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ABSTRACT 

Fuzzy difference equation growing rapidly developed for the many years. Now the problem is that the solution procedure of 

difference equation and fuzzy difference are not same. In this paper, we have considered the applications of fuzzy difference 

equation in finance. Specially use of fuzzy difference equation in predicting future value is calculated and we have verified 

our results by taking the suitable examples. 
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1. INTRODUCTION 

In mathematics, theory of difference equations and its applications play an important role. These equations are used in 

modeling of many situations such as in population dynamics, probability models, computer science, control engineering, 

statistical problems, stochastic time series, economics and engineering. 

Nonetheless, the theory of difference equations is a lot richer than the corresponding theory of differential equations. For 

example, a simple difference equation resulting from a first order differential equation may have a phenomena often called 

appearance of “ghost” solutions or existence of chaotic orbits that can only happen for higher order differential equations. 

A q-th order linear difference equation (synonymously, a linear recurrence relation) is a set of equations of the form 

𝑥𝑛 − (𝑎𝑛−1𝑥𝑛−1 + 𝑎𝑛−2𝑥𝑛−2 + ⋯ + 𝑎𝑛−𝑞𝑥𝑛−𝑞) = 𝑟𝑛                                              (1) 

For n = q, q + 1, ......... 

If 𝑟𝑛 = 0, for all 𝑛, the equation is said to be a homogeneous difference equation 

otherwise it is non homogeneous difference equation. The term 𝑟𝑛 is called the forcing factor. Now if 𝑎𝑖(𝑖 = 1,2, … , 𝑛)do 

not depend on n then the equation said to have constant, coefficients. 

2. FUZZY DIFFERENCE EQUATIONS 

In 1965, Zadeh initiated the development of the modified set theory known as fuzzy set theory, which is a tool that makes 

possible description of vague notions and manipulations with them. The basic idea of the fuzzy set theory is simple and 

natural. The fuzzy set is a function from a set into a lattice or as a special case, into the interval [0,1]. Using it, one can model 

the meaning of vague notions and also some kinds of human reasoning. The fuzzy set theory and its applications have been 

extensively developed since the seventies and the industrial interest in fuzzy control has dramatically increased since 1990. 

There are several books dealing with these aspects [1–8]. 

A difference fuzzy equation is a fuzzy difference equation when (i) initial condition is fuzzy number, (ii) coefficients is fuzzy 

number, (iii) initial conditions and coefficients are both fuzzy numbers. Fuzzy difference equation growing rapidly developed 

for the many years. Now the problem is that the solution procedure of difference equation and fuzzy difference are not same. 

To study the behavior and solutions of a fuzzy difference equation we need to study the concepts of fuzzy difference, since 

the fuzzy difference is not same as crisp difference. We can show that every fuzzy difference can converted to system of 

fuzzy difference equations. 

Consider the second order non homogeneous difference equation as 

mailto:rohini-maths@dayanandasagar.edu
mailto:sowmya-maths@dayanandasagar.edu
mailto:komala-maths@dayanandasagar.edu
mailto:padmaja-maths@dayanandasagar.edu
mailto:chitrar-maths@dayanandasagar.edu


Nagarathnamma K G, Sowmya K, Komala C S, Padmaja C, Chitra R 
 

pg. 1221 

Journal of Neonatal Surgery | Year: 2025 | Volume: 14 | Issue: 1s 

 

𝑎0𝑢𝑛+2 + 𝑎1𝑢𝑛+1 + 𝑎2𝑢𝑛 =  𝑓 (𝑛) (2) 

1.  

2. With initial condition 𝑢𝑛=0 = 𝑢0and 𝑢𝑛=1 = 𝑢1 

3. The above second order difference equation is called fuzzy difference equation if any of one case is followed by the 

above difference equation: 

1. The initial condition or conditions are fuzzy number (Type I) 

2. The coefficient or coefficients are fuzzy number (Type II) 

3. The initial condition or conditions and coefficient or coefficients are fuzzy numbers (Type III) 

2.1  Methods for Solving second order fuzzy difference equations 

4. Let us consider the second order fuzzy difference equation of Type I: 

5. 𝑦(𝑘 +  2)  +  𝑎𝑦(𝑘 +  1)  +  𝑏𝑦(𝑘)  =  𝑔(𝑘) (3)  

6. Basically there are three methods to solve second order fuzzy difference equations: 

• Classical solution 

• Extension Principle solution 

• Interval arithmetic solution 

3. CLASSICAL SOLUTION 

The classical solution of equation(3) is denoted by 𝑌̅𝑐(𝑘). Let the Ω-cuts of 𝑌̅𝑐(𝑘) be [𝑦1(𝑘, Ω), 𝑦2(𝑘, Ω)], 𝑘 = 0,1,2,3 … and 

0 ≤ Ω ≤ 1. By substituting these intervals in (3) we get 

𝑦𝑖(𝑘 + 2, Ω) + 𝑎𝑦𝑖(𝑘 + 1, Ω) + 𝑏𝑦𝑖(𝑘, Ω) = g(k)                                          (4) 

Assuming 𝑎 and 𝑏 are positive and 𝑖 =  1, 2 subjected to the initial conditions: 

𝑦1(0, Ω) = 𝛾01(Ω)  (5) 

𝑦1(1, Ω) = 𝛾11(Ω) (6) 

𝑦2(0, Ω) = 𝛾02(Ω) (7) 

𝑦2(1, Ω) = 𝛾12(Ω)                                     (8) 

where 𝛾0̅ = [𝛾01(Ω), 𝛾02(Ω)], 𝛾1̅ = [𝛾11(Ω), 𝛾12(Ω)]. 𝑌̅𝑐(𝑘) is a solution when the intervals [𝑦1(𝑘, Ω), 𝑦2(𝑘, Ω)],  define a 

fuzzy number for each 𝑘 =  0, 1, 2,· · ·  

Similarly, the method for solving second order fuzzy difference equations by extension principal and arithmetic solutions 

can be found in [5]. Recently in [7] have developed the Lagrange’s multiplier method to solve second order linear fuzzy 

difference equation. 

In this section we first consider the elementary concepts, in the mathematics of finance, future value, present value and 

regular annuities. In all cases the cash amounts, interest rates and number of compounding’s may all be fuzzy. Then we look 

at two methods of comparing fuzzy net cash flows in order to rank fuzzy investment alternatives from 

best to worst. For other discussions of the mathematics of finance we refer the reader to ([1], [2], [8], [13], [14] to [27]). This 

chapter is based on ([3], [5], [6], [7]), and we will be using both triangular and trapezoidal (shaped) fuzzy numbers. Let us 

explain our procedure for fuzzifying the elementary mathematics of finance. We first write down the 

mathematical expression for the problem  in finance. Then we substitute fuzzy numbers for some, or all, the parameters in 

the expression. If in the fuzzy equation we need to solve for the value of some variable, we then solve using a-cuts and 

interval arithmetic producing the classical solution (if it exists). For example in the fuzzy equation 𝐴̅𝑋̅ = 𝐵̅. 

we first solve for 𝑋̅, given 𝐴̅  and 𝐵̅ , giving 𝑋𝑐
̅̅ ̅ for the classical solution. If  𝑋𝑐

̅̅ ̅  fails to exist, we then fuzzify the crisp 

solution giving solutions  𝑋̅𝑒 and  𝑋̅𝐼 . In, 𝐴̅𝑋̅ = 𝐵̅ when 𝑋𝑐
̅̅ ̅ does not exist, we fuzzify 𝑥 = 𝑏

𝑎⁄  to get, 𝑋̅ = 𝐵̅ ⁄ 𝐴̅. If we 

evaluate 𝐵 𝐴⁄  using the extension principle we obtain 𝑋̅𝑒  and 𝑋̅𝐼  which computes 𝐵 𝐴⁄  using Ω-cuts and interval arithmetic.  

The other possibility, after fuzzifying the original financial expression, is that all we need to do is evaluate it. Consider 

𝑋̅ = 𝐴̅(1 + 𝐵̅)𝑛 for fuzzy numbers 𝐴̅, 𝐵̅,  and positive integer n. Given 𝐴̅, 𝐵̅ and n all we need to do is compute X. This can 

be done in two ways: (1) using the extension principle producing 𝑋̅𝑒 or  (2) by Ω-cuts and interval arithmetic giving 𝑋̅𝐼 . 

In the first case we can get 𝑋𝑐
̅̅ ̅, 𝑋̅𝑒 and 𝑋̅𝐼 and we expect 𝑋𝑐

̅̅ ̅ ≤ 𝑋̅𝑒 ≤ 𝑋̅𝐼  . In the second case we have 𝑋̅𝑒and 𝑋̅𝐼  with usually 
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𝑋̅𝑒 ≤ 𝑋̅𝐼  . We prefer 𝑋̅𝑒 to 𝑋̅𝐼  and only use 𝑋̅𝐼  to approximate 𝑋̅𝑒 when it is very difficult to obtain 𝑋̅𝑒. If we need to compute 

𝑋𝑐
̅̅ ̅, it is the preferred answer, when it exists. 

3.1 Future Value 

Assume an amount A is invested today at rate r per period for n periods. If S is the amount in the account after n periods, 

then S =  A(1 +  r)n. Throughout this chapter we are dealing with compound interest. Interest rates are usually quoted as 

some percentage per year and then converted to the correct decimal rate per interest period. For example, 9% per year 

compounded monthly becomes (0.09)/12 = 0.0075 per month. We will assume the r is the interest rate, as a decimal, per 

interest period. So, A = $1000 at 9% compounded monthly for 4 years produces S = 1000(1 + 0.0075)48 , since n = 48 = 12 

· 4 is the number of compounding’s in 4 years. 

We first fuzzify the compound interest formula by substituting 𝐴̅ for A and 𝑟̅ for ν. We know 𝐴̅ ≤ 0 and the support of 𝑟̅ 

will be in [0, 1]. The interest rate ν may or may not be known exactly over the n periods so we can model it as a trapezoidal  

fuzzy number. For example, r = (0.0059/0.0067, 0.0075/0.0083) means the rate is approximately between 8 and 9% 

compounded monthly. The amount invested  is usually known so 𝐴̅ could be a crisp number. However, we will use a 

trapezoidal (or triangular) fuzzy number for 𝐴̅. We wish to compute 𝑆̅ where, 

 𝑆̅ = 𝐴̅ (1 + r)n                                                                                                                                                (9) 

Let 𝐴̅ = (a1/a2,  a3/a4), r = (r1/r2,  r3/r4) with 𝐴̅ [Ω] = [a1(Ω), a2(Ω)], 𝑟̅ [Ω] = [r1(Ω)], r2(Ω)]. 

Before we compute 𝑆̅ in equation (1) let us justify the fuzzy compound interest expression in (1).  

At the end of the first period we have 𝐴̅ + 𝐴̅𝑟̅ = 𝐴̅ (1 + 𝑟̅) because, for positive fuzzy numbers, multiplication distributes over 

addition. After two periods 

                                      𝑆 ̅= 𝐴̅ (1+𝑣̅) + 𝐴̅ (1+𝑣̅) 𝑣̅                                                                                        (10)                                                                

or after factoring 

                                                         𝑆 ̅=𝐴̅ (1+𝑣̅)2                                                                              (11)                                                                                                 

Hence, equation (1) is correct for fuzzy numbers. There are two methods to evaluate equation (1). Using extension principle 

we obtain 𝑆𝑒̅ whose Ω-cuts are 

                                     𝑆𝑒1(Ω) = mina(l + ν)n | a ∈ 𝐴̅ [Ω], ν ∈  𝑣̅ [Ω]            (12) 

  𝑆𝑒2(Ω) = maxa(l+ν)n | a∈ 𝐴̅ [Ω], ν ∈  𝑣̅ [Ω]                                                                                         (13)                                                                                                    

Clearly, the expression a(1 + ν)n is increasing in both a and ν so that 

                                     𝑆𝑒1(Ω) = a1(Ω)(1 + ν1(Ω))n                                                                                      (14) 

                                     𝑆𝑒2(Ω)=a2(Ω)(1+ν2(Ω))n                                                                                          (15)                                                                                                      

0 ≤ Ω ≤ 1. The second method is to use a-cuts and interval arithmetic defining 𝑆𝐼̅ . So        

                                               𝑆𝐼̅[Ω] = 𝐴̅[Ω](1+ 𝑣̅[Ω])n                                                                                 (16)                                                                                                                                   

and 𝑆𝐼̅= 𝑆𝑒̅ because all intervals are non-negative. 

Now we fuzzify by substituting  𝐴̅ for A, 𝑟̅ for ν and also 𝑛 ̅ for n. The fuzzy number of periods n will be a non-negative 

discrete fuzzy set. That is, there are positive integers ni,  

1 ≤ i ≤ K, for some positive integer K, and λi ∈ (0, 1], 1 ≤ i ≤ K, so that   

    

,          
( )

0,        

i iif x n
n x

otherwise

 =
= 
                                          (17)           

The termination of the investment is uncertain and is modeled by 𝑛 ̅.  An interpretation of λi  is “the possibility that n = ni is 

Ai”, 1 ≤ i ≤ K. Using this “possibility” interpretation we then need Ai = 1 for some i. 

Use the extension principle to compute 𝑆𝑒̅ in 

                                               𝑆𝑒̅ = 𝐴̅(1 + 𝑣̅)𝑛̅                                                                                              (18)                                                                                                                                             

We will not attempt to calculate 𝑆𝐼̅  now because Ω-cuts of n will not be intervals but are subsets of λ1, ..., λK. In this case we 

may not get 𝑆𝑒̅ ≤ 𝑆𝐼̅  and 𝑆𝐼̅  is therefore not an approximation to 𝑆𝑒̅. Since 𝑆𝑒̅ is not difficult to compute (see the next theorem) 

we will only find Se in this case. 

We only use equations like (4) and (5) when the expression to be evaluated is continuous in all its variables. The expression 



Nagarathnamma K G, Sowmya K, Komala C S, Padmaja C, Chitra R 
 

pg. 1223 

Journal of Neonatal Surgery | Year: 2025 | Volume: 14 | Issue: 1s 

 

a(1 + r)n is now discrete in n. The membership function for 𝑆𝑒̅ is 

                                                         𝑆𝑒̅(𝑥)=max{π(a,ν,n)|a(1+ν)n=x}                                                         (19)                                                             

where 

                                                         π(a,ν,n)=min{ A (a), 𝑣̅ (ν), 𝑛 ̅ (n)}                                                      (20)                                                     

There is an easier way to get 𝑆𝑒̅. Let 𝑆𝑛̅𝑖  =  𝐴̅ (1 + r)ni ,  1 ≤ i ≤ K. 

Theorem 1. 𝑆𝑒̅(𝑥) = max1≤i≤K{min{𝑆𝑛̅𝑖 (x), λi}} 

Proof.  Let the right hand side of the above equation be Γ(x). 

1. We first show 𝑆𝑒̅(𝑥) ≤ Γ(x). Assume 𝑆𝑒̅(𝑥) = γ. There exists a, r, n = ni, so that π(a, r, ni) = γ, a(1+r)ni = x and  𝐴̅ (a) ≥ γ, 𝑟̅ 

(r) ≥ γ and λi ≥ γ. Using n = ni, let us call 𝑆𝑒̅ by the name 𝑆𝑛̅𝑖 . From equations (4) and (4·5) we get  x ∈ 𝑆𝑛̅𝑖 [γ]. So the 

minimum of 𝑆𝑛̅𝑖 (x) and λi is greater than, or equal to γ. Hence, Γ(x) ≥ γ = 𝑆𝑒̅ (x).   

2. Now show Γ(x) ≤ 𝑆𝑒̅(x). Let Γ(x) = γ. There is an i between 1 and K so that, min{𝑆𝑛̅𝑖 (x), λi} = γ. Hence 𝑆𝑛̅𝑖 (x) ≥ γ and  λi 

≥ γ. So x ∈ 𝑆𝑛̅𝑖 [γ] and there is an a∈  𝐴̅ [γ], r ∈ 𝑟̅ [γ] so that x = a(1 + r)ni . This means π(a, r, ni) ≥ γ and a(1 + ν)ni = x. Hence 

𝑆𝑒̅ (x) ≥ γ. 

Theorem 4.1 allows us to easily compute 𝐴̅(1 + 𝑟̅)𝑛̅. We first find the 𝑆𝑛̅𝑖 as in equations (6), (7) or equation (8), 1 ≤ i ≤ K.  

Cut each 𝑆𝑛̅𝑖  off at height λi, and then take the max of the resulting fuzzy sets. 

Example 1.1 

Let 𝐴̅  = (90/100, 100/110) and 𝑟̅  = (0.07/0.08, 0.09/0.10) with n given as follows: (1) n1 = 4, λ1 = 0.6;   (2) n2 = 5, λ2 = 1.0; 

and (3) n = 6, λ = 0.5. 𝑆𝑒̅ is shown in Figure 4.1. The individual trapezoidal shaped fuzzy numbers𝑆𝑛̅𝑖, i = 1, 2, 3, disappear 

when aggregated into 𝑆𝑒̅. 𝑆𝑒̅ may not be a fuzzy number. 

3.2 Present Value: 

We wish to find the present value of a future amount A, n periods in the future, if ν is the interest rate per period. Let S be 

the present value of A. There are two ways to compute S. The first method is that the present value of A equals S1, if you can 

invest SI today, at rate ν per period, so that in n periods it accumulates to A. That is, S1 solves 

𝑆1(1 + 𝑦)𝑛 = 𝐴                (21) 

The second method is to solve equation (13) for S1, giving 

𝑆2 = 𝐴(1 + 𝑦)−𝑛                 (22) 

In non-fuzzy mathematics S1 = S2, however, the two methods may produce different results for fuzzy mathematics. 

We now substitute 𝐴̅ for A and 𝑟̅ for v and solve 𝑆1̅ and 𝑆2̅. Quite often in finance future cash amounts A are estimated. One 

usually employs educated guesses, based on expected values or other statistical techniques, to obtain a value for A. Fuzzy 

mathematics allows an alternative to having to use an exact value for A. 𝐴̅ will be a trapezoidal fuzzy number (a1/a2, a3/a4) 

meaning that the future amount is approximately between a2 and a3 . 

We first solve for 𝑆1̅  and we may obtain three solutions S1c, S1e and S1I. 

The classical solution solves 

𝑆1̅𝑐(1 + 𝜈̅)𝑛 = 𝐴̅                           (23) 

Taking Ω-cuts we obtain 

[s1c1(Ω), s1c2(Ω)][w1(Ω), w2(Ω)] = [a1(Ω), a2(Ω)]                    (24) 

Where 

wi(Ω) = (1 + νi(Ω))n          (25) 

i = 1, 2. Now 𝐴̅  ≥ 0, so 𝑆1̅𝑐 ≥ 0. We get 

𝑆1𝑐1(Ω) =
𝑎1(Ω)

(1 + 𝜈 (Ω))𝑛                                              (26) 

𝑆1𝑐2(Ω) =
𝑎2(Ω)

(1 + 𝜈 (Ω))𝑛                                            (27) 

The “interval” [s1c1(Ω), s1c2(Ω)] may, or may not, define a fuzzy number 𝑆1̅𝑐 

Continuing with 𝑆1̅ the solution 𝑆1̅𝑒 fuzzifies a/(1 + ν)n. Alfa-cuts of 𝑆1̅𝑒  are 
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𝑆1𝑒1(Ω) = min { 
𝑎

(1+𝑣)𝑛  |𝑎 ∈  𝐴̅[Ω], r ∈ 𝑣̅[Ω]                                          (28) 

𝑆1𝑒2(Ω) = max { 
𝑎

(1+𝑣)𝑛  |𝑎 ∈  𝐴̅[Ω], r ∈ 𝑣̅[Ω]                                         (29) 

𝑆1𝑒2(Ω) = [
𝑎1(Ω)

(1+𝑣2(Ω))
𝑛 ,

𝑎2(Ω)

(1+𝑣3(Ω))
𝑛]                                                                         (30) 

Lastly, 𝑆1̅𝐼[Ω] comes from     
𝐴̅(Ω)

(1 + 𝜈[Ω])𝑛                                                                                   (31) 

after substituting the intervals for 𝐴̅(Ω) and 𝑣̅[Ω] and simplifying using interval arithmetic. We see that 𝑆1̅𝑒 = 𝑆1̅𝐼 

Turning to 𝑆1̅, we have only 𝑆2̅𝑒 and 𝑆2̅𝐼. 𝑆2̅𝑒 = 𝐴̅(1 + 𝑣̅)𝑛 using the extension principle. Hence, 𝑆2̅𝑒 = 𝑆1̅𝑒. Also , 𝑆1̅𝑒 = 

𝑆1̅𝐼is just equation (23). Therefore, 𝑆1̅𝑒 = 𝑆1̅𝐼 = 𝑆2̅𝑒 = 𝑆2̅𝐼. 𝑆1̅𝑐, if it exists, is the only solution that always satisfies equation 

(13), for 𝐴̅ and 𝑣̅ submitted for A and v, evaluated by Ω-cuts and interval arithmetic. 

Since 𝑆1̅𝑐  satisfies the present value equation our solution strategy is: (1) choose 𝑆1̅𝑒 when it exists; and (2) are 𝑆1̅𝑒 = 𝑆2̅𝑒 

when 𝑆1̅𝑐  does not exist. 

Example 1.2 

Let 𝐴̅ = (8000/10000, 12000/14000) and 𝑣̅ = (0.05/0.06, 0.06/0.07).  If n=10, then 𝑆1̅𝑐 exists since 

𝑆1𝑐1(Ω) =  
(8000+2000Ω)

(1.05+0.01Ω)10                                            (32) 

𝑆1𝑐2(Ω) =  
(14000−2000Ω)

(1.07−0.01Ω)10                            (33) 

0 ≤ Ω ≤ 1, defines the Ω-cuts of a trapezoidal shaped fuzzy number. 

      

Now we allow n to be a positive discrete fuzzy set n, since the number of interest periods into the future is uncertain. We 

have two equations to consider for present value of 𝐴̅. 

𝑆1̅(1 + 𝑣̅)𝑛̅ = 𝐴̅                                                                                                                                          (34) And 

𝑆2̅ =
𝐴̅

(1+𝑣̅)𝑛̅                                                                                                                                                        (35)         

From equations (13) and (14). We will not use equation(26) for two reasons: (1) 𝑆1̅𝑐  may not exist; and (2) more importantly 

(1 + 𝑣̅)𝑛̅ may not be a fuzzy number (Example 1.1) so that Ω- cuts can be a union of intervals and then we cannot use 

standard interval arithmetic. When Ω- cuts  of  (1 + 𝑣̅)𝑛̅ are not a single interval, we cannot solve equation (26) for the a-

cuts of SIc. So, we only have S2e to consider. We know Sle = S2e and we do not calculate 𝑆1̅𝑒 and 𝑆2̅𝑒 (no intervals for Ω-

cuts of 𝑛̅). From the extension principle 

𝑆2̅𝑒(𝑥) = max{𝜋(𝑎, 𝑟, 𝑛)) |𝑎(1 + 𝑟)−𝑛 = 𝑥},                          (36) 

For π given by equation (12). If we write 𝑆𝑛̅ = 𝐴̅(1 + 𝑣̅)𝑖𝑛̅ , then 

Theorem 2. 𝑆2̅𝑒(𝑥) = 𝑚𝑎𝑥1≤𝑖≤𝐾{min{𝑆𝑛̅𝑖(𝑥), 𝜆𝑖}}  

Proof: Same as Theorem 1.1. 

𝑆2̅𝑒   need not be a fuzzy number. 

3.3 Annuities 

7. We consider only ordinary (regular) annuities where: (1) the payment period equals the interest period; and (2) the 

equal periodic payments A are at the end of each period for n periods. We first look at the future value of an annuity 

and then the present value. 

8.  

9. 3.3.1 Future Value 

10. The future value S of the regular annuity of n equal payments A at rate ν per period is 

     𝑆 = 𝐴(1 + 𝑣)𝑛̅1 + (1 + 𝑣)𝑛̅2 + ⋯ … … … … + 𝐴(1 + 𝑟) + 𝐴                                                              (37) 

Or 

                                                     𝑆 = 𝐴𝑞(𝑛, 𝑟)                                                                                        (38) 
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Where, 𝑞(𝑛, 𝑟) =
(1+𝑣)𝑛−1

𝑟
                                     (39) 

Fuzzifying equation (29) we wish to find S where 

𝑆̅ = 𝐴̅(1 + 𝑣̅)𝑛̅1 + 𝐴̅(1 + 𝑣̅)𝑛̅2 + ⋯ … … + 𝐴̅(1 + 𝑣̅) + 𝐴̅                                     (40) 

There are two solutions 𝑆𝑒̅  and 𝑆𝐼̅ . 𝑆𝑒̅ is based on the extension principle and its Ω-cuts are 

𝑆𝑒1(Ω) = min {𝑎𝑞(𝑛, 𝑟))|𝑎 ∈ 𝐴̅[Ω], r ∈ 𝑣̅[Ω]}                                     (41) 

𝑆𝑒1(Ω) = max {𝑎𝑞(𝑛, 𝑟))|𝑎 ∈ 𝐴̅[Ω], r ∈ 𝑣̅[Ω]}                                     (42) 

Since S is an increasing function of a and v we obtain 

𝑆𝑒̅[Ω] = [𝑎1(Ω)q(n, 𝑟1(Ω)), 𝑎1(Ω)𝑞(𝑛, 𝑟2(Ω))]                                                    (43) 

0 ≤ Ω ≤ 1. 𝐴̅ ≥ 0 and 𝑣̅ is in [0,1]. 

Now 𝑆𝐼̅ will not equal 𝑆𝑒̅. 𝑆𝐼̅[Ω] is 𝐴[Ω]q(n, 𝑣̅[Ω]) and  we  obtain Ω-cut of 𝑆𝐼̅  as 

𝑎1(Ω)
(1+𝑣1(Ω)𝑛−1

𝑟2(Ω)
, 𝑎2(Ω)

(1+𝑣2(Ω)𝑛−1

𝑟1(Ω)
                                                          (44) 

Clearly, 𝑆𝑒̅ ≤ 𝑆𝐼̅ . We will use  𝑆𝑒̅  as the solution. 

Let n = 𝑛̅, the termination date is fuzzy. Let 𝑆𝑒̅ be 𝑆𝑛̅𝑖; when we  use n = ni in equation (32), 

 0 ≤ i ≤ K. Then we obtain the result, as in Theorem 1.1 and 1.2 

𝑆𝑒̅ = 𝑚𝑎𝑥1≤𝑖≤𝐾{min{𝑆𝑛̅𝑖(𝑥), 𝜆𝑖}}                       (45) 

Example: 1. 

Let 𝐴̅ = (150/190, 200/220),  𝑣̅ = (0.06/0.09, 0.10/0.11) and n = n1 =10 for 𝜆1 = 0.8, 

n = n1 =12 for 𝜆1 = 1.0, n = n3 =14 for 𝜆1 = 0.6. Thus future value of this fuzzy annuity 𝑆𝑒̅ is  

shown in Figure 4.2. It is not a fuzzy number. 

3.3.2 Present Value 

The present value S of a regular annuity is 

𝑆 = 𝐴(1 + 𝑣)−1 + 𝐴(1 + 𝑣)−2 + ⋯ + 𝐴(1 + 𝑣)−𝑛                                (46)  

   or 

𝑆 = 𝐴𝛽(𝑛, 𝑟)                             (47) 

For   𝛽(𝑛, 𝑟) =
1−(1+𝑣)−1

𝑟
                                        (48) 

The present value of a fuzzy annuity is 

𝑆̅ = 𝐴̅(1 + 𝑣̅)−1 + 𝐴̅(1 + 𝑣̅)−2 + ⋯ + 𝐴̅(1 + 𝑣̅)−𝑛                                (49) 

We simplify fuzzify equation (39), Alpha-cuts of 𝑆𝑒̅ are 

𝑆𝑒1 = min {𝑎𝛽(𝑛, 𝑟)|𝑎 ∈ )|𝑎 ∈ 𝐴̅[Ω], r ∈ 𝑣̅[Ω]}                                       (50) 

𝑆𝑒2 = max{𝑎𝛽(𝑛, 𝑟)|𝑎 ∈ )|𝑎 ∈ 𝐴̅[Ω], r ∈ 𝑣̅[Ω]}                                                                                         (51) 

Now S is an increasing function of A and a decreasing function of v so 

𝑆𝑒̅[Ω] = [𝑎1(Ω)𝛽(n, 𝑟2(Ω)), 𝑎2(Ω)𝛽(𝑛, 𝑟1(Ω))]                                    (52) 

0 ≤  Ω ≤ 1. We again 𝑆𝑒̅ ⊂ 𝑆𝐼̅ and 𝑆𝑒̅ ≠ 𝑆𝐼̅. It is a good, and short, exercise to evaluate 

𝐴̅[Ω]𝛽(n, 𝑉̅(Ω))                        (53)             

Which is 𝑆𝐼̅[Ω] and see 𝑆𝑒̅ ⊊  𝑆𝐼̅ . We suggest 𝑆𝑒̅ as the present value. 
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