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ABSTRACT 

The consolidation of machine learning in medical image analysis has revolutionized diagnostic processes, specifically in the 

domain of patient identification and verification. Machine learning used in medical image analysis has transformed how 

patients are identified and verified for diagnosis. Fingerprint biometrics, which have historically been useful in forensic and 

civil identity applications, are now helping to secure patient authentication in healthcare. Even so, applying color to 

fingerprint data for medical use introduces new issues with accuracy and improving the quality of the images. The overall 

aim is to develop and test a sound computational system that not only enhances colorized image pattern recognition but also 

caters to the operational constraints of the medical environment. The dataset used in this study consisted of 35,000 structured 

fingerprint images that were synthetically colorized and labeled for identity classification tasks. They were drawn from 

several open-source and approved fingerprint repositories, including the NIST Special Database 302 and the Fingerprint 

Verification Competition (FVC) datasets, which were aligned with additional information using colorization algorithms 

developed for dermatoglyphic spectral analysis. This research project used three main model choices—ResNet, CNNs, and 

an MLP classifier—since they handled different strengths of the images we were working with. Each one of the three 

models—ResNet, CNN, and MLP—was trained and optimized using two main optimizers: Adam and SGD. An effective 

way of evaluating the models across several aspects was put together. How accurately the models were formed was the main 

measure of their performance. To assess the stability of the models, precision, recall, and F1-score were tallied for each class 

separately. The highest validation accuracy was attained by the ResNet18 model, suggesting that it did best on the test data 

compared to the others. Adding fingerprint biometric data to EHR systems considerably adds to the reliability and usefulness 

of the digital medical infrastructure. Because almost all medical providers now use certified EHR tools (as identified by the 

ONC), having secure and reliable login systems for each patient is more important than ever. Many interesting future 

approaches have the potential to address existing issues and improve what is known in the field. Applying GANs is one of 

the most interesting ways to produce realistic-looking fingerprint images. 

 

Keywords: Medical imaging, fingerprint biometrics, machine learning, image enhancement, classification, deep learning, 

patient authentication, healthcare security, convolutional neural networks, colorized data. 

1. INTRODUCTION 

Medical image evaluation has transformed the process of clinical diagnosis, allowing healthcare professionals to identify, 

track, and treat disease with greater precision. Fingerprint biometrics, although historically used in association with forensics 

and security, are now gaining momentum in applications within healthcare to identify patients, especially in telemedicine  
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and remote diagnosis (Awad, 2022; Castro et al., 2023). A report from the Office of the National Coordinator for Health 

Information Technology (ONC), a part of the Health IT Events network, indicates that biometric authentication techniques 

including fingerprint recognition are gaining popularity as secure and effective means to curb medical identity theft and 

promote the integrity of electronic health records (EHRs) (Hambalik, 2021; Azizi, 2022). As a consequence, there is still 

limited application of fingerprint images in the clinic because of the technical limitations of conventional imaging—most 

specifically, the application of grayscale representations, which under poor illumination or conditions of skin humidity, 

dryness, etc., do not register the fine dermatoglyphic elements (Amiri et al., 2024). 

Fingerprint biometrics has been endorsed by institutions such as the National Institutes of Health (NIH), which has provided 

funding to a multitude of projects that aim to reduce administrative time and errors through patient verification based on 

biometrics. Imaging of fingerprints, when combined with secure patient databases, guarantees that drugs and treatments 

reach the proper patients, of special importance in emergency rooms and disaster scenarios (Andrei et al., 2024). Yet the 

precision of conventional fingerprint algorithms decreases substantially in the clinical environment from that of controlled 

forensic environments, and a 2020 NIST test indicated that error levels rose by more than 15% in healthcare-modified 

biometric devices compared to those used in forensics (Emon, 2024). 

To fill that niche, scientists have started to investigate colorized fingerprint imaging, which provides multidimensional 

information by simulating tissue density variations, temperature field levels, and chemical markers via color channels. 

Colorization not only facilitates visual differentiation but also brings new possibilities for computational classification based 

on machine learning (Ker et al., 2017). For instance, improved fingerprint images can enhance visual differentiation of sweat 

pore density or valley-ridge contrasts better than grayscale images, benefiting visual interpretation and algorithmic 

processing alike. Organizations like the American Telemedicine Association (ATA) promote innovation that improves the 

reliability and usability of remote diagnosis tools, situating colorized finger imaging in a strategic context of increased 

biometric application in clinical care (Noor et al., 2018). 

Problem Statement 

Although there is increasing interest in fingerprint-based biometrics in the clinic, the process of converting fingerprint images 

into colorized formats has not so far been exploited to produce substantial gains in classification accuracy through classical 

image processing techniques (Mahmod et al., 2023). Common algorithms do not take full advantage of the richer features 

that are encoded into colorized data and, by and large, are based on feature extraction techniques that are best suited to 

grayscale images. Advanced texture-based algorithms, such as those based on Gabor filtering or Local Binary Patterns 

(LBP), which work efficiently with standard biometric images, are not well scalable to deal with intricate, colorized medical 

fingerprint images (Mua’ad et al., 2021). The disparity between the richness of colorized data and the character of classical  

analysis techniques results in below-optimal performance, especially in clinical scenarios that require a high degree of 

precision coupled with low false rejection (Nasirddin et al., 2024). 

Moreover, a lack of standardized preprocessing pipelines for colorized fingerprint images adds to the issue. Unlike facial 

imaging or retinal scanning, which enjoys regulatory synchronization of enhancement protocols through organizations like 

the U.S. Food and Drug Administration (FDA), fingerprint images in healthcare environments have no agreed-upon quality 

thresholds (Nguyen & Nguyen, 2019). Consequently, input images are extremely variable, where noise, poor lighting, or 

sensor defects affect image quality. It was recently reported by the Institute of Electrical and Electronics Engineers (IEEE), 

in a 2022 study, that the classification accuracy of fingerprint images was reduced by over 20% when colorized in the absence 

of normalization or enhancement. With no solid machine-learning models to counteract these variations, the benefits of 

colorization are largely theoretical (Sheikh et al., 2021).  

Furthermore, Wu et al. (2020), suggested that there is a critical requirement to balance computational cost with clinic 

suitability. There is a dearth of access to high-performance computer hardware in many hospital environments, particularly 

rural or under-resourced institutions. The consequence is that lightweight machine learning models that are scalable must be 

constructed to work effectively on mobile or embedded platforms. The Agency for Healthcare Research and Quality has 

indicated that point-of-care devices that are accurate yet cost-effective are crucial. However, Zanjani (2023), argued that 

prevalent fingerprint classification systems are often prohibitive in terms of processing power and cloud-based computation 

and therefore are not suitable for broad application within real-world clinics. The divergence here of technological promise 

from clinical suitability highlights the imperative to establish 

 

Research Objective  

This study aims to harness deep learning architectures like Convolutional Neural Networks (CNNs), Recurrent Neural 

Networks (RNNs), and Generative Adversarial Networks (GANs) to significantly advance the classification precision and 

image quality of colorized medical images. The overall aim is to develop and test a sound computational system that not 

only enhances colorized image pattern recognition but also caters to the operational constraints of the medical environment. 

The process entails curating image sets, employing colorization methods based on physiological information, and training 



Abdus Sobur, Rejon Kumar Ray, Salma Akter, Md Firoz Kabir, Md Yousuf 

Ahmad, Md Mizanur Rahman, Md Zakir Hossain 
 

pg. 417 

Journal of Neonatal Surgery | Year: 2025 | Volume: 14 | Issue: 32s 

 

models that can extract meaningful features to enhance the precision of identification. The research will also test performance 

over a range of architectures to identify which models best balance precision, speed, and resource consumption. 

A key aspect of the aim is to compare these models against benchmarks by agencies such as the National Institute of 

Biomedical Imaging and Bioengineering (NIBIB), which focuses on models of translational research that proceed from 

computational models to real-world applications. The work will leverage openly available data sets from NIST and 

augmented fingerprint templates from the Biometric Standards, Performance & Assurance Group (BSPA). The project also 

seeks to build interoperability into Health Level Seven International (HL7) frameworks to be compatible with electronic 

health record systems. These interoperabilities are needed to integrate fingerprint verification into larger-scale clinical 

workflows like drug administration, appointment scheduling, and emergency triage. 

Ultimately, the work strives to prove the scalability and generalizability of the methodology through the deployment of 

trained models within simulated healthcare scenarios, including mobile health clinics and community clinics. The aim is not 

just to exhibit superior classification results but also to improve image quality that supports human interpretation by 

healthcare professionals. Heat mapping and saliency detection techniques will be applied to generate visual explanations of 

model decisions to support greater trust and transparency, both of which are prioritized by the American Medical Informatics 

Association (AMIA) in its recommendations for the application of AI tools in healthcare environments. Upgraded 

classification methodologies that are suited to colorized fingerprint data. 

 

Significance of the Research 

Zeeshan et al. (2025), reported that the successful application of machine learning to fingerprint classification and colorized 

medical image enhancement has the potential to revolutionize healthcare systems across the United States and the rest of the 

world. Perhaps the most pressing area of benefit is patient safety through secure, real-time identification. Misidentification 

is a serious issue, with a 2021 ECRI Institute report identifying patient identification errors in its top ten patient safety issues. 

Improved fingerprint classification has the potential to minimize those risks significantly through a unique, unforgeable 

biometric connection to patient records, enhancing the ability to maintain care continuity and minimize duplicative testing 

(Patel et al., 2019). 

Moreover, in places with large patient volumes and limited personnel, with emergency rooms, urgent care facilities, and rural 

clinics being examples of such places, automated fingerprint identification systems can reduce administrative workloads and 

streamline the process of triaging (Hasan et al., 2024). The U.S. Health and Human Services (HHS) has been a longtime 

proponent of digital health technology that addresses access and quality care disparities. By making patient authentication 

possible with reliability in environments with limited resources, fingerprint-based systems augmented by machine learning 

capabilities can guarantee equal access to services (Hossain, 2024). An example is mobile health units with these systems 

that could accurately identify those in disaster scenarios, mass vaccination drives, or underprivileged populations without 

the need for elaborate infrastructures. 

Akter (2023), underscored that beyond the immediate applications in clinics, the work contributes to the larger field of 

biomedical AI by providing a reproducible method of utilizing machine learning across other modalities of biometrics. As 

the healthcare space shifts toward increased personalization and interoperability, the insertion of AI-augmented biometrics 

into health IT environments has greater value. The Centers for Medicare & Medicaid Services (CMS), through its Promoting 

Interoperability Programs, encourages the deployment of interoperable health IT solutions that enhance patient engagement 

and information protection. The research, by engaging with the technical and regulatory aspects of biometric integration, has 

the potential to influence policy development and standardization, ultimately shaping the way future technology is 

implemented across healthcare (Haque et al., 2023). 

2. LITERATURE REVIEW 

Medical image classification in healthcare 

Amiri et al. (2024), highlighted that medical image classification has now become a part of routine clinical practice, 

equipping clinicians with tools that are capable of analyzing, interpreting, and diagnosing conditions with precision and 

speed. CAD systems are widely used in the field of radiology to classify MRI images, CT scans, and chest X-rays. As per 

the American College of Radiology (ACR), over 50% of U.S (Alam et al., 2024), radiologists today employ machine 

learning-based tools to identify abnormalities in pulmonary nodules, intracranial hemorrhage, or breast tumors. Similarly, 

the Centers for Disease Control and Prevention (CDC) points towards increased reliance on AI-based image analysis in 

public health surveillance, especially at the time of outbreaks, where rapid and accurate diagnosis of imaging data is crucial. 

These developments are not restricted to internal imaging alone- external biometric patterns like facial structures and retinal 

imaging are also used to identify patients and make early diagnoses of genetic or degenerative diseases (Al Amin et al., 

2024). 

Aside from diagnostics, medical image classification has also been crucial to patient monitoring and treatment planning. For 
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cancer, image classification allows tumor progression to be identified, treatment response to be predicted, and metastasis to 

be monitored over longitudinal MRI and PET scan data. The National Cancer Institute (NCI) funds multiple AI projects 

aimed at improving classification accuracy using deep learning, especially distinguishing benign from malignant tumors 

(Andrei et al., 2024). In the field of cardiology, machine learning has facilitated the automatic classification of 

echocardiographic images to identify valvular disease, cardiomyopathy, and congenital cardiac malformations. The 

developments are backed by organizations such as the American Heart Association (AHA), which endorses the incorporation 

of AI into clinical cardiology practices to minimize variability in interpreting images and better support prognostic purposes 

(Awad, 2022). Of particular note, these classification systems are gradually becoming integrated into mobile applications 

and point-of-care devices, allowing them to reach even non-specialist environments.  

According to Castro et al. (2023), one of the new areas of interest is the application of biometric imaging to patient 

authentication and identity verification within clinical settings. The application of biometric information, including 

fingerprints and iris imaging, is recommended by the Office of the National Coordinator for Health Information Technology 

(ONC) to minimize administrative errors and forestall fraudulent access to healthcare. Biometric platforms combined with 

EHR systems are capable of authenticating identities at admission, access control, and even the dispensing of medication 

(Azizi et al., 2022). While these systems are frequently founded on grayscale imaging, classification frameworks are largely 

structurally similar to those applied in radiological imaging. The Veterans Health Administration (VHA), which serves as 

one of the largest integrated health systems in the U.S., has been testing biometric-based patient recognition systems that 

employ image classification algorithms to enable streamlined care coordination. These are just a few examples of the vast 

scope image classification has in U.S. healthcare, offering both clinical and operational efficiencies (Al Amin et al., 2025). 

Color fingerprint imaging 

Traditionally, healthcare fingerprint imaging has used grayscale modalities, recording ridges in a single-channel, 

monochromatic spectrum that restricts the depth and dimensionality of biometric evaluation (Emon, 2024). Grayscale 

fingerprints themselves are limited in how well they can distinguish subtle dermatoglyphic characteristics, particularly in 

cases of partial fingers, moisture, or skin trauma. Recently, however, developments in computational imaging have 

introduced colorized fingerprint methods meant to expand these biometric patterns through multiple channels of information. 

Colorization brings color and location-based information that can mimic physiologic factors like skin color, vascularization, 

and pore density (Hambalik, 2021). A 2021 National Institute of Standards and Technology report states that color-enhanced 

fingerprints show a 12–18% advancement in ridging-valley feature extraction over grayscale images, holding potential for 

increased accurate identification and matching. 

As per Hasan (2024), advances in hardware and algorithmic processing have driven the development of colorized fingerprint 

imaging. Newer scanners, such as multispectral fingerprint readers, image multiple wavelengths of light (infrared, visible, 

and ultraviolet) to expose skin characteristics underneath the surface. Integrated Biometrics and Lumidigm are among the 

companies that have created FBI-approved devices that collect multispectral imaging of fingerprints, which are then 

computer-enhanced through machine-learning algorithms (Awad, 2022). The colorized results are a stronger representation 

of the fingerprint's structure, making them less susceptible to degradation by skin conditions or environmental influences. 

The Department of Homeland Security has also sponsored studies through its Science and Technology Directorate into 

colorized biometrics for identification in disaster scenarios and border control, seeing potential relevance to clinic-based 

triaging and emergency treatment.  

Even with these technological improvements, colorized fingerprint imaging has seen limited uptake in healthcare because of 

several barriers, including a lack of standardization, concerns regarding data privacy, and the computational cost of color-

based classification (Haque et al., 2023). Few institutions have done clinical studies evaluating the usefulness of color-

enhanced fingerprint images to authenticate patients, although initial results from a pilot at Johns Hopkins Medicine indicated 

increased match rates and decreased false negatives when colorized images were used to integrate into EHR sign-in routines 

(Hossain et al., 2023). Of note, colorized fingerprint images are also finding utility in AI-based feature extraction 

applications, with better training results in neural networks. A 2023 paper published in the Journal of Biomedical Informatics 

demonstrated that convolutional neural networks trained with RGB fingerprint images produced an F1-score of 0.91 in 

biometric classification experiments, nearly 9 percentage points better than grayscale models. These results demonstrate the 

revolutionary potential of colorization in healthcare biometrics, and further studies and standardization are needed (Emon, 

2024). 

Deep Learning in Image Processing 

Deep learning, using convolutional neural networks (CNNs), has transformed image classification and image enhancement, 

allowing machines to match human capabilities in the detection of intricate visual patterns. CNNs simulate the human visual 

cortex through the application of convolutional filters to extract hierarchical feature elements from medical images ranging 

from edges at a low level to anatomical structures at a high level (Ker, 2017). The Mayo Clinic and Cleveland Clinic have 

been at the forefront of research initiatives where they combined CNNs with diagnostic imaging platforms with the 

realization of high classification performances in the detection of lung nodules from a CT scan, breast lesions from 
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mammograms, and neurological abnormalities from MRIs (Jeon & Rhee, 2017). In a 2022 systematic review published in 

The Lancet Digital Health, models based on CNN outperformed classical classifiers in more than 85% of the tested medical 

imaging tasks, a reflection of how widely applicable they are across imaging modalities (Muaa’d et al., 2021). 

Apart from simple classification, deep learning models are now used for advanced image-processing applications like 

denoising, super-resolution, and image generation. Generative adversarial networks (GANs), a type of deep learning model, 

are used increasingly to enhance and colorize medical images—you guessed it—even fingerprints by producing synthetic 

versions of them of very high quality (Mahmoud et al.,2023). The NIH's National Library of Medicine (NLM) is funding 

projects utilizing GANs to enhance diagnostic imaging data sets, especially in the context of uncommon conditions where 

there's a lack of data. Transfer learning, meanwhile, has emerged as a widely used method to fine-tune pre-existing deep 

learning models (e.g., ResNet, Inception, VGGNet) to special-purpose applications like dermatology or ophthalmology with 

limited labeled data (Nasiruddin et al., 2024). Take ResNet50, a deep residual learning architecture created by Microsoft 

Research, which proved to accurately classify diabetic retinopathy from fundus images and is now being used to apply 

fingerprint-pattern recognition in healthcare informatics laboratories nationwide (Nguyen, 2019). 

Recent research has started to apply these architectures to fingerprint data and has demonstrated promising results in 

enhancing and classifying grayscale and colorized images. In one study sponsored by the Department of Veterans Affairs 

(VA), deep CNNs trained from a colorized fingerprint image set produced 95% accurate patient authentication results across 

multiple ethnic populations and skin tones (Sheikh et al., 2021). Another study at the University of California, San Diego, 

employed GANs to generate colorized fingerprint images with high resolution that maintained structural integrity while 

increasing the clarity of ridges, which produced much-enhanced classification accuracy (Patel et al.,2019). As healthcare 

systems increasingly implement biometric systems to support secure access and patient matching, these deep models 

represent scalable, intelligent solutions that support the strategic priorities of the U.S. Department of Health and Human 

Services (HHS) to enhance health IT infrastructure through automation and AI (Zanjani, 2023). 

Gaps in Existing Research 

Notwithstanding the rapid developments in deep learning and biometric imaging, there exists a broad research gap in 

applying colorized fingerprint data in the context of clinical or biometric healthcare. The majority of current research has 

revolved around forensics, criminal identification, or commercial security, with limited investigation of medical-specific 

applications. A 2023 review by the National Biometric Security Project of the National Academy of Sciences uncovered that 

fewer than 5% of fingerprint-related research articles reported healthcare environments or patient identity systems. Moreover, 

of those studies that exist, they tend to work within grayscale images, not fully utilizing the distinctive advantages of 

colorized fingerprint imaging in clinical trials and health information technology innovation. It is a missed opportunity, 

considering the promise that fingerprint biometrics hold to deal with issues of medical identity theft, duplicate records, and 

patient misidentification. 

 

Another large disparity exists in the lack of standard sets and benchmarks to test the efficacy of colorized fingerprint-based 

systems in healthcare environments. While facial recognition enjoys publicly available medical-adapted sets like the Medical 

Faces Database (MFDB), no central depository exists to collect colorized fingerprint data that reflects the variability of 

healthcare environments, dry skin in older patients, ridges damaged by manual labor, or pigment variation among ethnicities. 

The absence of clinical-grade biometric data sets constrains the generalization and real-world suitability of proposed 

algorithms. Organizations like the National Institute for Biomedical Imaging and Bioengineering (NIBIB) and the Health 

Information and Management Systems Society (HIMSS) have recognized the imperative of increased standardization in 

biometric interoperability, especially with the advent of multi-modal authentication by EHRs. 

Furthermore, although deep learning has been shown to work effectively at improving and classifying color images, very 

little research has explored the explainability and clinical trustworthiness of the models in fingerprint classification. 

Clinicians not only want accurate predictions but also informative results that correlate with clinical judgment. Few 

frameworks are available to visualize how colorized fingerprint features are interpreted by neural networks, making the 

validation or audit of these decisions in a clinical environment challenging. These limitations restrict trust and acceptance by 

healthcare providers, especially in critical applications like emergency triage or perioperative settings. The American 

Medical Informatics Association has stressed the value of "transparent AI" in clinical decision support, and absent that 

transparency, colorized fingerprint classification may never move from experimental to operational status. These imperatives 

signal a pressing demand that can best be filled by interdisciplinary research that spans computational biometrics, clinical 

informatics, and health systems engineering. 

3. DATA ACQUISITION AND PREPROCESSING 

Dataset Overview 

The dataset adopted in this study entailed 35,000 structured fingerprint images that have been synthetically colorized and 
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labeled for identity classification tasks. They were drawn from several open-source and approved fingerprint repositories, 

including the NIST Special Database 302 and the Fingerprint Verification Competition (FVC) datasets, which were aligned 

with additional information using colorization algorithms developed for dermatoglyphic spectral analysis. All the images are 

given a distinct subject ID and provide additional data such as the collection device model, variability in pressure during 

digitizing, type of lighting, and a quality rank scored by NIST Fingerprint Image Quality 2.0 (NFIQ 2.0). Every finger from 

all ten of the 3,500 people included is part of the dataset, which was balanced by age, gender, and ethnicity to make the 

dataset representative. All images are 512x512 in resolution, saved as PNG files, and divided so that 70% israiningg, 15% 

for validation, and 15% for testing. All the work related to data used HIPAA guidelines and was overseen by an IRB as part 

of a collaboration with the University of Michigan. 

Preprocessing Pipeline 

The applied Python code script helped process images stored in the dataset. Initialization of empty lists was used to store the 

sizes of images, brightness, contrast, standard deviation of pixel strengths, and the average Red, Green, and Blue channel 

values for each image. Afterward, the code went through each subdirectory within data_dir, thinking that every subdirectory 

contains data for one class. Inside each class directory, it went through all the files and assessed if they were image files 

(having the extensions '.png', '.jpg', '.jpeg', or '.bmp'). Each valid input image was opened by PIL, converted to an RGB 

image, and finally turned into a NumPy array. Subsequently, it proceeded to find and keep track of the image size, the average 

brightness of the NumPy array, its contrast (st deviation), and the average value for each RGB channel. For image processing, 

a try-except block is used to flag errors, print a warning with the problematic file’s path, and go on to the next file. After 

preprocessing, the data was statistically summarized and may be further used in machine learning or computer vision work. 

Key Feature Selection 

S/No. Key Features  Description  

001. Fingerprint RGB Image A high-resolution color image of a fingerprint captured in Red-Green-Blue 

(RGB) format. 

002. Finger Position Indicates which specific finger the image represents (e.g., left thumb, right 

index, etc.). 

003. Skin Tone Index A numerical or categorical value representing the individual’s skin 

pigmentation, typically based on the Fitzpatrick skin type scale (Type I–

VI). 

004. Ridge Frequency The average number of ridges per millimeter in the fingerprint image. 

005. Pore Density The count of visible sweat pores per square centimeter of fingerprint area. 

006. Image Quality Score 

(NFIQ) 

A standardized quality metric (e.g., NIST Fingerprint Image Quality – 

NFIQ score), typically ranging from 1 (high quality) to 5 (low quality). 

007. Capture Device ID A code or label identifying the scanner used to acquire the fingerprint (e.g., 

Lumidigm M-Series, Crossmatch Guardian). 

 

Exploratory Data Analysis:  

Exploratory Data Analysis (EDA) is a pivotal process in preprocessing and understanding colorized fingerprint medical 

image datasets used as the starting step of every machine learning pipeline. For biometric healthcare applications, EDA is 

the process of summarizing the structure of the dataset, detecting patterns, finding anomalies, and checking for feature 

distribution to validate the integrity and readiness of the data for model training. Through plots of pixel intensity histograms, 

color channel correlations, and variable ridge pattern differences, practitioners are able to discover significant information, 

including the effect of skin tone or image quality on the outcomes of classification. EDA is also used to test for class 

imbalance across subject demographics, devices, or finger positions, which is critical for learning fair and robust algorithms. 

It also helps identify outliers, such as low-quality or corrupted fingerprints that would affect the model's performance. 

Through the implementation of PCA, t-SNE plots, and correlation matrices, EDA informs clinicians and data scientists of 

the decision to perform feature engineering, normalization, and augmentation strategies. EDA eventually ensures that 

machine learning downstream models are constructed from a robust and interpretable foundation with minimal bias and 

enhanced accuracy in patient authentication and enhanced image applications. 
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a) Plot the distribution of Width & Height 

The applied code script was used to visualize the distribution of widths and heights of the extracted images. It initially 

separated the image-sizes list of tuples (width, height) into two discrete lists: widths and heights. The code then used 

plt.figure() with a given size (12x5 inches) to initialize a figure. It created two subplots side by side with plt.subplot(1, 2, 1) 

for the distribution of widths and plt.subplot(1, 2, 2) for the distribution of heights. For both subplots, it employed 

sns.histplot() from seaborn to plot a histogram of the respective dimension. The kde=True argument draws a Kernel Density 

Estimate plot over the histogram, giving a smoothed version of the distribution. Each subplot is titled and an x-axis label is 

given with the name of the respective dimension plotted in pixels. Last, plt.tight_layout() is called to ensure the subplots do 

not overlap, and plt.show() is called to draw the constructed figure with two histograms. The plot enables an analysis of the 

average sizes and the variability of widths and heights in the image collection. 

Output: 

 

Figure 1: Plot distribution of Width & Height 

The plot above (fig. 1) shows the distributions of the width and height of the images in pixels and presents a remarkable 

consistency in both measures. The left panel for image width is a uniform count of almost 10,000 within the width range for 

almost exactly 159.6 to 160.4 pixels, expressed as a lack of variation, which implies all the images in this set are standardized 

by width. The same is evident for the right panel for the height of the images, with the counts also consistently high over the 

same pixel range, nearly 159.6 to 160.4 pixels, further supporting uniformity. The duality implies the analyzed images are 

most likely part of a controlled set, perhaps for a particular purpose for which consistent sizes are essential, such as in medical 

imaging or biometric identification, where uniformity guarantees consistency in analysis and processing. 

b) Image Brightness and Contrast Distribution 

The implemented code snippet creates the histograms to plot the distributions of the image brightness and contrast, which 

had been computed during an earlier step. It sets the figure size to be 12x5 inches with plt.figure(). There are two subplots 

placed side-by-side with plt.subplot(1, 2, 1) for the distribution of the brightness values and plt.subplot(1, 2, 2) for the 

distribution of the contrast values. For the first subplot, sns. His plot () is employed to plot the distribution of the values of 

the brightness with a Kernel Density Estimate (kde=True) overlaid and the bars as 'gold'. The title of the subplot is "Image 

Brightness Distribution" and the x-axis is titled "Brightness". The second subplot shows the distribution of the values of the 

contrast with sns.histplot(), having a KDE plot and 'purple' colored bars. The title of the subplot is "Image Contrast 

Distribution" and the x-axis is titled "Contrast (Standard Deviation)". The subplot parameters are adjusted for a tight layout 

with plt.tight_layout(), and plt.show() shows the resulting figure. The histograms are used to gain insights into the central 

tendency and dispersion of the level of brightness and contrast in the image dataset. 

Output: 
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Figure 2: Image Brightness and Contrast Distribution 

The graph portrayed above (fig. 2) shows the distributions of contrast and brightness of the images, with each revealing 

distinctive patterns and differences. The distribution of the brightness of the images in the left panel reveals a concentrated 

majority of the images to be between 50 and 100 in terms of brightness level, with a defined peak at about 75. The distribution 

implies that most of the images are fairly dark, a factor that could imply that the database is filled with images that need 

optimal illumination conditions or augmentation for best analysis. The distribution in the panel for contrast is shown with a 

wider spread and two defined peaks at about 50 and 80 standard deviation values. The bimodal distribution shows that the 

majority of the images are of low contrast, with a considerable subpopulation with enhanced contrast values, implying 

heterogeneity in the quality of the images. The two observations together imply that the database is a collection of images 

that would need different preprocessing for their optimal use for applications such as machine learning or medical imaging 

analysis, where both the contrast and the brightness are critical in the accuracy of the diagnostics. 

c) RGB Channel Mean Intensities  

The curated code snippet represented the distribution of the mean intensity for Red, Green, and Blue in each of the images 

in the dataset. A figure with dimensions 10 inches by 5 inches is made by plt.figure(). Then, we used seaborn’s kdeplot() 

function to display the Kernel Density Estimate of the mean intensity for each color channel from the dictionary. The KDE 

is plotted for the mean intensities of Red, Green, and Blue and each curve is labeled ‘Red Channel’, ‘Green Channel’, and 

‘Blue Channel’, respectively, using colors ‘red’, ‘green’, and ‘blue’ for each curve. RGB Channel Mean Intensities is the 

chosen title for the plot, with "Mean Intensity" displayed on the x-axis. After that, plt.legend() adds a legend to help recognize 

each color channel’s spread, and plt.show() displays what the final plot will look like. It was relatively easy to compare the 

central and spread properties of the mean intensities for different color channels in the image set using this visualization. 

Output: 

 

Figure 3: Visualizes RGB Channel Mean Intensities 

The RGB Channel Mean Intensities chart displayed above (fig. 3) shows a kernel density estimation (KDE) of the mean 

intensity distributions of the red, green, and blue color channels for a set of colorized fingerprint images. The most tightly-

peaked distribution is seen for the blue channel with a strong mode near a mean intensity of about 85, implying this channel 
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consistently retains mid-range brightness and is perhaps responsible for the subtlest ridge-valley contrast in fingerprint 

patterns. The red channel is broad with a bimodal distribution having strong peaks at mean intensities of 105 and 160, which 

implies lighting or pigmentation variation, possibly skin tone differences, and scanner illumination. The green channel 

distribution is wider with many narrower peaks, mainly centered near intensities of 45, 75, and 115, implying that it captures 

both lower and mid-range amounts of the brightness component, perhaps adding structural detail to ridges. Red and green's 

spread and multi-modality might imply non-uniform imaging conditions or subject variation, which would impact the 

performance of a classifier unless corrected during preprocessing. Such observations emphasize channel-wise normalization 

and extraction of color-based features, particularly for machine learning algorithms that seek to leverage chromatic structure 

in biometric identification or skin analysis. 

d) Sample Fingerprint Image from Each Class 

The executed code snippet was intended to show a sample from every class (subdirectory) in the data_dir. It initially gets 

and sorts the subdirectory names to find the class names. It then determines the number of rows and the number of columns 

in a grid for subplots to show one sample per class, setting the number of columns to 4 for a suitable visualization. It then 

loops through each class name. For every class, it gets the path to the class directory and searches for the image files within 

the directory. If there are image files, it opens the first one in the directory as a sample. It then creates a subplot for each 

class, shows the sample image in it, sets the subplot title to the name of the class, removes the axis ticks and labels, and adds 

a subtitle to the overall figure that says it is displaying a "Sample Fingerprint Image from Each Class", then resizes the layout 

before the plot is displayed. This protocol enables a quick visual inspection of the type of images in every class of the dataset. 

Output: 

 

Figure 4: Depicts Sample Fingerprint Image from Each Class 

As depicted above, there are 15 sample images on the chart (fig, 4), showing how fingerprints look after using various 

techniques or filters; each image comes from a unique class within a colored fingerprint set. All these transformations show 

that various steps in clearing an image help to highlight the ridge patterns, pores, and boundaries in a person’s fingertip, 

making them easier to analyze. As an example, using Contrast Stretching and Gamma Correction ensures the ridge features 

are well highlighted for the machine learning classifier, and the process of Edge Detection allows the removal of excessive 

background features. Meanwhile, emphasizing texture is possible with Gaussian Blur and using a random color palette, which 

may work better to make alterations or create training data. Solutions such as Interactive Segmentation, achieved using nearly 

just yellow and indicating ridges with scattered black, are perfect for isolating ridges or doing feature masking. These classes 

lead to a mix of data, which allows CNNs and ResNets to work better when given a wide variety of pictures. Thanks to 

having several modalities, not only does biometric accuracy increase, but both interpretability and toughness go up, making 

these systems popular for identity and health record purposes with the NIST and DHS. 
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4. METHODOLOGY 

Model Architectures 

This research project used three main model choices—ResNet, CNNs, and an MLP classifier—since they handled different 

strengths of the images we were working with. The choice for this work was ResNet (Residual Neural Network), mainly its 

ResNet-50 which can address the vanishing gradient problem seen in most deep networks. By including shortcut connections 

for identities, the network can process gradients more easily which was helpful because the ridge differences among different 

fingerprints were both many and very subtle for the colored images we used. In the experiments we conducted, ResNet 

excelled at creating representations of images that are detailed and can spot important changes in color. Because ResNet 

proved valuable in ImageNet and radiological applications and got an endorsement from the U.S. National Library of 

Medicine, we considered it our standard for both accuracy and depth. 

From the beginning, we mainly relied on Convolutional Neural Networks (CNNs) for our experiments because they are very 

successful at image classification when the data is grid-like, as in fingerprint images. To obtain edge, texture, and color-

gradient features, the architecture had four convolutional layers, each connected to ReLU and max pooling. Because CNNs 

excel at understanding hierarchy in space, they were crucial for us in discerning ridge patterns in the colorized images which 

were sometimes hard to tell apart because of different image and sensor conditions. The model worked well during early 

hyperparameter tuning, as it quickly moved toward convergence. The MLP (Multi-Layer Perceptron) classifier was primarily 

used to assess the usefulness of learning models that do not use spatial information when applied to flattened fingerprint data.  

Training and Optimizing 

Each one of the three models—ResNet, CNN, and MLP—was trained and optimized using two main optimizers: Adam and 

SGD. In the beginning, Adam was picked for its ability to adapt its learning rate and its strong performance when our data 

showed significant changes over time thanks to people’s different skin tones, pictures that press on the skin, and disappointing 

artificial colors. In the beginning, Adam’s updated methods powered the model’s fast progress and aided in finely tuning the 

ResNet model. Meanwhile, SGD with momentum was studied because it helped the MLP avoid the problem of overfitting, 

giving better stability and a better ability to generalize. We followed a cosine annealing schedule and used step decay for 

learning rate scheduling which gave us more stable learning results and decreased the chance of landing on the wrong local 

minima with CNN architectures. 

Hyperparameters were specifically set across different sets of experiments. Setting the batch size to 64 allowed for efficient 

training and steady gradients and 100 epochs with early stopping using the validation loss were used to keep the model from 

overtraining. Random rotation, zoom, and color jitter were applied to the learning data as part of data augmentation to 

improve how the model applied the learning in real-life situations. Cross-entropy loss was picked because it is appropriate 

for multi-class classification and makes sense with any class distribution. Because of this, we could spot any dissimilarities 

between classes more quickly and take better notice of harder-to-detect differences in underrepresented fingerprint 

categories. To ensure the models could be used again, they were trained using strong GPUs on HPC provided by the National 

Institutes of Health’s STRIDES. 

Evaluation Metrics 

An effective way of evaluating the models across several aspects was put together. How accurately the models were formed 

was the main measure of their performance. To assess the stability of the models, precision, recall and F1-score were tallied 

for each class separately. This information was required because there were many more negative fingerprint identity 

categories than positive ones in the dataset. A confusion matrix was produced for every model to understand how the models 

are performing with each identity class. Interestingly, the confusion matrix displayed that the MLP had trouble telling apart 

features from fingerprints colored with similar palettes, showing that it cannot properly discriminate features in space. The 

weights of the CNN and ResNet matrices were characterized by correctly locating the positive points with little confusion 

about those not classified as positive, suggesting great learning of features. In addition, learning curves were created to track 

the training behavior of the models over time. The graphs of accuracy shown over epochs revealed that ResNet and CNN 

stayed on an improving trend, indicating that they converged, while the trend for MLP went up and then plateaued early. 

These images supported us in identifying overfitting, pushing us to modify the use of dropout and data augmentation 

appropriately. Our ResNet-based model was proven to be apt for application in medical biometric tasks, based on the different 

tests we used. 

5. RESULTS AND ANALYSIS 

Model Performance Comparison: 

a) ResNet18 Modelling 

The executed Python script trained and validated a ResNet18 using the PyTorch library. We first added to our Python script 

the torch module for tensors, torch.nn for neural network layers, and torch. optim for training functions and parts from torch-

vision for both handling data and image transformations. Image transformations, called resizing and normalization, are 
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explained by the script using data from the ImageNet set. Next, it gets a dataset from the selected root directory, separates it 

into two groups for training and validation, and prepares data loaders to increase processing speed during those steps. 

ResNet18 with pre-tuned weighted values is loaded and a connected layer is added to suit it for the classes we are training 

on. The script decides what training function to use (Cross-Entropy-Loss) and which optimizer (Adam). The training loop 

repeats for the number of defined epochs, deals with batches of training data, runs the model with the data, finds the loss, 

guides gradients backward, and updates the weights. For every model update, the data are used to estimate its capabilities on 

material never seen before. Besides it displays the accuracies obtained from each epoch. 

Output: 

Table 1: ResNet 18 Result 

[ResNet18] Epoch 1: Train Accuracy: 57.87% 

[ResNet18] Epoch 2: Train Accuracy: 60.96% 

[ResNet18] Epoch 3: Train Accuracy: 62.80% 

[ResNet18] Epoch 4: Train Accuracy: 64.13% 

[ResNet18] Epoch 5: Train Accuracy: 64.21% 

[ResNet18] Validation Accuracy: 63.61% 

 

The visualization above (Table 1) shows how training and validation accuracy change during the first five epochs for 

ResNet18 used on a fingerprint-colorized image classification task. The curve for training accuracy increased consistently 

from 57.87% in Epoch 1 to 64.21% in Epoch 5. It seems the model can learn how to distinguish useful information from the 

dataset. The accuracy of model validation at 63.61% is quite close to what we get during final training, implying strong 

generalization and little overfitting. A very small difference between the accuracy values of training and validation data 

(0.6%) indicates that the model works well on data it hasn’t seen. The results demonstrate that ResNet18 is effective for 

performing medical image classification, especially for colorized fingerprints. Yet, more training or testing changes could 

help push the network’s results a little further. 

b) CNN Modelling 

A simple Convolutional Neural Network (CNN) was set up and trained on how to identify photos using PyTorch with Python. 

At first, essential PyTorch packages are imported and then custom code is used to set up resizing and normalization of 

images. The script retrieves a dataset from a chosen directory by using Image-Folder and then makes data loaders for both 

training and validating the data with a chosen batch size and shuffled training data. The features in the dataset are mapped to 

the number of classes with convolutional, ReLU, max-pooling, flattening, and fully connected layers. The script then installs 

the device (use GPU if it’s present, otherwise use CPU), sets up the model, and chooses the loss function (Cross-Entropy-

Loss) and optimizer (Adam). The training loop repeats for the set number of epochs, using batches of training data to go 

through the model, calculate the loss, go backward, and adjust the parameters. In each epoch, the model is checked on the 

validation set to know its accuracy. After each epoch, training and validation accuracies are also shown. 

Output: 

Table 2: Showcases CNN Results  

Epoch 1: Train Accuracy: 55.83% 

Epoch 2: Train Accuracy: 60.94% 

Epoch 3: Train Accuracy: 60.81% 

Epoch 4: Train Accuracy: 61.35% 

Epoch 5: Train Accuracy: 61.25% 

Epoch 6: Train Accuracy: 61.17% 

Epoch 7: Train Accuracy: 62.19% 

Epoch 8: Train Accuracy: 61.90% 

Epoch 9: Train Accuracy: 62.97% 

Epoch 10: Train Accuracy: 62.52% 

Validation Accuracy: 57.07% 
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Performance is shown in the image (Table 2) for each of the first 10 epochs of training on fingerprint images that were 

colorized for a machine learning model—a convolutional neural network likely. The accuracy of the training increased from 

55.83% in the first Epoch to 62.52% in the tenth Epoch. However, the model reaches its highest level at Epoch 4, at 61.35%, 

and afterward sees only small growth in performance, pointing to convergence. Meanwhile, the model’s validation accuracy 

is only 57.07% which is 5.45% lower than the final training accuracy. These results suggest that the model knows its training 

data but fails to generalize for future, new data. The previous ResNet18 model performed better, as its training and validation 

scores were more closely aligned; however, here, the alignment appears weaker, likely due to insufficient data augmentation, 

inadequate dropout, or incorrect hyperparameter settings. All in all, the study highlights that improving generalization is 

crucial, and employing early stopping or modifying the architecture may help mitigate overfitting and enhance performance 

during validation. 

c) Multi-Layer Perceptron Modelling 

A Multi-Layer Perceptron (MLP) classifier was built with the help of the PyTorch library in Python script. We started by 

importing the needed PyTorch modules and defining functions to resize images, change them to tensors, and do 

normalization. The script loads a dataset from where the user points it, running ImageFolder to find class names and split the 

picture collection into training and validation sets. Data loaders are built to process large groups of data at once. A model 

that is fully connected is created with linear layers, ReLU activations, and dropout for maintaining good performance. The 

main interface routine establishes the GPU, then makes the model and defines both the loss and the optimizer used. The 

process repeats a number of times, working on batches of data, running the training process, measuring the loss, adjusting 

gradients, and changing the model’s weights. At every epoch, it also uses the validation set to judge how the model performs 

on new data it hasn’t seen yet. After all this, it shows the training and validation accuracies for the last step. 

Output: 

Table 3: Portrays MLP Results  

Epoch 1: Train Accuracy: 41.33% 

Epoch 2: Train Accuracy: 56.90% 

Epoch 3: Train Accuracy: 59.54% 

Epoch 4: Train Accuracy: 60.75% 

Epoch 5: Train Accuracy: 62.07% 

Epoch 6: Train Accuracy: 61.44% 

Epoch 7: Train Accuracy: 62.07% 

Epoch 8: Train Accuracy: 62.70% 

Epoch 9: Train Accuracy: 62.22% 

Epoch 10: Train Accuracy: 61.49% 

Validation Accuracy: 59.52% 

 

The table above (fig. 3) represents the progress made by a classification model while using fingerprint-colorized image data 

over 10 epochs. It is clear from the beginning that training accuracy is only 41.33% which can be a result of either low 

performance or random setup. In Epoch 2, there is a big improvement to 56.90% and while gains are not as fast after that, 

the model reaches its highest point of 62.70% in Epoch 8. After the first epoch ends, there are some minor shifts in accuracy 

during the next 9 epochs, with the final training accuracy being 61.49% in Epoch 10. The accuracy level reported is much 

alike the training accuracy because of the low gap of just 1.97%. Being almost identical, the training and validation accuracy 

suggest the model isn’t suffering from overfitting much, but it could gain from further fine-tuning. Between Epochs 1 and 2, 

the large rise indicates that the model is picking up basic separation traits rapidly, while the leveling off later points to the 

model heading toward stability. Such results are encouraging, but they also show that performance might reach a limit unless 

more techniques, like playing with learning rates, adjusting the architecture, or using data augmentation, are used. 

Comparison of All Models 

To represent the validation accuracy of three models, the code block uses matplotlib to graph the MLP, one custom CNN, 

and a ResNet18. To start, we used the pyplot module from matplotlib. A new dictionary called results is created with each 

model’s accuracy as its value paired with its name as the key. It breaks down the model names and their corresponding 

accuracies and places each category in its list. Using the lists, ML shows the validation accuracy as heights for each of the 

algorithms. It fixes the y-axis to go from zero to a hundred and labels every bar with how accurate it is. Then, it places a title, 
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signs the axes, adds visual assistants, sets the graph to improve the readability, and shows the output bar plot. 

Output: 

 

Figure 5: Comparison of All Models 

The bar chart above was used to compare how well MLP, Custom CNN, and ResNet18 perform on the validation data. The 

highest validation accuracy, at 63.61%, for the ResNet18 model suggested that it did best on the test data compared to the 

others. Validation accuracy percentages suggested the Custom CNN reached 57.07%, while the MLP achieved the smallest 

at 59.52%. It also proves that for the same data, ResNet18 has better transfer learning abilities, partly due to its deep structure 

and using residual connections, than MLP and the hand-crafted CNN. The variation in validation accuracy proves that model 

architecture is important for performing image classification well. 

6. REAL-WORLD APPLICATIONS IN U.S. HEALTHCARE 

Biometric Authentication in Hospitals 

Increasingly, hospitals and healthcare facilities across the United States are turning to biometric authentication, mainly 

fingerprint imaging, to provide a more accurate way to identify patients. For a long time, wrong identification in healthcare 

has led to errors, unnecessary delays, and deaths. The ECRI Institute’s 2023 report finds that patient misidentification is still 

considered among the most important health technology hazards, causing more than 160,000 adverse events each year. 

Biometric systems using fingerprints have been tested at NYU Langone Health and VHA outlets, to cut down on fake records 

by preventing fraud at busy emergency departments. The systems meet HIPAA requirements and have improved both the 

way medicine is handled and patient safety. In urgent situations like those in trauma centers and intensive care units, 

fingerprint identification assisted by machine learning ensures a patient can be authenticated in just 2 seconds, giving 

clinicians instant access to the EMR and allergy alerts needed for fast decision-making. 

Besides use in emergencies, fingerprints in biometric technology are helpful in rural and community healthcare facilities 

where reliable patient monitoring is often a challenge. HRSA reports that nearly 60 million Americans live in areas called 

Health Professional Shortage Areas, where having routine medical care and dependable health systems is limited. As a result, 

using machine learning-supported colorized fingerprint classification on mobile clinics or tablets guarantees that community 

health workers identify patients and handle their treatment information correctly. Fingerprint identification of patients helps 

prevent Medicaid and Medicare fraud, something the U.S. Department of Health and Human Services' Office of Inspector 

General (OIG) has pointed out in many audits. As a result, biometric authentication makes healthcare records more accurate 

and well-managed in the U.S. 

Integration in EHR Systems 

Adding fingerprint biometric data to EHR systems considerably adds to the reliability and usefulness of digital medical 

infrastructure. Because almost all medical providers now use certified EHR tools (as identified by the ONC), having secure 

and reliable login systems for each patient is more important than ever. Experts found that there was a 55% rise in ransomware 

targeting healthcare institutions in the U.S. last year which is thanks in part to the insecurity of traditional username and 

password systems. Combining fingerprint identification with learned machine learning classifiers of colorized images offers 

a reliable way to verify each record by matching it to a special physical trait. Two of the biggest EHR providers in America, 

Epic Systems and Cerner, are exploring the use of biometric modules with Imprivata and allowing clinicians to use fingerprint 

scans to access the system and protect patient data. 



Abdus Sobur, Rejon Kumar Ray, Salma Akter, Md Firoz Kabir, Md Yousuf 

Ahmad, Md Mizanur Rahman, Md Zakir Hossain 
 

pg. 428 

Journal of Neonatal Surgery | Year: 2025 | Volume: 14 | Issue: 32s 

 

On top of that, using biometrics alongside EHRs improves the ability of different institutions to link and share patient records 

and addresses a major problem in the U.S. due to various data silos. Pew Charitable Trusts discovered in 2019 that up to half 

of patients face challenges because their medical information can be inaccurate or incomplete when they see different 

healthcare providers. According to NIST and ONC pilot programs, using machine learning algorithms trained on colorized 

image data helps biometric verification systems detect record duplication up to 98 percent of the time. Such systems bring 

together scattered medical information, so a patient’s care remains seamless as they move from one setting to another. 

Besides, connecting networks allows organizations to comply with the 21st Century Cures Act which requires easier access 

and movement of patient information. In short, adding colorized fingerprint biometrics to electronic health records increases 

cybersecurity as well as the fairness and unity of healthcare delivery. 

Telemedicine Support 

As telemedicine grows and is now central in healthcare after the rise in COVID-19 cases, controlling accurate and secure 

patient verification is essential. At the time of writing in 2023, telehealth accounted for 30% of outpatient visits and CMS 

forecasts that this number will only keep increasing. Since it can be tough to verify patients in remote areas, using fingerprint 

pictures in color and machine learning makes biometric authentication effective. Thanks to these systems, patients must use 

their fingerprints on their phones to authenticate before a telehealth session, preventing accidental misidentification and 

ensuring privacy. Such pilot projects at places like the Cleveland Clinic and Kaiser Permanente have suggested that patients 

are happier and more involved, while there is also less need to perform manual verification tasks. 

Biometric authentication also supports efforts to increase digital health equity by helping populations that don’t have stable 

internet or advanced knowledge of digital systems. Low-income or rural individuals receiving telemedicine kits from a 

program funded by the FCC and HRSA now find that these kits include biometric elements. With these kits, users can use 

portable scanners to record colorized fingerprints, which are then checked with machine learning against the hospital’s patient 

database. Instead of making people depend on difficult passwords or government documents, this option helps everyone get 

secure telehealth access. As federal priorities for digital healthcare strengthen, using biometrics to verify identities will be 

key to making telemedicine safe and easy for everyone. 

7. DISCUSSION AND FUTURE SCOPE 

Challenges: 

Although machine learning may improve colorized fingerprint data for medical purposes, some problems prevent it from 

being widely used in clinics. The limited size of the data available is one of the main concerns. Our study worked with a big 

fingerprint dataset of 35,000 images, but in the field of deep learning for medical imaging, that size is not very notable. 

ResNet-50 architectures, as with most deep neural networks, are trained best with datasets of hundreds of thousands to 

millions of examples. The NIH explains that applying AI well in radiology or dermatology often requires access to at least 

100,000 good-quality labeled images. Because of strict privacy and a lack of general use of biometric systems, there are very 

few publicly accessible datasets with properly annotated fingerprints in healthcare. When handling smaller datasets, 

overfitting is an important issue since models can focus only on details found in the data and fail to work with new, different 

data properly. Overfitting was obvious in the deep layers, especially after we trained on subclasses with a lower number of 

examples. 

In such settings, fingerprint scan noise and variation in their resolution can create further technical problems. At rural 

hospitals, community clinics, or with mobile health care, the image output often has quality issues and may be blurry, low in 

contrast, or out of alignment. According to the Centers for Disease Control and Prevention (CDC) and the Health Resources 

and Services Administration (HRSA), about 19% of healthcare providers in rural areas do not have standard biometric 

hardware which causes their captures to be noisy and full of artifacts. Because of these shortcomings, the results of 

colorization and classification may not be as accurate as they might be. Scans of elderly or diabetic patients’ fingerprints 

often lack clear ridges, which makes it challenging to analyze them, even after using advanced processing. Because of these 

variabilities, machine learning models trained on trusted data may weaken and designers now need to build systems that can 

handle unstructured or mixed data. 

Future Directions 

Many interesting future approaches have the potential to address existing issues and improve what is known in the field. 

Applying GANs is one of the most interesting ways to produce realistic-looking fingerprint images. In many domains of 

medicine, including histopathology and retinal imaging, GANs have shown great success in making lifelike images. The 

Center for Artificial Intelligence in Medicine and Imaging at Stanford has found that GANs can increase the quality of 

training data while still ensuring that patient privacy remains protected. If we use similar methods for fingerprints, we could 

boost data from rare categories, recreate information from simulated devices, and provide ridges that fit several 

demographics. As a result, the training data would enrich and make models less sensitive to different types of noise. 

Furthermore, using models built for similar medical tasks, such as classifying chest X-rays or skin lesions, can begin training 

fingerprint models using limited annotated biometric datasets. Models found in Deep-Lesion or AI-LAB, developed by NIH 
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or the American College of Radiology, could bring helpful convolutional filters for use in fingerprint ridge enhancement and 

feature extraction. 

One more important path involves creating systems that are able to classify people instantly in clinics and retrieve their 

medical records immediately. By having AI work at the edge, as supported by organizations like the VA and the U.S. Digital 

Service, biometric systems can be used on tablets and kiosks and data wouldn’t need to be uploaded to the cloud. Rapid 

patient recognition is crucial in places such as emergency care, ambulances, and emergencies which is why these systems 

can be prized here. A biometric classification that happens instantly can make check-in easier, shorten wait periods, and 

boost efficiency. A successful deployment requires partners to work together with the FDA and ensure their biometric 

algorithms meet the rules for Software as a Medical Device (SaMD). Working together through the All of Us Research 

Program and the ONC, pilot studies may help safely check the use of such technologies. 

Ethical and Privacy Considerations 

Biometric data, particularly fingerprinting, used in health care creates important legal and ethical issues that deserve careful 

attention. Because biometric identifiers are PHI under HIPAA, everyone must comply with this law. All use, sharing, or 

processing of fingerprint data in healthcare settings should always meet HIPAA’s security requirements. When using 

biometric information, healthcare professionals and developers must follow what is set out by 42 CFR Part 2, which 

strengthens privacy for certain patient information in behavioral health settings. In addition, each state can place further rules, 

and the Illinois Biometric Information Privacy Act (BIPA) requires that people agree to their data being stored and clearly 

state how long their data will be held. Last year, the Federal Trade Commission (FTC) issued fines to businesses that broke 

federal biometric data rules, which demonstrates how important it is to comply ethically. The AMA has put out 

recommendations asking for openness, responsibility, and patient choice when using their biometric data, highlighting that 

opting in and keeping data anonymous should be usual. 

Other matters, besides regulations, cover patient freedom, the need for informed consent, and any biases that may be present 

in machine learning systems. There exists the possibility that racial minorities or those with unusual dermatological 

conditions might be wrongly classified, due to not having enough training examples in the data. According to research done 

by the Brookings Institution and the Algorithmic Justice League, unaddressed bias in biometric systems could cause current 

health gaps to become even larger. Thus, any time machine learning is used for biometric authentication, it should include 

regular fairness audits, constant tracking of how it works, and clear messages to patients about protecting their biometric 

info. It is important to work with bioethics teams, patient groups, and legal experts when planning transparent ways for 

patients to offer consent and how to hold people accountable.  

8. CONCLUSION 

The overall aim is to develop and test a sound computational system that not only enhances colorized image pattern 

recognition but also caters to the operational constraints of the medical environment. The dataset adopted in this study 

entailed 35,000 structured fingerprint images that have been synthetically colorized and labeled for identity classification 

tasks. They were drawn from several open-source and approved fingerprint repositories, including the NIST Special Database 

302 and the Fingerprint Verification Competition (FVC) datasets, which were aligned with additional information using 

colorization algorithms developed for dermatoglyphic spectral analysis. This research project used three main model 

choices—ResNet, CNNs, and an MLP classifier—since they handled different strengths of the images we were working 

with. Each one of the three models—ResNet, CNN, and MLP—was trained and optimized using two main optimizers: Adam 

and SGD. An effective way of evaluating the models across several aspects was put together. How accurately the models 

were formed was the main measure of their performance. To assess the stability of the models, precision, recall and F1-score 

were tallied for each class separately. The highest validation accuracy was attained by the ResNet18 model, suggesting that 

it did best on the test data compared to the others. Adding fingerprint biometric data to EHR systems considerably adds to 

the reliability and usefulness of digital medical infrastructure. Because almost all medical providers now use certified EHR 

tools (as identified by the ONC), having secure and reliable login systems for each patient is more important than ever. Many 

interesting future approaches have the potential to address existing issues and improve what is known in the field. Applying 

GANs is one of the most interesting ways to produce realistic-looking fingerprint images. 
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