
Journal of Neonatal Surgery | Year: 2025 | Volume: 14 | Issue: 31s 

pg. 861 

 

Journal of Neonatal Surgery 

ISSN(Online): 2226-0439 
Vol. 14, Issue 31s (2025) 

 
 

Deep Neural Network Approach for Early-Stage Diabetes Risk Prediction using Hybrid 

SMOTE-ENN and GAN with SHAP-Based Feature Explanations 

 
Dr. Sheetalrani R Kawale1  

 
1,2Dept. of Computer Science,3Dept. of Community Medicine 

1,2Karnataka State Akkamahadevi Women University, Vijayapura-586105, India, 3Koppal Institute of Medical Sciences, 

Koppal, India 
1Email ID: sheetalrani@kswu.ac.in, 2Email ID: poojakallappagol30@gmail.com, 
3Email ID: sharanholyachi2010@gmail.com 
 

0 0Cite this paper as:

Approach for Early-Stage Diabetes Risk Prediction using Hybrid SMOTE-ENN and GAN with SHAP-Based Feature 

Explanations. Journal of Neonatal Surgery, 14 (31s), 861-874. 
 

ABSTRACT 

Type 2 diabetes mellitus (T2DM) is prevalent in India and remains a major global health concern. Timely recognition of type 

2 diabetes is essential for successful management, especially in resource-constrained environments where access to standard 

laboratory testing might be restricted. This research introduces a deep learning framework aimed at predicting early-stage 

diabetes, emphasizing clarity and practical application in clinical environments through the use of non-invasive, symptom- 

based inputs. The Southern India Diabetes Dataset (SIDD) is a notable regional collection, comprising 1,680 ethically 

sourced patient records along with 17 clinical and demographic variables. A hybrid augmentation strategy was employed to 

address the class imbalance, incorporating SMOTE-ENN in aggregation with Generative Adversarial Networks (GANs). 

Furthermore, SHAP (SHapley Additive exPlanations) values were utilized to identify essential predictive features, enhancing 

the model interpretability. We employed and assessed two neural architectures: the Radial Basis Function Neural Network 

(RBFNN) and the Deep Neural Network (DNN). The proposed DNN model achieved a test accuracy of 98%, surpassing the 

performance of models trained on standard datasets such as PIMA. The proposed framework shows significant potential for 

application in essential healthcare settings, due to its incorporation of interpretable artificial intelligence, strong 

augmentation, and pertinent clinical data. This will facilitate prompt intervention and improve patient outcomes. 

 

Keywords: SMOTE-ENN · Generative Adversarial Networks · SHAP · Feature selection· Symptom-based screening · 
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1. INTRODUCTION 

Type 2 diabetes mellitus (T2DM) is a chronic metabolic disorder defined by a resistance to insulin and a developing 

dysfunction of pancreatic β-cells. It has become a significant non-communicable disease burden in India. This surge is fueled 

by a complex interplay of genetic predisposition and rapid lifestyle transitions associated with urbanization. The Indian 

Council of Medical Research–India Diabetes (ICMR–INDIAB) research, which was done with the Madras Diabetes 

Research Foundation (MDRF), says that over 74 million Indian people, or about 8.3% of the population, now have diabetes. 

Alarmingly, more than 57% of these individuals remain undiagnosed, underscoring the urgent need for improved nationwide 

screening, awareness, and preventive strategies [1]. Notably, the mean age of diabetes onset in India is approximately 42.5 

years, significantly younger than the global average. This earlier onset increases the duration of disease exposure and 

consequently elevates the risk of chronic complications over a lifetime [2]. The urban-rural divide in prevalence is striking: 

urban regions report a diabetes prevalence of 16.4% compared to 8.9% in rural areas. This discrepancy reflects the influence 

of sedentary lifestyles, nutritional transitions, and differential access to healthcare services across India [3]. The distribution 

of diabetes across various states in India underscores pronounced regional disparities. Southern and coastal regions such as 

Goa (26.4%), Puducherry (26.3%), and Kerala (25.5%) report the highest prevalence, reflecting the impact of urbanization, 

dietary transitions, and sedentary lifestyles. Northern urban centers like Chandigarh (20.4%) and Delhi (17.8%) also exhibit 

elevated rates. Eastern and southern states including Tamil Nadu (14.4%) and West Bengal (13.7%) shows substantial 

prevalence, while northeastern states such as Sikkim (12.8%), Karnataka (14.8%), Tripura (9.4%), and Mizoram (8.5%) 

indicate moderate but concerning levels. In contrast, central and northern states Bihar (4.3%), Jharkhand (5.3%), Uttar 

Pradesh (4.8%), and Meghalaya (4.5%) report comparatively lower prevalence, although upward trends are emerging. These 
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figures highlight significant regional heterogeneity and emphasize the need for tailored public health strategies [4].The 

epidemic of diabetes is growing quickly over the world. Roughly 10.5% of the world's population, or roughly 537 million 

persons between the ages of 20 and 79, resided with diabetes in 2021. By 2030, this number is expected to grow to 643 

million, and by 2045, it is expected to grow to 783 million [5]. In 2021, the prevalence in the South-East Asia (SEA) area 

was 8.8%, although India had a slightly higher rate of 9.6%. By 2045, projections show that SEA's rate would rise to 11.5% 

and India's rate will rise to 10.9%. This will be a major public health problem for the area. In addition to diagnosed diabetes, 

pre-diabetes, which is marked by elevated blood glucose levels that do not meet the criteria for diabetes diagnosis, represents 

a considerable concern. This high-risk metabolic state serves as a precursor to T2DM and presents a critical opportunity for 

intervention. Rooney et al. (2023) estimated that in 2021, 9.1% of the global adult population experienced impaired glucose 

tolerance (IGT), with projections indicating an increase to 10.0% by 2045. The global prevalence of impaired fasting glucose 

(IFG) stands at 5.8% and is projected to rise significantly. The data highlights the importance of early detection and proactive 

measures to prevent the advancement of disease [6]. Diabetes Mellitus (DM) is a widely recognized chronic condition 

characterized by sustained hyperglycemias, typically identified through biochemical assessments including fasting plasma 

glucose (FPG), glycated haemoglobin (HbA1c), and urine glucose tests [7]. Although these methods are considered the 

benchmark, they depend on clinical infrastructure and may face delays due to accessibility or cost challenges. To overcome 

these limitations, symptom-based screening enhanced by artificial intelligence has surfaced as a promising approach. Recent 

frameworks utilizing deep learning models have demonstrated significant accuracy in predicting diabetes risk by 

incorporating self-reported symptoms and demographic data, eliminating the necessity for immediate laboratory 

confirmation. In particular, a 2025 study proposed a context-aware dynamic ensemble model combining AdaBoost and 

support vector machines, trained on both global and localized datasets, achieving superior accuracy over traditional method 

[8]. This study seeks to build upon these innovations by introducing a deep learning-based diagnostic tool focused on 

symptomatology, offering an accessible and early-stage diabetes risk assessment system suitable for diverse healthcare 

environments. The structure of this study is organized to provide a coherent and methodical exploration of the proposed 

approach. It commences with a review of existing literature, offering foundational context and highlighting recent 

advancements in diabetes prediction using deep learning methodologies. Section 2 introduces the dataset utilized, including 

explanations on data preprocessing and primary data acquisition methods, and deep learning techniques applied. Section 3 

will address experimental settings; the empirical result and the rigorous evaluation will be reported. Finally, the major 

results, implications of the findings, and lessons for future research are summarized in Section 4, and the paper is concluded 

with indications for further work. 

 

2. RELATED WORK 

Diabetes mellitus is a chronic disease requiring timely diagnosis and effective management. It is associated with serious 

complications such as cardiovascular disease, kidney failure, and nerve damage, making early detection essential. In recent 

years, machine learning, especially deep learning techniques like the Deep Belief Network (DBN), has proven to be a 

valuable method for the early prediction of diabetes.DBNs are a class of generative neural networks that use stacked 

Restricted Boltzmann Machines to learn hierarchical feature representations, making them particularly well-suited for 

complex biomedical data. Multiple studies have demonstrated the utility of DBNs in enhancing predictive accuracy for 

diabetes diagnosis across diverse populations and clinical settings [9-11]. This section synthesizes key research contributions 

on Deep learning models for diabetes diagnosis, with a focus on model accuracy and datasets used, to highlight the current 

state and effectiveness of these techniques in clinical informatics. Shahin et al. [9] employed a robust DBN model to forecast 

diabetes complications utilizing patient medical records. The model achieved a moderate accuracy of 81.25%, surpassing 

traditional machine learning algorithms, despite the specific dataset not being identified in the study. Prabhu and 

Selvabharathi [10] created a classifier based on DBN utilizing the Pima Indian Diabetes dataset. The model demonstrated 

superior performance compared to traditional classifiers such as Naïve Bayes, Decision Tree, Logistic Regression, Random 

Forest, and SVM, achieving a recall of 1.0, precision of 0.6791, and an F1-measure of 0.808, thereby affirming its enhanced 

diagnostic capabilities. Panigrahy et al. [11] presented a hybrid model that integrates Deep Belief Networks (DBNs) with 

Tabu Search Optimization (TSO) for the purpose of hyperparameter tuning, referred to as TSO-DBN. The model effectively 

tackled class imbalance through the application of SMOTE, resulting in a prediction accuracy of 96.23%, an F1-score of 

0.8749, and a Matthews Correlation Coefficient (MCC) of 0.8863. The dataset was sourced from clinical diabetes reports 

and was subjected to comprehensive preprocessing to enhance its quality. Lang et al. [12] created a DBN model that employs 

integrated algorithms and evaluated its performance against logistic regression and support vector machine (SVM). The dual- 

hidden-layer DBN model attained a maximum AUC of 81.62%, demonstrating superior classification performance compared 

to the alternatives. Nevertheless, accuracy values were not explicitly reported. Liu et al. [13] developed a diabetes 

management strategy based on a Deep Belief Network, utilizing the Pima Indians Diabetes dataset. The DBN model 

demonstrated an accuracy of 77.60%, surpassing the performance of backpropagation neural networks at 76.3% and support 

vector machines at 76.56%. The research further identified significant risk factors, including plasma glucose and BMI, by 

employing weight matrices across layers. Reddy et al. [14] employed the Pima Indian Diabetes dataset to forecast hospital 

readmission utilizing a Deep Belief Network (DBFN). The model attained an accuracy of 69.17%, surpassing the 

performance of Logistic Regression, Decision Tree, and Gradient Boosting. The results demonstrated notable performance 
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in specificity (66.44%) and NPV (70.32%), highlighting its effectiveness in clinical prediction tasks. Ma et al. [15] introduced 

a DBN model utilizing ReLU activation functions, which were trained through contrastive divergence and subsequently 

refined using backpropagation. The model attained an accuracy of 81% utilizing the Pima Indian Diabetes dataset. The focus 

was on integrating unsupervised and supervised learning to enhance classification performance. Olabanjo et al. [16] proposed 

an ensemble feature selection combined with unsupervised deep neural network (DBN) with a dataset prepared from the 

Sylhet Diabetes Hospital of Bangladesh. The effectiveness of the model in early identification of type 2 diabetes is indicated 

with an F1-score of 1.00, precision of 0.92, and recall of 1.00. Bala Manoj Kumar et al. (2020) [17] introduced a Deep 

Neural Network (DNN) classifier model that incorporates feature importance selection mechanisms, including Extra Trees 

and Random Forest algorithms. The methodology resulted in a notable enhancement in prediction accuracy, reaching 98.16% 

with an 80–20 train-test split on the PID dataset. Ashiquzzaman et al. (2017) [18] introduced a dropout-boosted Deep 

Learning Neural Network to address the challenge of over fitting in intricate neural models. The model included dropout 

layers between the fully connected layers, which facilitated multiple independent representations of the data. Their network 

attained an accuracy of 88.41% on the PID dataset directly at input, without the need for pre-processing and normalization. 

A comprehensive examination of previous research reveals several persistent shortcomings in the area of diabetes prediction. 

Initially, earlier studies have primarily relied on widely available benchmark datasets such as PIMA and UCI. While these 

datasets provide convenience, they do not accurately reflect real-world clinical environments or the demographic 

characteristics unique to various regions. Secondly, the feature selection methods and predictive models utilized in these 

studies were infrequently reviewed or validated by medical professionals, which raises concerns about their clinical relevance 

and diagnostic accuracy. Thirdly, a notable limitation exists in the inadequate comparison between model-generated 

predictions and actual clinical outcomes, including predicted probabilities and associated confidence scores. These factors 

are essential for evaluating the reliability, robustness, and practical applicability of such models in real-world healthcare 

settings. 

 

3. PROPOSED METHOD 

Our previous study used a dataset of 806 clinical database of Southern India Diabetes Dataset (SIDD). In this study, we 

expanded the dataset to 1,680 samples, thereby improving the prediction reliability and generalization. We present this work- 

in-progress article as introduction of a clinically motivated deep learning framework for the early predication of T2DM 

based on real world symptoms-based data, acquired under ethical clearance from Koppal Institute of Medical Sciences, 

Karnataka. The proposed approach overcomes limitations of prior works by integrating clinician validated clinical 

characteristics, interpreting the model outputs by explainable AI, and measuring the reliability of predictions using 

confidence scores. The enriched dataset contains 17 clinical and demographic features. To mitigate class imbalance, a hybrid 

data augmentation method which is a combination of SMOTE-ENN and GANs is employed. The SMOTE-ENN creates 

synthetic minority samples and eliminates noisy majority class cases at the same time. After that, GANs are utilized to 

promote diversity of minority samples. This two-stage enhancement produces a balanced dataset, which is compatible with 

deep learning. Then, SHAP (SHapley Additive exPlanations) values based on a Random Forest classifier are used to analyze 

feature importance. This approach provides interpretability and clinical relevance since only relevant and highly predictive 

features are considered. Such functions are additionally examined and verified by the medical authorities to determine their 

diagnostic power. Two neural models, namely a DNN implementing dropout and batch normalization as regularization 

solutions and an RBFNN employing Gaussian activation functions to model local data structure, are presented and trained. 

Performance of both models is assessed in terms of precision, recall, F1-score, accuracy and AUC-ROC, common metrics 

used for credibility analytics. Predictions and associated confidence scores are compared with clinical labels to confirm the 

robustness and clinical relevance of the model. The complete framework is shown in Fig. 1. 

 

Fig 1: Proposed diabetes prediction framework integrating hybrid data augmentation, SHAP-based feature 

selection, and neural network classifiers
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3.1 Primary Data Collection 

A novel dataset, known as the Southern India Diabetes Dataset (SIDD), has been established to facilitate the development of 

a strong and clinically pertinent predictive framework. The data collection process was conducted at the Koppal Institute of 

Medical Sciences (KIMS) in Karnataka, India, adhering to the established institutional ethical clearance protocols to ensure 

compliance with patient confidentiality and data privacy standards. The dataset was assembled using a systematic symptom- 

reporting approach, in which each participant was asked about the presence or absence of particular clinical symptoms. 

Symptom responses were recorded as binary variables: “yes” indicating presence and “no” indicating absence, with 

diagnostic classification based on blood test-confirmed outcomes either “diabetic” or “non-diabetic.” The final dataset 

consists of 1,680 patient records, each meticulously annotated with 17 clinical and demographic attributes. The features used 

in this study are the same as those employed in the early-stage diabetes risk prediction dataset [29], and they align with 

medically established indicators for early-stage Type 2 Diabetes Mellitus (T2DM). In contrast to standardized datasets like 

UCI, which primarily originate from patient surveys, the SIDD dataset is developed from clinical observations that have 

been validated by physicians. This guarantees an increased level of diagnostic reliability and improves the contextual 

significance of the dataset for the Southern Indian population. 

 

3.2 Dataset Description 

The dataset utilized in this study comprises 1,680 patient records, each annotated with 17 attributes that are clinically and 

demographically significant. The features encompass patient age, gender, and a thorough range of symptoms typically linked 

to Type 2 Diabetes Mellitus (T2DM). Among the total records, 66.31% are identified as diabetic cases according to clinical 

diagnosis, whereas the remaining 33.69% are categorized as non-diabetic instances. Table 1 presents a comprehensive 

summary of the dataset's attributes, encompassing symptom descriptors and demographic variables. 

 

Table 1 Clinical symptoms and demographic characteristics included in the Southern India Diabetes Dataset 

(SIDD), used for early-stage Type 2 Diabetes Mellitus prediction 
 

Sl. No Features Description 

1 Age Age of the individual (range: 14–85 years) 

2 Gender Biological sex (Male/Female) 

3 Polyuria Excessive urination (Yes/No) 

4 Sudden Weight Loss Unexplained weight loss (Yes/No) 

5 Weakness General body weakness (Yes/No) 

6 Polyphagia Excessive hunger (Yes/No) 

7 Genital Thrush Itching or burning sensation in the genital area (Yes/No) 

8 Visual Blurring Blurred vision (Yes/No) 

9 Itching Itching on skin or body (Yes/No) 

10 Irritability Increased irritability (Yes/No) 

11 Delayed Healing Slow healing of wounds (Yes/No) 

12 Partial Paresis Partial paralysis or muscle weakness (Yes/No) 

13 Muscle Stiffness Stiffness in muscles (Yes/No) 

14 Alopecia Hair loss or balding (Yes/No) 

15 Obesity Presence of obesity (Yes/No) 

16 Polydipsia Excessive thirst (Yes/No) 

17 Class Diabetes or Non-diabetes 

 

3.3 Hybrid SMOTE-ENN and GAN Framework for Class Imbalance 

We addressed the challenge of class imbalance in the dataset by developing a hybrid data augmentation technique that 

combines SMOTE-ENN with Generative Adversarial Networks (GANs). This strategy was developed to effectively address 

the issue. The SMOTE-ENN method was initially applied to the scaled feature matrix. This was done in order to assess its 
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performance. In order to generate synthetic minority class samples, a technique known as the Synthetic Minority 

Oversampling Technique (SMOTE) is utilized. This approach involves interpolating between actual minority cases. Edited 

Nearest Neighbours (ENN), on the other hand, is a method that eliminates noisy or overlapping majority samples by 

employing a nearest neighbour cleaning procedure. This results in the elimination of the majority samples. This procedure 

ultimately results in a dataset that is more pristine and well-balanced than it was before. Following this, we proceeded to 

train a GAN using only the minority class samples that were obtained from the SMOTE-ENN output. The generator network 

and the discriminator network serve as integral components of the generative adversarial network (GAN). The generator 

network transforms random noise vectors into synthetic feature samples, while the discriminator network distinguishes 

between authentic data and generated counterparts. The binary cross-entropy loss technique was utilized until convergence 

was achieved to train both networks in an adversarial manner. Following the conclusion of the training, the generator 

efficiently commenced the synthesis of supplementary minority class samples. The final enhanced dataset was developed by 

integrating the synthetic samples produced by the GAN with the data refined through the SMOTE-ENN method. This dual 

augmentation strategy effectively utilizes the complementary strengths of traditional oversampling and deep learning-based 

data generation. This results in an improvement in the balance and diversity of the minority class, eventually improving 

model training outcomes. The hybrid resembling and data augmentation system utilizes SMOTE-ENN and GAN during the 

construction and training phases. Fig. 2 illustrates the schematic that outlines the workings of this framework. 
 

 

Fig 2: Proposed Hybrid SMOTE-GAN Augmentation 

 

3.4 SHAP (SHapley Additive Explanations) Feature Selection Technique 

In the last several years, the need of being able to understand machine learning has become a major issue, especially in 

important fields like banking, healthcare, and the legal system. Scott Lundberg and Su-In Lee came up with the SHAP 

(SHapley Additive exPlanations) method in 2017. This approach is acknowledged as an essential method to address this 

requirement. The esteemed publication "A Unified Approach to Interpreting Model Predictions" presented SHAP as a model- 

agnostic technique grounded in the principles of cooperative game theory. This method provided reliable and theoretically 

sound attributions of feature importance across different machine learning models. The SHAP algorithm employs principles 

from game theory, specifically Shapley values, to distribute rewards among participants in a fair and just manner. This is 

achieved by assigning a contribution score to each characteristic for particular predictions [24]. This framework 

accommodates a wide range of models, including decision trees, ensemble methods, and deep learning architectures. The 

effectiveness has been confirmed across multiple domains, including the identification of medical risk factors and the 

enhancement of model performance through feature engineering informed by interpretability [25, 26]. This research 

employed a Random Forest classifier to assess feature significance and model performance, utilizing the implementation 

offered by the scikit-learn library. The model was developed utilizing 100 estimators and a specified random seed 

(random_state=42) to ensure consistency in the results. Upon concluding the training phase, we utilized the SHAP framework 

to analyze and interpret the predictions generated by the model. A Tree Explainer was employed to compute SHAP values 

for the training dataset, facilitating the evaluation of the influence of each feature on the model's output. This approach 

provided a thorough understanding of the influence of features, enhancing the model's clarity and interpretability. 
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Due to their ability to understand complex and non-linear relationships through hierarchical feature representations, Deep 

Neural Networks (DNNs) have become essential in modern machine learning, particularly for addressing binary 

classification challenges. The networks consist of numerous layers, each designated to extract progressively abstract 

properties from the input, ultimately enhancing the model's predictive capabilities. Deep neural networks demonstrate 

significant efficacy in managing extensive datasets and addressing complex feature interactions, as evidenced by previous 

research on architecture optimization and the handling of class imbalance in binary classification [19, 20]. This study presents 

a DNN model that includes an input layer and three hidden layers containing 256, 128, and 64 neurons, respectively. Every 

layer utilizes the ReLU activation function, succeeded by Batch Normalization to enhance training stability and Dropout 

layers at rates of 0.4, 0.3, and 0.2 to avoid over fitting. The output layer employs a sigmoid activation function to facilitate 

binary classification. The model has been compiled utilizing the Adam optimizer alongside binary cross entropy as the loss 

function, both of which are recognized as standard selections for binary classification tasks. This design is intended to 

enhance learning while maintaining robustness and generalization. Fig 3 presents the proposed architecture of the Deep 

Neural Networks along with the corresponding flowchart. Table 1 presents the complete layer-wise architecture of the 

proposed Deep Neural Network (DNN) model. 

 
Fig 3: Proposed Deep Neural Network Architecture 

 

Table 2: Layer-by-layer architecture of the proposed DNN model 
 

Layer Type Output Shape No. of Parameters Activation 

Function 

Remarks 

Input Layer (input_dim,) 0 – Receives raw features from 

dataset 

Dense Layer (256,) 256 × input_dim + 256 ReLU First hidden layer 

Batch 

Normalization 

(256,) 1024 – Stabilizes learning 

Dropout Layer (256,) 0 – Dropout rate = 0.4 

Dense Layer (128,) 32,896 ReLU Second hidden layer 

Batch 

Normalization 

(128,) 512 – – 

Dropout Layer (128,) 0 – Dropout rate = 0.3 

Dense Layer (64,) 8,256 ReLU Third hidden layer 

Batch 

Normalization 

(64,) 256 – – 

Dropout Layer (64,) 0 – Dropout rate = 0.2 

Output Layer 

(Dense) 

(1,) 65 Sigmoid Binary classification output 
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3.6 Radial Basis Function Neural Networks (RBFNNs) 

Radial Basis Function Neural Networks (RBFNNs) are a category of feed forward neural networks that utilize radial basis 

functions, commonly Gaussian, as activation units in the hidden layer. RBFNNs were initially employed for function 

approximation tasks [21], but they are now frequently utilized for pattern recognition, classification, and time-series 

forecasting due to their ability to model localized receptive fields and effectively capture complex nonlinearities. A Radial 

Basis Function Neural Network (RBFNN) typically consists of an input layer, a singular hidden layer composed of radial 

basis units, and an output layer that can be either linear or logistic. A radial basis function modifies the manner in which each 

hidden unit evaluates the input vector against a trainable centre. RBFNNs typically demonstrate a quicker convergence rate 

compared to multilayer perceptrons (MLPs), particularly in scenarios where the decision boundaries are complex but 

spatially limited [22].A custom RBF layer was developed for this research utilizing Keras. This layer enables the application 

of Gaussian similarity functions to transform the input features in a nonlinear manner. Utilizing a fixed spread parameter 

(γ= 0.5) to regulate the Gaussian width, each RBF unit evaluates the Euclidean distance between the input vector and its 

centre. The proposed design includes an input layer, a 30-unit RBF layer, and an output neuron activated by a sigmoid 

function for binary classification. The Adam optimizer is employed to train the network comprehensively, utilizing binary 

cross-entropy as the loss function and accuracy as the performance metric. The architecture of Radial Basis Function 

Neural Networks (RBFNNs) is showed in Fig. 4. Table 3 presents the complete layer-wise architecture of the proposed 

Radial Basis Function Neural Networks model. 
 

Fig 4: Proposed architecture of Radial Basis Function Neural Networks (RBFNNs) 

 

Table 3: Layer-by-layer architecture of the proposed Radial Basis Function Neural Networks model 
 

Layer Type Output Shape Number of Units Activation Description 

Input (input_dim,) – – Accepts input feature 

vector 

Custom RBFLayer (None, 30) 30 (RBF Centers) RBF Kernel Computes Gaussian 

similarity with 30 

trainable centers 

Dense (Output) (None, 1) 1 Sigmoid Outputs binary 

classification probability 
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4. EXPERIMENTAL RESULTS AND DISCUSSION 

This section discusses the outcomes of the experiments conducted using the proposed methodology, which integrates a hybrid 

data augmentation approach (SMOTE-ENN + GAN), SHAP-based feature selection, and neural network classification. This 

method aims to enhance the accuracy and clarity of diabetes risk classification through the utilization of the SIDD-1680 

dataset. The original dataset exhibited significant class imbalance, which posed challenges for training and generalizing 

models effectively. Fig. 5 illustrates the distribution of each feature within the dataset. The distinction between the diabetes 

and non-diabetic samples highlighted the significance of employing a robust data balancing method to ensure that classifiers 

operate under equitable learning conditions. A hybrid augmentation technique was employed to address these challenges. It 

utilized SMOTE-ENN for oversampling and data cleaning, along with GANs to generate synthetic data. This procedure 

resulted in a significantly more equitable distribution of the class. Table 4 presents the count of samples prior to and following 

the hybrid augmentation, along with the final distribution employed for dividing the data into training and testing sets. 

Following the hybrid augmentation, an analysis using SHAP (SHapley Additive exPlanations) was conducted to enhance the 

interpretability of the features and reduce the dimensionality. The model was trained using the top 10 most significant 

features, determined by their SHAP values. Fig. 6 presents a SHAP summary graphic illustrating the contribution of each 

feature, while Fig. 7 ranks the features according to their mean SHAP significance scores derived from a Random Forest 

model. The model prediction was founded on essential factors such as age, delayed healing polyuria, obesity and visual 

blurring. The selected SHAP-based features were subsequently used to train Deep Neural Networks (DNNs) and Radial 

Basis Function Neural Networks (RBFNNs). We evaluated the effectiveness of their performance with and without hybrid 

augmentation. Fig. 8 illustrate that the model accuracy comparison, showing an improvement from 74% without 

augmentation to 98% with augmentation. The efficacy of the RBFNN was substantially enhanced, increasing from 73% to 

94%. Table 5 presents the metrics utilized to evaluate the effectiveness of the categorization process. The measures 

encompass accuracy, recall, and F1-score. The DNN model achieved a macro F1-score of 98%, indicating strong 

performance. The performance was commendable on a class-by-class evaluation, leading to the achievement of this score. 

The RBFNNs performed effectively, achieving a macro F1 score of 94%. The results indicate that both models perform 

effectively when trained on features selected by SHAP. Fig. 9 displays a matrix of confusion of the DNN, in addition to the 

training and validation accuracy curves, and the ROC curve. The model exhibits strong generalization capabilities and 

displays minimal over fitting, supported by training and validation accuracies of 97%. The ROC curve is effective in 

distinguishing between different objects. Table 6 provides a detailed overview of the classification report of the models. 

Table 7 shows Confidence-based prediction results of DNN on the test set and in Table 8 shows Comparative assessment of 

a suggested model against established methodologies. 

 

Table 4: Class-wise Data Allocation Before and After SMOTE-ENN with Train–Test Split 
 

Class Before 

SMOTE-ENN+GAN 

After 

SMOTE-ENN+GAN 

Train Set Test Set 

Diabetes 1114 1051 840 211 

Non Diabetes 566 1000 800 200 

Total 1680 2051 1640 411 

 

Table 5: Accuracy, loss, and test performance of DNNs and RBFNNs with and without augmentation 
 

Algorithms Accuracy without SMOTE-ENN+GAN Accuracy with SMOTE-ENN+GAN 

 Train Loss Val Loss Test Train Loss Val Loss Test 

DNNs 75% 0.4739 68% 0.5407 74% 97% 0.0542 97% 0.0346 98% 

RBFNNs 73% 0.5339 77% 0.4886 73% 94% 0.1690 95% 0.1657 94% 

 

 

Dr. Sheetalrani R Kawale, Pooja Kallappagol, Dr. Sharankumar Holyachi



 

Journal of Neonatal Surgery | Year: 2025 | Volume: 14 | Issue: 31s 

pg. 869 

 

 

 

 
Fig 5: Distribution of each feature in the dataset before augmentation 
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Fig 6: SHAP summary plot illustrating the contribution of each feature post-augmentation 

 

 

Fig 7: Mean SHAP-based feature importance ranking using Random Forest 
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Fig 8: Model accuracy comparison before and after SMOTE-ENN+GAN augmentation 

 

 

                                                           (a)                                   (b) 
 

(c) 

Fig 9: DNNs model performance shown by (a) Confusion Matrix, (b) ROC Curve and (c) Train vs Validation 

Accuracy 
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Table 6: Classification report for DNN and RBFNN models using SHAP-selected features 
 

Algorithms Class Precision Recall F1-score Support 

Deep Neural Networks 0 98 % 97% 98% 200 

1 98% 98% 98% 211 

macro avg 98% 98% 98% 411 

weighted avg 98% 98% 98% 411 

Radial Basis Function Neural 

Networks 

0 92 % 95% 94% 200 

1 95% 92% 94% 211 

macro avg 94% 94% 94% 411 

weighted avg 94% 94% 94% 411 

 

Table 7: Confidence-based prediction results of DNN on the test set 
 

Sl.No Actual Predicted Confidence 

1 1 1 0.999541 

2 0 0 0.000481 

3 1 1 0.999339 

4 1 1 0.999868 

5 0 0 0.000012 

6 1 1 0.999755 

7 0 0 0.000033 

8 0 0 0.000122 

9 1 1 0.999860 

10 0 0 0.022791 

 

Table 8: Comparative assessment of a suggested model against established methodologies 
 

Authors Methods Dataset Accuracy 

Priyadarshinee, S., & Panda, M. [27] Deep Neural Networks PIMA Dataset 93.7% 

Ashiquzzaman, A. et al [28] Deep Neural Networks PIMA Dataset 88.41% 

Proposed Method Deep Neural Networks SIDD-1680 98% 

 

5. CONCLUSION 

This study introduces a clinically validated and interpretable deep learning framework for the early detection of Type 2 

Diabetes Mellitus (T2DM), utilizing symptom-based and demographic features. A novel, region-specific dataset Southern 

India Diabetes Dataset (SIDD) was constructed using ethically approved clinical records from the Koppal Institute of Medical 

Sciences, ensuring contextual and diagnostic relevance. To overcome the inherent class imbalance, a hybrid augmentation 

technique combining SMOTE-ENN and Generative Adversarial Networks (GANs) was employed, resulting in a balanced 

and enriched training dataset. Feature selection was performed using SHAP (SHapley Additive exPlanations) values from a 

Random Forest classifier, enhancing model transparency and interpretability. Two deep learning architectures, Deep Neural 

Networks (DNN) and Radial Basis Function Neural Networks (RBFNN), were trained on the SHAP-selected features. The 

DNN model achieved a test accuracy of 98% with a macro F1-score of 98%, outperforming the RBFNN, which achieved 

94% accuracy. All outputs underwent thorough review and validation by qualified medical experts, enhancing the clinical 

reliability of the framework. The findings validate the proposed approach's capability as a scalable, non-invasive screening 
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tool for assessing early-stage diabetes risk in healthcare settings with limited resources. The forthcoming research will focus 

on broadening the dataset by integrating multi-regional and multi-institutional clinical records to enhance the generalizability 

of the predictive models. Furthermore, the exploration of more sophisticated deep learning architectures will be undertaken 

to improve classification accuracy and robustness. 
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