accurate real-time

information in an informative manner.

Building a weather app is a matter of overcoming some technical and design challenges, from presenting correct

meteorological information to creating an easy-to-use interface. Flask, a lightweight but powerful Python web application

framework, offers the ideal basis for the development of data-driven, scalable applications with dynamic potential. With the

use of IBM Watson API, a reliable weather data supplier, developers are able to add more accuracy to the forecasts for Flask

applications, thus making the applications appear credible and worthwhile to clients.

The objective of this study is to take into account the creation and deployment of a weather forecast application on Flask

with particular focus on integrating leading-edge technologies in secure, dynamic, and interactive user interfaces. Some of

the leading technologies for this endeavor are SQLAlchemy for easy database management, Flask-Login for authentication

and logging, and front-end technologies such as Bootstrap, JavaScript, and AJAX for flexible layout and dynamic display.

Besides that, the project is also focused on ensuring secure handling of data and input and output validation, which are very

important to make the application stable and earn the trust of the users. By thorough debugging and testing, the application

becomes smooth to provide maximum execution and stable performance. The product of the project enables one to design

weather apps that can be scaled utilizing an organized procedure in conjunction with IBM Watson API incorporation and

Flask. The research has the potential to provide firsthand experience and an FAQ guide for execution in the sake of enabling

any level developer to design data-intense interactive as well as safe web apps in conjunction with third-party APIs and

Flask.

Apart from the main functionality, the project tries out a variety of performance and user experience approaches that can be

adjusted for real-world usage. Caching prevents excessive API calls by storing data that is called repeatedly, improving

response time, and reducing server load. With the use of rate-limiting methods, the application is safeguarded against misuse

Dr. K.E. Kannammal, Arcchana V

pg. 768

Journal of Neonatal Surgery | Year: 2025 | Volume: 14 | Issue: 31s

and guaranteed reasonable use against over rates of API requests, an essential feature while dealing with a monstrous traffic.

These improvements are not only responsive to the application but also guarantee optimal resource handling, thus making

the application scalable for an indefinite number of users.

Lastly, this study offers the relevance of responsiveness and accessibility, the main characteristics of contemporary web

applications. Bootstrap front-end development leads the application to any device, be it desktop or mobile phone. JavaScript

and AJAX-based dynamic functionality offers real-time feedback to the user and makes for a smooth run, enabling data to

be manipulated without resorting to page reloads occasionally. Through emphasizing these design principles, the app is

rendered compatible with the demands of the existing generation of users, illustrating how a balanced methodology to front-

end and back-end development can provide a strong, user-focused weather forecasting platform.

Problem Statement

Weather forecasts are utilized in state and individual sectors for planning, living, living or property. Natural disasters that

can cause human harm to the Earth planet in a negative way are fire, smoke, fog, heavy wind, cyclone and floods. Life and

death are now decided by the MOSDAC (Weather and Oceanographic Satellite Data Archives Center). The greatest issue of

most individuals in this world is that most people are unable to utilize advanced apps, but they know by feeling the weather

at a particular moment. First of all, one must understand why people need to receive the weather information and where

people get the information. Not all smartphones have the ability to have a Google widget to display the weather.

Therefore, the user simply clicks on this app to view the person's current weather details. All you need is a stable internet c

onnection and GPS. This can be found on almost every phone per day. Weather data is accessed from open source websites

 and displayed on mobile phone screens in a userfriendly way, allowing each person to view it without many confusing ste

ps. Later versions of this app also allow you to add some features, such as several languages, to show the weather, but at thi

s time it is only visible in English.

Weather and weather information go together and affect each other. Lazo et al, conducted source and personal interpretation

of weather study, wherein he researched where individuals obtain forecasts, personal interpretation of most crucial element

of a forecast, and conclusions drawn from the information received. 87% cases, individuals utilize forecasts of weather within

the city or town where they reside. 72% cases, individuals utilize weather forecast in order to learn about the weather. They

also employ weather applications to make plans for future occurrences occasionally. Users mainly mentioned predictions for

areas nearby their area (areas within their area but not other states, territories and nations). Time, place, likelihood, and

amount of precipitation and predicted temperatures are most beneficial to users.The Weather Checking App project seeks to

solve these challenges by developing a comprehensive mobile application using Android Studio. The primary issues it aims

to address include:

Objectives

There are a number of places where the weather forecasting is being used. Aviation is a weather-sensitive process, and good

weather forecast will have to be used in such a manner so that it controls and regulates the air traffic. Farmers rely on weather

while planning the day's work. Forestry department requires news on wind, rain, and humidity for controlling the wild fires.

Electricity department also relies on this to predict the demand. Other companies also put a price tag on weather forecast so

that they can gain their highest profit or avoid huge loss. The primary purpose of this app is to show weather of a place in

simple manner, so everyone can easily view it. The range of this app will not be that broad. As opposed to this, it will be

limited to essential features that are needed. The main features are temperature and rain probability. Weather forecasting app

has widespread usage in our life. They are important because they can prepare us for weather apocalypse, and assist in saving

life and property.

Organization: In this paper various authors’ research works are discussed in section 2. Methodologies are discussed in section

3. In section 4 the results and conclusions are discussed and conclusions are made finally in section 5.

2. LITERATURE REVIEW

Weather forecasting research has witnessed colossal paradigm changes, ushering in a transition from traditional

meteorological models to machine learning and deep learning towards a higher accuracy and reliability of solution for broad

categories of prediction problems. Path-breaking study research, like Pandey and Shrivastava's review, brought in limitations

of traditional methods and demonstrated efficacy of machine learning methods like artificial neural networks (ANNs),

support vector machines (SVMs), decision trees, and Bayesian networks to address forecast issues [1]. Other researchers

have integrated data mining with cloud computing for service-oriented weather systems, finding that algorithms, especially

ANNs and decision trees, are effective for forecasting specific weather parameters [2].

The development of deep learning has further enhanced weather prediction capabilities. A range of architectures, including

CNNs, RNNs, LSTMs, and GRUs, effectively capture complex, nonlinear patterns in weather data, significantly boosting

predictive accuracy [5, 6, 8, and 10]. Comparison work, as submitted by Mahmud et al. and Zhang et al., raises the distinct

advantage of having different models for distinct applications and brings on the premise of dataset profiles and prediction

Dr. K.E. Kannammal, Arcchana V

pg. 769

Journal of Neonatal Surgery | Year: 2025 | Volume: 14 | Issue: 31s

requirements selection criteria on which to decide on the optimal structure [5, 10]. Hybrid architectures involving deep

learning approaches have likewise been brought to better predict the purposes of rain and wind speeds, generally in contrast

to ordinary and single algorithm models [3, 7].

Progressive models that combine Numerical Weather Prediction (NWP) data with ANNs are other advances, which enable

such models to handle complex meteorological data and maximize the accuracy of predictions for various parameters [4].

Certain architectures, such as LSTMs, are especially promising in modeling long-term temporal dependencies and are well-

suited for long-range forecasting tasks [9]. Together, these articles lay out the potential of current state-of-the-art machine

learning and deep learning techniques to produce the most accurate and reliable weather forecasting, and improvement is

possible.

Overall, the study sets the stage for the potential for deep learning and machine learning to provide more accurate weather

forecasting than current practices. From gap filling in research and parameter adjustment in model structures, research

indicates further development based on complexity neural network development and ensemble structures as the most

important areas to develop into in order to better meet higher resolution weather data needs. The accumulation of research is

an altrurus for additional research and deployment for weather forecasting operations.

3. METHODOLOGY

Data Collection

IBM Watson also provides a weather forecast API through which weather data is provided in the form of latitude and

longitude geographical coordinates. To utilize the Watson API within the app, Python `requests` are sent to make HTTP

requests for retrieving weather details. The API provides exposure to real-time weather information such as temperature,

humidity, wind speed, and pressure. IBM Watson needs an API key to validate requests. The key is safely stored in

environment variables so it is not exposed in source code. At runtime, the key is used to securely invoke APIs. Weather data

received using the Watson API is in JSON. The data often contains details related to temperature, humidity, wind speed, and

barometric pressure. These are decoded and utilized to give accurate weather forecasts to the user.

Flask Web Application Setup

To have a clean development environment and properly handle the project dependencies, a virtual environment is created

through the `venv` module of Python. This keeps the project dependencies separate from the global Python setup so that the

required packages such as Flask and SQLAlchemy do not conflict with other projects. Flask uses URL routing to map specific

web addresses to related functions in the application. There are routes established that process user input, like latitude and

longitude coordinates, and that process requests posed to the IBM Watson API. The URLs accept HTTP requests and return

the weather information to the user in the form of a dynamically built response. It dynamically generates HTML content

using Jinja2, which is a very powerful templating engine, that enables Python variables and logic to be inserted into web

pages. The user interface will consist of a simple form where the latitude and longitude coordinates of the users are entered.

Upon submission of the form, the Flask app will retrieve related weather information from the IBM Watson API and present

it to the user on a dynamically generated web page.

Database Management

SQLAlchemy is utilized to manage database operations such that the application can save weather data. Schema contains a

table to save weather records with columns like latitude, longitude, temperature, humidity, and timestamp. This enables the

system to save, fetch, and keep historical weather data. SQLAlchemy manages basic database operations like creating,

reading, updating, and deleting weather records. This feature enables the application to store new weather information,

retrieve old weather information, and change or delete records as needed. SQLAlchemy's Object-Relational Mapping (ORM)

feature enables Python classes to be mapped onto database tables. Weather data are stored in every instance as a class record,

and class properties are mapping to table columns. Such mapping facilitates easy interaction with the database because it

allows developers to interact with Python objects rather than raw SQL queries.

Web Interface Development

The web interface supports HTML forms that take user input in the form of latitude and longitude. The forms support users

to enter the geographic coordinates for which they want to obtain weather information. When the forms are submitted, the

coordinates are sent to the back-end (Flask) to be processed. After the Flask application has obtained the weather information

from the IBM Watson API, it is presented to the user. This data is then transmitted to the front-end and rendered dynamically

on the HTML page through the Jinja2 template engine. Also, if the user requests historical weather data, the system fetches

it from the database and displays it on the page.

Integration of IBM Watson API and Flask

Once the front-end passes the coordinates to Flask, it converts the input and constructs a request to the IBM Watson API. It

adds the latitude and longitude as parameters and gets back the weather information in return. The received data is processed

Dr. K.E. Kannammal, Arcchana V

pg. 770

Journal of Neonatal Surgery | Year: 2025 | Volume: 14 | Issue: 31s

by the application and presented for viewing. The acquired weather information is displayed to the user through a dynamic

web page. The Flask app takes corresponding weather values such as temperature, humidity, wind speed, and pressure from

the JSON response and presents them in an easy-to-view format. Caching APIs can be utilized to store API responses

temporarily for improved performance. This limits repeated calls to the IBM Watson API, making the response faster and

the overall app performance better.

Optimizing Performance and Security

Caching methods are used to improve the performance of the application by preloading cached responses of frequently

accessed APIs into storage or memory to avoid repeated requests, especially for the same coordinates, to make it more

responsive and lower the load on the Watson API. Rate limiting is also used to limit users from making more than a specified

amount of requests in a given time to avoid abusing and allow fair use, as well as to guard the application from traffic bursts

or excessive use. Security best practices are utilized, such as Cross-Site Scripting (XSS) prevention by sanitizing content and

responding with proper HTTP headers to block malicious script injections. CSRF protection is realized through generating

specific tokens per form submission to ensure that server requests are authentic and come from the original requester who

made them.

Testing and Debugging

Unit testing is done to try out all the aspects of the application as intended, with Flask having a testing module that tests

routes and logic separately to make sure that each component works properly. Debugging methodologies involve testing

with the use of the Python Debugger (`pdb`) for stepping through the code, viewing variables, and breaking at locations in

an effort to find runtime errors. The Flask Debug Toolbar also assists in giving insights into application performance,

requests, responses, and SQL queries, making it easy to identify bottlenecks and run smoothly. Strong error-handling

mechanisms are built in to catch exceptions and give good, informative feedback to users, and logging systems track

important application events, errors, and debugging information, all of which are needed to debug and enhance the

application.

Deployment and Hosting

For deployment in production, web servers such as Gunicorn or uWSGI are used to serve the Flask application. They are

performance servers that can handle concurrent requests efficiently. The application can be deployed to a Virtual Private

Server (VPS) where the server environment is set, dependencies are installed, and the Flask application is executed. Platforms

such as AWS or Heroku provide cloud-hosting features with automatic deployment pipelines, scaling, and managed services

and thus are apt for hosting Flask applications in production. Along with security and trust, the application can also be

configured through a custom domain and SSL certificates. HTTPS encrypts data exchanged between server and client so that

sensitive information (e.g., weather information) is safe from possible eavesdropping. Unit tests are written to make sure that

every segment of the application is working as expected. Flask has an in-built test framework that can be used to test the

routes and application logic in isolation so that every module works as expected.

Scaling and Load Balancing

For support of heavy loads, horizontal scaling is established by having many copies of the app running on various servers

with load balancing strategies applied to split incoming traffic in a manner that minimizes unavailability and maximizes peak

performance. Database replication enhances fault tolerance and scalability by duplicating the database, whereas sharding

divides large databases into small ones that are simple to manage and each of which is running on independent servers,

enhancing load distribution and performance, notably for apps with data involved. It is also optimized to run under high

traffic conditions due to caching, query optimization, and the use of Content Delivery Networks (CDNs) in order to distribute

static assets. Monitoring tools are employed to track server performance and adjust resources as needed to maintain optimal

performance during traffic spikes.

Dr. K.E. Kannammal, Arcchana V

pg. 771

Journal of Neonatal Surgery | Year: 2025 | Volume: 14 | Issue: 31s

Fig. 1. Conceptual Flow of Weather Prediction

Systematic development process for building a Flask-based weather application Steps:

Step 1: Requirement Analysis and Technology Selection

• Identify key functional and non-functional requirements.

• Choose Flask as the backend framework.

• Select IBM Watson API for weather data.

• Define database structure using SQLAlchemy.

• Ensure authentication via Flask-Login.

Step 2: Setting Up Flask Application

• Install Flask and required libraries (Flask-Login, Flask-SQLAlchemy, requests, etc.).

• Configure the Flask app, create directory structure, and define routes.

• Establish a connection with IBM Watson API.

Step 3: Database Design and User Authentication

• Define models using SQLAlchemy (User, WeatherData).

• Implement authentication using Flask-Login.

• Set up secure password handling with hashing (Werkzeug).

Step 4: Integrating IBM Watson API for Weather Data

• Fetch real-time weather data using API requests.

• Process and display weather information in JSON format.

• Implement error handling for API failures.

Step 5: Front-End Development with Bootstrap and AJAX

• Create a responsive UI using Bootstrap.

• Implement AJAX calls to update weather data dynamically.

• Use JavaScript for form validation and real-time updates.

Dr. K.E. Kannammal, Arcchana V

pg. 772

Journal of Neonatal Surgery | Year: 2025 | Volume: 14 | Issue: 31s

Step 6: Application Testing and Debugging

• Perform unit testing on API integration and database queries.

• Debug UI components and user authentication system.

• Ensure secure handling of inputs to prevent vulnerabilities.

Step 7: Deployment and Performance Evaluation

• Deploy Flask application on a server (Heroku/AWS).

• Optimize for scalability and monitor performance.

• Gather user feedback for improvements.

Fig. 2. Flask-based weather application Steps

4. RESULTS AND DISCUSSION

The weather application, developed using IBM Watson API, Flask, and SQLAlchemy, worked remarkably well in retrieving

live weather data and handling heavy data loads efficiently. Although the users input the latitude and longitude values, the

app was successful in retrieving weather data from the Watson API and displaying important parameters such as temperature,

humidity, wind speed, and pressure. It presented the findings in a very intuitive and interactive manner, making use of Flask's

template engine to load the web page dynamically with the freshest data found.

The app was accurate when retrieving weather details from IBM Watson, and it processed the response immediately without

a delay. SQLAlchemy handled storing and maintaining weather details to facilitate easy CRUD (Create, Read, Update,

Delete) operations. Users were able to retrieve past weather information instantly, and the system effectively stored the new

incoming information for future use. The communication between the front-end, upon which user-coordinates were entered,

and the back-end, upon which API requests were processed, was seamless, owing to Flask routing.

Caching mechanisms were introduced to optimize the performance of the application by precluding unnecessary API

requests, thereby making the application more responsive. This facilitated faster page loading and curbed the load on the

Watson API, particularly under heavy loads.

Scalability of the application was an additional benefit. With load balancing and horizontal scaling, we would have many

copies of the application on multiple servers. That is, incoming traffic was distributed in such a manner that there was

maximum performance and availability even when loaded to the brim. Aside from that, sharding and replication allowed

them to handle enormous amounts of data by dividing the database into minute shards, besides increasing the fault tolerance

and scalability of the system.

It was also doing very well under loads because it was utilizing database query optimization, caching, and serving static

content on Content Delivery Networks (CDNs). Its server performance was tracked constantly to dynamically distribute

Dr. K.E. Kannammal, Arcchana V

pg. 773

Journal of Neonatal Surgery | Year: 2025 | Volume: 14 | Issue: 31s

traffic against resources in a manner such that it still performed just as well under loads.

In total, the combination of IBM Watson API, Flask, and SQLAlchemy proved to be effective in developing a working and

functioning weather forecasting system. The system was stable and scalable and didn't whine when traffic surged or

dwindled. Future experiments can involve the development of friendlier interfaces and the inclusion of sophisticated

predictive models to forecast longer durations and these are more competent to provide more precision and accuracy to the

prediction.

Table 1. Comparison Table

Algorithm/Metrics Throughput Latency Error rate Energy

consumption

LSTM 24 320 4.2 5.2

ARIMA 31 220 7.8 3.7

Random Forest

Regressor

42 150 6.5 3.1

Flask Weather

Wizardry

58 80 3.1 1.9

In table 1 depicts the comparison of various methods such as LSTM, ARIMA, Random forest Regressor and Flask Weather

Wizardry through throughput, latency, error rate and energy consumption. The proposed Flask Weather Wizardry forecasts

weather effectively compared to other methods.

Fig 3. Throughput comparison

Fig 4. Latency comparison

Fig 3 compares the throughput and fig 4 compares the latency of LSTM, ARIMA, Random forest Regressor and Flask

Weather Wizardry. In these charts the x-axis shows the forecasting algorithms and the y-axis shows the values of throughput

in seconds (fig 3) and latency in ms (fig 4).

Fig 5. Error rate comparison chart

Fig 6. Energy consumption comparison chart

Dr. K.E. Kannammal, Arcchana V

pg. 774

Journal of Neonatal Surgery | Year: 2025 | Volume: 14 | Issue: 31s

Fig 5 compares the error rate and fig 6 compares the energy consumption of LSTM, ARIMA, Random forest Regressor and

Flask Weather Wizardry. In these charts the x-axis shows the forecasting algorithms and the y-axis shows the values of error

rate in percentage (fig 5) and energy consumption in Watts (fig 6).

5. CONCLUSION

Successful deployment of the project is a big success in creating a robust weather app with Flask and associated technologies.

With effective planning, deployment, and testing, we have designed an app that provides the correct weather forecasts in a

convenient as well as secure way.

Our emphasis on features like user authentication, database management, and front-end scripting has provided us with a

well-balanced solution for the project. Secondly, inclusion of user manuals with detailed information and troubleshooting

instructions makes the application end-user friendly and thus secure and accessible to end-users.

6. FUTURE WORK

Improving user experience through continuous feedback-based UI refinement and feature enhancements such as personal

notifications, longer weather forecasts, and social sharing can become the secret to growing the value of the application.

Performance and scalability will become inevitable with more and more users on board, from database administration

optimization to code optimization and even higher superior hosting plans. Development for globalization and localization

would drive the application to the international market, while IoT device compatibility such as weather stations and

thermostats would cement data localization as exact. Using machine learning in predictive modeling will make it even more

precise in forecasting, so the app stays current and problem-free in a changing weather technology scenario.

7. ACKNOWLEDGEMENT

I am privileged to convey my genuine thanks to my guide, Divya, for their constant support, guidance, and encouragement

during the project. Their ideas and opinions have played a long way in this project, and the dedication and determination

displayed by them have encouraged me to take every precaution to give my best. I am additionally heavily indebted to Sri

Shakthi Institute of Engineering and Technology for the facilities and study environment provided to complete this project.

The encouragement from the faculty members and the facilities at Sri Shakthi Institute of Engineering and Technology has

extensively helped in the success of this project.

REFERENCES

[1] Pandey, A., & Shrivastava, N. (2017). Weather Forecasting Using Machine Learning Techniques: A Review.

"International Journal of Computer Applications".

[2] Research on ‘The Weather Forecast Using Data Mining Research Based on Cloud Computing’.

[3] Gao, S., et al. (2020). Deep learning-based ensemble approach for rainfall forecasting using weather radar and

numerical weather prediction data. "Neural Computing and Applications".

[4] Jaiswal, R.K., Chaudhary, A., & Sharan, M. (2018). Integration of Numerical Weather Prediction Models with

Artificial Neural Networks for Forecasting of Weather Parameters. "Procedia Computer Science".

[5] Mahmud, R., et al. (2020). A comparative study of deep learning architectures for weather forecasting. "Expert

Systems with Applications".

[6] Zhang, X., et al. (2019). Weather forecasting using deep learning: A comparative study. "Applied Soft

Computing".

[7] Chen, F., et al. (2020). A hybrid model for short-term wind speed forecasting based on EMD, optimized SVM

with fruit fly optimization algorithm and post-processing techniques. "Renewable Energy".

[8] Qureshi, K.S., et al. (2016). Weather prediction using feed-forward artificial neural network. "2016

International Conference on Computing, Communication and Automation (ICCCA)".

[9] Moeini, R., & Khashei, M. (2020). Weather prediction using LSTM neural networks. "Neural Computing and

Applications".

[10] Zhang, X., et al. (2019). Weather forecasting using deep learning: A comparative study. "Applied Soft

Computing".

[11] Grinberg, Miguel. "Flask Web Development: Developing Web Applications with Python." O'Reilly Media,

2018.

[12] Pallets Projects. "Flask Documentation." Accessed January 2024. https://flask.palletsprojects.com/en/2.1.x/.

[13] SQLAlchemy. "SQLAlchemy Documentation." Accessed January 2024. https://docs.sqlalchemy.org/en/14/.

https://flask.palletsprojects.com/en/2.1.x/
https://docs.sqlalchemy.org/en/14/

Dr. K.E. Kannammal, Arcchana V

pg. 775

Journal of Neonatal Surgery | Year: 2025 | Volume: 14 | Issue: 31s

[14] Bootstrap. "Bootstrap Documentation." Accessed January 2024. https://getbootstrap.com/docs/5.1/getting-

started/introduction/.

[15] JavaScript. "JavaScript Documentation." Accessed January 2024. https://developer.mozilla.org/en-

US/docs/Web/JavaScript.

[16] AJAX. "AJAX Documentation." Accessed January 2024. https://developer.mozilla.org/en-

US/docs/Web/Guide/AJAX.

[17] Flask-Login. "Flask-Login Documentation." Accessed January 2024. https://flask-

login.readthedocs.io/en/latest/

[18] IBM Corporation, "IBM Watson Weather API." Accessed: Nov 2023. [Online]. Available:

https://www.ibm.com/watson/products-services/weather.

[19] Python Software Foundation. "Python Documentation." Accessed January 2024. https://docs.python.org/3/.

[20] Aslam, Fankar & Mohammed, Hawa & Lokhande, Prashant. (2015). Efficient Way Of Web Development Using

Python And Flask.. International Journal of Advanced Research in Computer Science. 6.

[21] Kumar, Avinash & Tejaswini, Pallapothala & Nayak, Omprakash & Kujur, Anurag & Gupta, Rajkiran &

Rajanand, Ashish & Sahu, Mridu. (2022). A Survey on IBM Watson and Its Services. Journal of Physics:

Conference Series. 2273. 012022. 10.1088/1742-6596/2273/1/012022.

[22] Suraj Shahu Gaikwad , PRATIBHA ADKAR "A Review Paper On Bootstrap Framework" Iconic Research

And Engineering Journals Volume 2 Issue 10 2019 Page 349-351

[23] S. Dong, C. Cheng and Y. Zhou, "Research on AJAX technology application in web development," 2011

International Conference on E-Business and E-Government (ICEE), Shanghai, China, 2011, pp. 1-3, doi:

10.1109/ICEBEG.2011.5881693.

[24] S. Delcev and D. Draskovic, "Modern JavaScript frameworks: A Survey Study," 2018 Zooming Innovation in

Consumer Technologies Conference (ZINC), Novi Sad, Serbia, 2018, pp. 106-109, doi:

10.1109/ZINC.2018.8448444.

https://getbootstrap.com/docs/5.1/getting-started/introduction/
https://getbootstrap.com/docs/5.1/getting-started/introduction/
https://developer.mozilla.org/en-US/docs/Web/JavaScript.
https://developer.mozilla.org/en-US/docs/Web/JavaScript.
https://developer.mozilla.org/en-US/docs/Web/Guide/AJAX.
https://developer.mozilla.org/en-US/docs/Web/Guide/AJAX.
https://www.ibm.com/watson/products-services/weather.
https://docs.python.org/3/

