
Journal of Neonatal Surgery 

ISSN(Online): 2226-0439 
Vol. 14, Issue 31s (2025) 
https://www.jneonatalsurg.com 

 

 

   
 
 

pg. 905 
 

Journal of Neonatal Surgery | Year: 2025 | Volume: 14 | Issue: 31s 

 

A Deep Supervision-Enhanced U-Net Model for Laryngeal Cancer Early Detection 

 

Rashed Mohammed Alghamdi 1 

1Department of Laboratory Medicine, Faculty of Applied College, Al-Baha University, Saudi Arabia, PhD in infection 

inflammation immunity, University of Leicester UK 

Email ID: rmalghamdi@bu.edu.sa ; rashed053660518@gmail.com  

Orchid ID: org/0009-0000-1592-890X 
 

00Cite this paper as: Rashed Mohammed Alghamdi, (2025) A Deep Supervision-Enhanced U-Net Model for Laryngeal Cancer 

Early Detection, Journal of Neonatal Surgery, 14 (31s), 905-912 

ABSTRACT 

In this study, a modified U-Net architecture was used to segment the laryngeal nodule completely automatically while being 

closely monitored. Diagnosing laryngeal cancer is difficult since the larynx is complicated and the illness only slightly alters 

it. Deep learning algorithms have shown promise in medical image processing, including the diagnosis of cancer. U-Net is a 

well-liked deep learning architecture for picture segmentation. The outcomes are compared to those obtained using other 

contemporary methods and the original U-Net that was published in order to arrive at the original conclusions.  

In order to investigate how this affects the segmentation of Laryngeal nodules overall, this work additionally substitutes 

deconvolution layers for the up-sampling layers in both networks. During training, data augmentation was used right away. 

Initially, distortion and rotation combinations are used because of the poor quality of the source photos. This resulted in a 

limited data enrichment technique for combinations. Using the same parameter settings, the network is trained by substituting 

deconvolutional layers for all of the upsampling layers. There is greater dice overlap when comparing the suggested method 

for Laryngeal nodule segmentation to the state-of-the-art. 

 

Keywords: U-Net Architecture, Dice Loss, Laryngeal Cancer, Stochastic Learning, Segmentation, Training rate and 

Validation 

1. INTRODUCTION  

Laryngeal carcinoma has grown to be a serious health concern in recent years. It is believed that the most severe kind of the 

illness occurs when it develops in the head and neck [1].   The treatment options and prognosis for a patient with laryngeal 

cancer are determined by the stage of the malignancy [2]. When laryngeal cancer and pre-malignant disorders are detected 

early, it is possible to provide a higher level of protection for the larynx and to make a clear diagnosis in real time. Patient 

survival rates are greatly increased by early discovery of laryngeal cancer because prompt interventions can stop the disease 

from progressing to more advanced stages and lessen the need for drastic treatments that affect speech and swallowing 

abilities. 

On the other hand, advanced laryngeal cancer requires a multimodal diagnostic approach, which may result in a worse quality 

of life with serious negative effects [3].The confusing benign lesions, subtle morphological changes at early stages, and 

interobserver heterogeneity among clinicians in interpreting endoscopic images are due to the difficulty in laryngeal cancer 

detection. It has recently been discovered that there is a higher frequency of a more effective diagnostic method with a 

survival rate between 34% and 62% [4]. In general, early and accurate diagnosis of the disease is always critical for getting 

the best medical outcome [5]. 

In CNN, the diagnoses can be done much faster when compared to the human medical expert's capability for diagnosis [6, 

7]. The CNN, in general, is a feed forward NN with a complex topology and can perform the operation of convolution. A 

technique can be applied on problems that are connected with classification and detection. In particular, as compared to 

classical methods of image processing, this approach has high potential in features extraction and further analysis [8]. It 

follows that the performance of the U-Net architecture proposed in [9] has performed very well for medical images. Ever 

since then, many works have been conducted to deal with different types of U-Net-based segmentation.U-Net models have 

been modified to incorporate deep supervision, multi-resolution feature extraction, and attention processes in order to further 

improve segmentation accuracy. This has increased the models' resilience to complicated anatomical variances. 

Additionally, Dice coefficient [10, 11] has supplanted pixel-wise cross entropy as the industry standard for several 

optimisation techniques for medical image segmentation [10, 11]  
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2. LITERATURE REVIEW 

Using CT scans and real-world datasets, a more sophisticated deep learning (DL)-based Mask R-CNN model was presented 

for the detection of laryngeal cancer and its associated symptoms [12]. By accelerating cancer diagnosis and lowering 

diagnostic uncertainty, this strategy seeks to improve diagnostic accuracy.In principle, the proposed approach would allow 

for more frequent monitoring of patients by speeding up and improving the identification of small cancers in the larynx. The 

authors [13] develop a DL approach for in-vivo hyperspectral LC diagnosis. Using a Deep Quantum Neural Network (Deep 

QNN) tuned by the Adaptive Spotted Hyena Optimizer (ASHO), [14] presented a unique laryngeal cancer classification 

method. By adjusting to the distinct features of laryngeal cancer images, our approach dynamically improves classification 

performance by fine-tuning network classifiers. Deep QNN may employ the mechanism that was explained before to change 

network classifiers in order to classify as a final step. Convolutional neural networks (CNN) and attention mechanisms are 

combined in the LPCANet network to improve feature extraction and classification accuracy in the diagnosis of laryngeal 

cancer [15]. This approach efficiently captures both spatial and spectral features by patching the original 

hyperspectral images and using ResNet50 for local feature extraction, enhancing diagnostic accuracy. First, the original 

HSI is divided into segments. The patches are fed to ResNet50 to extract local features. Meanwhile, channel attention and 

location attention modules are built at the same time in order to take channel and spatial interaction into account. 

Both techniques produce the fusion feature maps which are helpful for representation of features and classification networks. 

Authors in [16] presented a DCNN model for the auto-classification of CE-NBI images as benign or malignant with limited 

human intervention. A DCNN was developed in this domain by adopting an approach of the cut-off layer with pre-trained 

ResNet50 architecture. The authors in [17] have proposed a CNN model that classifies the input spoken audio with the help 

of image classification. MFCC approach takes the input from the DNN model. Authors in [18] have discussed CNN model 

for glottic cancer detection and CNN model performance has been compared with DT ensemble learning, as one of the 

methods for smaller datasets considering the performance based on the classification accuracy. 

The U-Net model, which was originally proposed , is the CNN architecture normally used for segmenting biomedical images. 

It uses an encoder-decoder architecture together with skip connections to improve segmentation accuracy and keep the spatial 

information intact. It does this encoding to reduce image size and enable easy feature extraction. The image feature map has 

to be decoded to increase its size to obtain a segmentation mask. A characteristic feature of U-Nets is the skip link that 

connects both encoder and decoder. It's this very capability that enables the model to improve segmentation accuracy while 

still maintaining high resolution. 

In the last years, several possible applications have been investigated for the U-Net, including medical image analysis [19-

25]. Segmentation of a nodule is performed with a modified U-Net architecture with deep supervision for a fully automated 

technique in this research work. Deconvolution layers are later ped out for the upsampling layers in both networks to observe 

how this changes the overall performance in Laryngeal nodule segmentation. 

3. METHOD 

U-Net-based methods are widely used for laryngeal nodule segmentation largely because of the network's inherent mixing 

of many scales across it. In this work, Laryngeal Nodule Segmentation (LNS) is achieved using the modified U-Net technique 

under deep supervision.  

3.1 The Original U-Net Model 

The original U-Net design is made up of convolutional layers, upsampling layers, and max-pooling layers. With a starting 

learning rate of 𝑙𝑟𝑎𝑡𝑒𝑖𝑛𝑖𝑡𝑖𝑎𝑙  = 5 ∗ 104 , a learning rate schedule of 𝑙2 with weight decline of 104 , and 𝑙𝑟𝑎𝑡𝑒𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 0.934 

epoch.  

During training, data supplementation was used on the spot. The initial combinations like, deformation, and rotation are used 

but it was realised that these techniques actually made the outcomes worse because of the poor quality of the input images. 

As a result, the combinations are chosen as a method of data enrichment. Using the same settings as above, the network is 

trained by swapping out all of the upsampling layers for deconvolutional layers. 

3.2 Deep Supervision based Modified U-Net Model 

The encoding and decoding paths are present in this design, just like in the initial U-Net. The input forms are progressively 

stored along the encoding route as the network depth increases. 

The deciphering route, in comparison, combines the acquired models with surface characteristics again, leading to accurate 

location of the interest structures. For ease of use, the term "encoding module" refers to all of the working units in the 

encoding paths. The term "decoding module" is also used to describe all of the working units in the decoding paths. 

A residual block is represented by each encoding module, which is made up of four convolution layers and a dropout layer 

(𝑝𝑑𝑟𝑜𝑝 = 0.3). They are joined together by step 2 convolutions. Similar to upscaling, the deciphering route starts with step 

2, followed by a convolution operation. The feature maps are then subsequently combined with the encoding route and then 
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transmitted to the decoding route is cut in half by the up-sampling module. 

A 2*2 convolution and a 1*1 convolution make up a deciphering module, which bifurcates the feature map to half. The 

segmentation layers is incorporated at various network levels in the deciphering route to implement deep control. 

In this work, six-fold cross-validation algorithm has been used to train and test the network on the training dataset. The 

leaking ReLu, selected patches of size 256 ∗ 256, batch sizes of 6, validation batch sizes of 12, 𝑝𝑎𝑑𝑑𝑖𝑛𝑔 = 𝑠𝑎𝑚𝑒, instance 

normalisation rather than batch normalization, and no validation patch overlap are used to train the network design. The 

Adam optimizer has been used for training, with the initial learning rate set to 5 ∗ 104 , the learning rate schedule set to 104 

with 𝑙2 weight decay, and the initial learning rate has been set to 0.934 epochs. 

The total loss is summed across all instances in the group of size 𝑀 because the optimisation is stochastic. Formally, the N-

voxel image's expected and real-world voxels 𝑗 in a group of size 𝑀 should be 𝑝𝑗,𝑖 ∈ 𝑃𝑗   and 𝑔𝑗,𝑖 ∈ 𝐺𝑗, where ∀𝑝, 𝑔;  𝑝, 𝑔 ∈

[0, 1]. The definition of the stochastic dice coefficient 𝐷 is as follows: 

𝐷 =
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The 𝐷𝑚𝑢𝑙𝑡𝑖𝑐𝑙𝑎𝑠𝑠 denotes dice coefficient for the situation of segmentation considering multiclasses (more than one labels 

separate from the information of background). Here, 𝑘 ∈ 𝐾 are the classes. When the target-label amount is plentiful, the 

dice coefficient's shape remains continuous; however, the target-label quantity gets closer to zero, it becomes pointed and 

flat. Zero loss results in no slopes for the model to change its parameters and traps it in local optimum, making it challenging 

to learn the data. Additionally, the problem is not resolved by the use of uniform dice loss. To lessen the effects of the issue, 

a random combined die variable is suggested. 

3.3 Stochastic Aggregated Dice Loss (SADL) 

This work used Stochastic Aggregated Dice Loss (SADL), which deviates from the conventional approach by calculating 

per-image dice values and aggregating them for each group. In this method, the dice loss is calculated using the combined 

image after merging all segmentation results from a group into a single big image. Consider 𝑀, 𝑃, and 𝐺 stand for the group 

size, projected nodule area, and ground truth nodule area, respectively. Let 𝑝, 𝑔 ∈  [0, 1]∀𝑝, 𝑔 be the anticipated and actual 

image voxels 𝑗 in batch 𝑀, respectively, and let 𝑔𝑖,𝑗 ∈ 𝐺𝑗be the ground truth voxels. Equation (4) defines the suggested loss 

function 𝐷𝑆𝐴 as follows: 
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The SADL dice coefficient is specified in equation (4) for the situation of multiclass segmentation, with 𝑘 ∈ 𝐾 denoting the 

classes. 

This strategy is justified by the likelihood that other examples with labels will fit the no-target examples during training. As 

a result of the labels from such images, the combined die coefficient shape will become softer and curved.  

3.4 Stochastic Multi-resolution Loss Component (SMLC) 

In current U-net systems if we consider high-resolution ground facts, there is a training loss at the top-level layer's 

segmentation output. The SMLC which calculates loss components at various resolutions. The segmentation result of the 

individual level and its corresponding downsampled ground-truths are used to compute the per-resolution component. 

Assume, for instance, that the result at level 2 is 64 ∗ 64, the resolution of the ground truth is down-sampled 64 ∗ 64 and 

the level 2 computes the die coefficient component. The weighted aggregate of these loss components represents the model's 

overall loss.  

Let 𝑃𝑘 , 𝐺𝑘 , 𝑎𝑛𝑑 𝑘 represent the expected and actual image as well as the at level per-resolution loss coefficient (resolution) 

𝑘, respectively. The chosen dice coefficient loss function is 𝐿𝑜𝑠𝑠(𝑃, 𝑄). This can be another loss function or one of formulae 

(1) or (3). Equation (5) defines the overall multi-resolution loss as follows: 

𝐷𝑚𝑢𝑙𝑡𝑖−𝑟𝑒𝑠 =  ∑ 𝛼𝑘𝑘  𝐿𝑜𝑠𝑠(𝑃𝑘 , 𝐺𝑘)         (5) 

The variable 𝑘 stays a hyperparameter or trainable parameter in this study, but 𝛼1 is maintained fixed at unity. Empirically, 

it was advantageous to use trainable parameters or decreasing values for lesser levels. The first, second, and third values of  

𝛼 are specified and performance gains are also produced by using trainable 𝛼𝑘. 
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Results and Discussion 

The dataset has been taken from Kaggle online database for histopathological images 

[https://www.kaggle.com/ashenafifasilkebede/dataset?select=val] and this work used 1224 images. The images are scaled 

down to 256*256 resolution. They are divided into a training set, testing set and a validation set using ratios of 80% (979 

images), 10% (122 images) and 10% (123 images), respectively. This split of dataset has been shown in Table 1. The 

numerical results have been presented in Table 2. The averaged cross-validation performance is calculated across all trials 

after doing numerous rounds of cross-validation. Figure 1 displays the best validation performance. The average dice 

coefficient for the segmentation job throughout the whole dataset for the proposed deep supervision approach for Laryngeal 

nodule segmentation was 0.912.  

Additionally, the model was able to identify between several malignant Laryngeal nodule subtypes with an AUC of 0.92.  

Figure 2 displays a Receiver Operating Characteristic (ROC) curve for the training, testing, and validation sets, which is a 

graphical depiction of a classification model's performance at all threshold levels for Class 1 (Normal) and Class 2 

(Cancerous). AUC measures the capability of the model to distinguish between classes using the area under the ROC curve. 

The high AUC value, 0.92, achieved by the suggested model, ensures the ability of this model to effectively distinguish 

between benign and malignant laryngeal nodules, which is of prime importance for early-stage treatments. Conventional 

radiological reviews typically reach an AUC range of only 0.80–0.85, emphasizing the advantages of automated deep-

learning-based segmentation methods. Moreover, integration of such models into the clinical workflow can lead to better 

consistency in decision-making by radiologists and oncologists and can reduce diagnostic variability . 

 The segmentation algorithm's ability to match the ground truth data accurately is gauged by the mean squared error. The 

histogram displays the proportion of photos where a certain mean squared error was created by the segmentation method. 

This might be used to compare various algorithms and would provide a broad indicator of how accurate the algorithm is.  

With accuracy values ranging from 85% to 90%, prior research employing CNN-based segmentation models for laryngeal 

cancer diagnosis, such as Mask R-CNN and Deep Quantum Neural Networks, has shown encouraging results. However, 

because these techniques rely on specified feature hierarchies, they frequently have higher false-positive rates. By 

dynamically adjusting segmentation parameters according to contextual picture features, SADL's incorporation into our 

model helps to reduce these problems . 

The Laryngeal nodule segmentation of experimental findings is shown in Table 3. As can be observed, the UNet model with 

the SADL gets a dice score of 0.9, which is 0.025 die points higher than the dice score of 0.875 from the original U-Net 

architecture. 

The quantity of false-positives is decreased because of SADL enhancement of the gradient signatures of samples with SMLC. 

Due to the way it dynamically organises various combinations of training images, it also functions as an augmentation 

approach. Additionally, SMLC provides enhancements over the standard method. Combining this strategy with SADL in a 

dice score of up to 0.915, which is 0.04 points greater than the starting position. The findings imply that employing decreasing 

is essential for the improvement in performance.  

Table 4 presents the experimental findings for the chosen dataset, employing alone SADL which does not result in any 

appreciable performance increase, however adding SMLC leads in modest gains. The multi-resolution losses with declining 

factors results in a performance of 0.935 dice for the overall tumor, 0.769 dice for the core nodule, and 0.723 dice for the 

improved nodule segmentation benchmark. This demonstrates 0.015, 0.02, and 0.022 performance improvements, 

respectively, above the original U-Net architecture . 

4. CONCLUSION 

The proposed method for Laryngeal nodule segmentation shows more dice overlap as compared to the existing methods. 

There are a few issues that must be resolved for LNS. The fundamental drawback of the proposed method is that most cutting-

edge techniques employ whole Laryngeal histopathological images, but trained on previously chopped images inside the 

Laryngeal nodule ROI due to a lack of diverse datasets. The remainder of the approaches also had to deal with Laryngeal 

nodule ROI identification in addition to segmentation, thus comparing them to the state-of-the-art may not be entirely 

accurate. As a result, training with the dataset was substantially simpler. A new U-Net model with deep supervision is 

developed for early laryngeal cancer detection due to classic U-Net design flaws. The model uses deep supervision, which 

adds supervision signals to training. By making the model more durable and discriminative, performance improves. Research 

is needed to evaluate the method's therapeutic efficacy. 

https://www.kaggle.com/ashenafifasilkebede/dataset?select=val
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Figure1: Performance graph for training, testing, and validation with respect to the suggested method's error rate 

 

 

Figure 2: ROC curves 
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Table 1: Number of images for training, test and validation 

Method Training Set  Test set Validation set 

 

%     Image  

count 

% Image  

count 

% Image  

count 
 

𝑆𝐴𝐷𝐿 80 979 10  122 122 123  

𝑆𝐴𝐷𝐿 + 𝑆𝑀𝐿𝐶 80 979 10  122 10 123  

 

Table 2: Numerical results of proposed method 

     𝐀𝐜𝐜𝐮𝐫𝐚𝐜𝐲    𝐏𝐫𝐞𝐜𝐢𝐬𝐢𝐨𝐧 𝐒𝐞𝐧𝐬𝐢𝐭𝐢𝐯𝐢𝐭𝐲 𝐒𝐩𝐞𝐜𝐢𝐟𝐢𝐜𝐢𝐭𝐲 

Test    Val.   Test Val. Test Val. Test Val. 

𝑆𝐴𝐷𝐿 97.24 97.44 97.22 96.88 98.74 97.65 97.25 97.54 

𝑆𝐴𝐷𝐿 + 𝑆𝑀𝐿𝐶 98.06 98.66 98.55 95.85 99.51 98.35 99.21 98.34 

 

Table 3: Cross Validated results of Laryngeal nodule Segmentation task 

Model SMLC (𝜶) Dice 

U-net (Original) [4] - 0.873 

SADL - 0.910 

SADL +SMLC 𝛼 = (1,1,1) 0.918 

SADL +SMLC 𝛼 = (1,0.1,0.01) 0.916 

SADL +SMLC Trainable 𝛼 0.927 

 

Table 4: Cross validated results for Dataset segmentation task 

 Dice Loss 

Model SMLC (𝜶) Whole area  

 Enhanced  

U-net (Original) [4] - 0.892 0.746 

SADL - 0.854 0.776 

SADL 𝛼 = (1,1,1) 0.923 0.723 

SADL +SMLC 𝛼 = (1,0.1,0.01) 0.918 0.734 

SADL +SMLC Trainable 𝛼 0.915 0.756 
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