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ABSTRACT 

This project introduces a framework for appropriately adapting and adjusting machine learning (ML) techniques used to 

construct electrocardiogram (ECG)-based schemes. With more qualified training data given to corresponding machine 

learning schemes, the precision on ML-based ECG mechanisms are increased in consequence. In the proposed framework 

four new measure metrics are introduced to evaluate the quality of the ML training and testing data, all proposed mechanisms, 

metrics, and sample data with demonstrations using various ML techniques, is developed. For developing ML based ECG. 

The system uses retrieval-augmented generation (RAG) to provide a lightweight LLM with relevant cardiology knowledge 

at inference time, enabling it to diagnose cardiac conditions from ECG data without task-specific training. We extend the 

original methodology by deploying a small, open-source LLM (Versatile--Llama 3B) locally using the Ollama platform, 

ensuring patient data never leaves the premises. The proposed system aims to replicate these benefits in a secure environment. 

We detail the existing solutions, the proposed architecture, its advantages in privacy and cost, system requirements, and a 

comprehensive methodology. The outcome is an on-premise ECG diagnostic assistant that leverages both the efficiency of 

a small LLM and the accuracy of domain-specific retrieval, demonstrating a feasible path toward AI-assisted cardiac 

diagnosis without compromising data security 
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1. INTRODUCTION 

Electrocardiogram (ECG) is a noninvasive mode that's used as an individual tool for cardiovascular conditions Arrhythmia 

Detection. ECG signal is extensively used as an abecedarian tool for the discovery and opinion of heart diseases. ECG is the 

record of variation of bioelectric implicit with respect to time as the mortal heart beats. It provides precious information 

about the functional aspects of the heart and cardiovascular system. Since ECG is the most generally recorded signal for the 

patient monitoring and examination process, it's important to be reliably and snappily descry the cardiac diseases. ECG can 

be recorded fluently with the help of face electrodes on the branches or casket. It's considered a representative signal of 

cardiac physiology, useful in diagnosing cardiac arrhythmia. Abnormality of the ECG shape is generally called arrhythmia. 

Arrhythmia is a common term for any cardiac meter that differs from normal sinus meter. Beforehand discovery of heart 

conditions can protract life and enhance the quality of living through applicable treatment. It's veritably delicate for croakers 

to dissect long ECG records in a short time duration and also the mortal eye is inadequately suited to descry the morphological 

changes of ECG signal continuously. From the practical point of view, for the effective diagnostics, the study of ECG pattern 

may have to be carried out over several hours. The volume of the data being enormous, the study is tedious and time 

consuming and the possibility of missing the vital information is high. A number of experimenters have reported automated 

bracket and discovery of twinkle patterns grounded on the features uprooted from ECG signals. utmost of them use either 

time or frequence sphere representation of the ECG signals as features. Depending on the features, the bracket is allowed to 

fete between classes. Now-a-days, the automatic ECG signal analysis faces a delicate problem due to a large variation in 

morphological and temporal characteristics of the ECG waveforms of different cases and the same cases. At different times, 

the ECG waveforms may differ for the same case to similar an extent that they're unlike each other and at the same time 

likewise for different types of beats. Owing to this, the beat classifiers perform well on the training data but give poor 

performance. Clinical experts can detect AF by analyzing ECG beat signals recorded by the Holter system. Recent years 

have seen an increase in the [3] use of computer-based automatic heart arrhythmia detection systems by cardiologists and 

physicians, highlighting the importance of automatic detection of arrhythmia in facilitating prompt and accurate treatment. 

The computer-based ECG signals follow the steps of pre-processing, feature extraction, and classification of abnormal signals 

and are detected automatically. In order to proceed with feature extraction and classification, it is necessary to first remove  
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any existing noise components. Major sources of noise in an electrocardiogram are baseline drift, power line interference, 

and moving artifacts [4]. Preprocessing methods that include filtering techniques aid in the elimination of noise components, 

allowing for rapid processing, while various signal compression procedures reduce the computational load by favoring 

effective signal characteristics. ECG feature extraction [5] is the primary method for diagnosing arrhythmias through the 

classification of the resulting feature vectors. Feature classification is the second factor that employs various different 

methods for classifying ECG patterns, such as neural networks, statistical methods, machine learning algorithm classifiers, 

and fuzzy interference [6]. 

Objectives 

Develop a Framework: Introduce a framework for adapting and adjusting machine learning techniques used in constructing 

electrocardiogram (ECG)-based schemes to improve precision. 

Introduce New Metrics: Propose four new measure metrics to evaluate the quality of the ML training and testing data. 

Implement Retrieval-Augmented Generation (RAG): Utilize RAG to provide a lightweight LLM with relevant cardiology 

knowledge at inference time, enabling it to diagnose cardiac conditions from ECG data without task-specific training. 

Deploy Locally: Deploy a small, open-source LLM locally using the Ollama platform to ensure patient data never leaves the 

premises, enhancing privacy and security. 

Evaluate Performance: Assess the performance of the proposed system using standard metrics such as accuracy, precision, 

recall, and F1-score. 

Motivation 

The motivation behind choosing this specific approach, particularly the use of lightweight LLMs and the Ollama platform, 

can be outlined as follows: 

Privacy and Security: By deploying the LLM locally using the Ollama platform, the system ensures that sensitive patient 

data remains secure and confidential, addressing significant concerns related to data privacy in healthcare. 

Cost-Effectiveness: Utilizing open-source components and avoiding cloud-based API fees makes the system cost-effective, 

which is crucial for widespread adoption in various healthcare settings. 

Flexibility and Generality: The use of a lightweight LLM allows the system to perform zero-shot learning of new conditions 

via retrieval, making it flexible and adaptable to various diagnostic tasks without extensive retraining. 

Accuracy and Efficiency: Combining the interpretive ability of an LLM with the precision of expert knowledge retrieval 

aims to achieve high diagnostic accuracy, comparable to specialized deep learning models, while maintaining the efficiency 

of a lightweight system. 

Limitations 

Data Quality and Quantity: The performance of the system heavily relies on the quality and quantity of the training data. 

Limited or biased datasets may affect the accuracy and robustness of the model. 

Complex Conditions: The system might struggle with diagnosing certain complex conditions, such as nuanced electrolyte 

changes in ECG or combined pathologies, which may require more specialized knowledge or models. 

Generalization: While the system aims to be generalizable, the effectiveness of the lightweight LLM in diverse clinical 

settings and with varied patient populations needs further validation. 

Computational Resources: Although the system is designed to be lightweight, the computational resources required for 

training and inference might still be a limiting factor for some healthcare facilities with limited infrastructure. 

Interpretability: While the system uses interpretability tools like SHAP and Grad-CAM, the inherent complexity of LLMs 

might still pose challenges in fully interpreting the decision-making process. 

2. RELATED WORK  

Advancing Cardiovascular Diagnostics: Integrating Machine Learning and 3D Simulation in ECG Analysis for 

Enhanced Arrhythmia Detection and Disease Prediction [2]  

This study emphasizes the crucial role of ECG analysis in diagnosing and predicting cardiovascular disorders, the significant 

contribution of computational methods like machine learning in accurate heartbeat classification for arrhythmia detection 

and disease diagnosis, and the potential of 3D computer simulations in interpreting ECG data and generating synthetic 

datasets for training machine learning classifiers. The paper also emphasizes the significance of ECG analysis in diagnosing 

cardiovascular disorders, discusses the role of computational techniques like machine learning in advancing medical 

discoveries, and highlights the recent progress and growing interest in the field. The methodology in the paper involves the 
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use of machine learning techniques and 3D computer simulations for ECG analysis, including supervised and unsupervised 

learning for dataset analysis, with a focus on heartbeat classification and patient diagnosis. The study also discusses the 

challenges of dealing with medical data for clinical applications and the role of 3D computer simulations in addressing these 

challenges.  

Intervention effects include the classification of heartbeats, SVM specificity:99.72%, AF event identification, Sensitivity: 

~97%, Specificity: ~97%, Real-time analysis using deep learning, Computer simulation models: Provided insights into the 

effects of diseases and treatments on the ECG.  

Deciphering the Heart's Rhythm: An Explainable Deep Learning Approach for Atrial Fibrillation Detection from 

ECGs [3]  

This research discusses the development of an explainable artificial intelligence model to detect atrial fibrillation using an 

electrocardiogram, emphasizing the importance of interpretability in deep learning models for accurate detection. The study’s 

objectives were to develop an explainable deep learning model to detect atrial fibrillation using an electrocardiogram, validate 

its performance using diverse ECG formats, and enhance its transparency for clinical application.  

The main findings in this paper were the successful detection of AF using diverse ECGs with an explainable DLM, enhanced 

transparency of the DLM for clinical application, and the outperformance of previous models in detecting AF The 

methodology involved a retrospective study using the Sejong ECG dataset for internal validation, development of two feature 

modules for DLM decisions, and external validation using datasets from PTB-XL, Chapman, and PhysioNet.  

The intervention effects in the study show that the DLM had high accuracy in detecting atrial fibrillation (AF) using different 

formats of ECG, with AUC values ranging from 0.990 to 0.999. The sensitivity of the DLM ranged from 0.982 to 0.999, and 

the specificity ranged from 0.970 to 0.999. The explainability of features such as rhythm irregularity and absence of P-wave 

also showed high AUC values, ranging from 0.961 to 0.993 and  

0.983 to 0.993, respectively. These results indicate that the explainable artificial intelligence methodology used in the DLM 

was effective in accurately detecting AF and providing insights into the reasons for its decisions.   

Precision in Prediction: Evaluating Supervised Machine Learning Algorithms for Differential Diagnosis in ECG 

Report [4]  

The study aims to use supervised machine learning to distinguish between normal and abnormal ECG reports and predict 

specific heart diseases, evaluating the performance of six different algorithms. The methodology in the paper involves 

designing a model using supervised machine learning to find anomalies in ECG reports, applying six supervised machine 

learning algorithms to distinguish between normal and abnormal ECG, dividing the dataset for training and testing, using 

Cross Validation and Random Train-Test Split for accuracy, normalizing and scaling data, creating different datasets for 

specific diseases, training classifiers with different algorithms, and using sample data to predict heart diseases. The main 

findings of this research were Logistic Regression performed well with a score above 0.90 for all diseases, Myocardial 

Infarction had the highest accuracy score across all algorithms, and different algorithms were effective for different diseases.  

The intervention effects in the study include:  Coronary Artery Disease (CAD): Logistic Regression: 90%, Naive Bayes: 

83%  

Myocardial Infarction (MI):  

Logistic Regression: 100%,  Naive Bayes: 91%   

Sinus Tachycardia (ST):   

Decision Tree: 97%, Nearest Neighbor: 70%  

Sinus Bradycardia (SB):   

Support Vector Machine: 96%, Nearest Neighbor: 69% Right  

Bundle Branch Block (RBBB):  

Logistic Regression: 96%, Naive Bayes: 81%,   

Overall, all the algorithms gave relatively very good results for all diseases.  

Decoding Heartbeats: Comparative Analysis of ANN Models for Cardiac Arrhythmia Diagnosis from ECG Data [5]  

This research proposes an ANN-based system for diagnosing cardiac arrhythmia using ECG signal data, evaluates three 

ANN models based on classification performance measures, and discusses the importance of accurate detection of 

arrhythmias for clinical purposes. The MLP model exhibited high accuracy and sensitivity in diagnosing cardiac arrhythmia, 

while the MNN model showed superior classification specificity. The performance of the ANN models varied based on the 

dataset used.This research discusses the performance of different ANN models in classifying cardiac arrhythmia cases, 
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highlighting the strengths of Multilayer Perceptron in accuracy and sensitivity, and Modular Neural Network in specificity, 

with variations in performance across different datasets.  

The methodology involved using Artificial Neural Network models to diagnose cardiac arrhythmia from ECG signal data, 

training the models with the backpropagation algorithm, evaluating performance using various measures, and cleaning the 

dataset by replacing missing values. The study objectives were to identify cardiac arrhythmias automatically from ECG 

recordings and to classify diseases into normal and abnormal classes using three different neural network models.   

Enhancing Early Intervention: AI Methods in Identifying Shockable ECG Rhythms and Overcoming Database 

Challenges [6]  

The study discusses the importance of early detection of shockable ECG rhythms, the incorporation of AI methods into 

CAAC systems, the challenges related to the use of deep learning methods, and the need for large databases for accurate 

classification. It emphasizes the significance of accurate identification of shockable ECG rhythms and the role of feature 

extraction in achieving high detection accuracy. The paper also highlights the limitations of small databases in achieving 

optimal classification performance. It also emphasizes the importance of detecting shockable ECG rhythms, the role of AI 

in improving accuracy, and the need for advanced systems to enhance real-time detection. It also highlights the significance 

of accurate ECG diagnosis in designing automated external defibrillators (AEDs) and the increasing use of AI in 

computeraided arrhythmia classification systems. The introduction sets the stage for the paper's focus on reviewing machine 

and deep learning methods for detecting shockable ECG signals.  

The future research recommendations include applying state-ofthe-art methods on big data, collecting new high-quality and 

long-duration ECG data, using compression techniques to simplify deep learning models, employing data augmentation 

methods, utilizing cross-validation techniques, optimizing algorithms for feature selection, balancing data, exploring 

lightweight transfer learning models, and considering new loss functions.  

Advancing ECG Analysis: Deep Multi-Task Learning for Enhanced Accuracy and Transferability [7]  

This research introduces a deep multi-task learning scheme for ECG data analysis to improve the accuracy and transferability 

of models, addressing challenges faced by traditional deep learning algorithms. The proposed deep multi-task learning 

scheme for ECG data analysis improves accuracy by up to about 5.1% and shows potential for generalizability to other 

datasets.  

The paper discusses the application of a deep multi-task learning scheme for ECG data analysis, emphasizing the division of 

tasks, dataset construction, and the design of a deep parameter-sharing network to improve accuracy by up to 5.1% using the 

MIT-BIH database.  

The methodology involved proposing a deep multi-task learning scheme for ECG data analysis, converting the problem into 

a multi-task learning one, constructing multiple datasets for each task, designing a deep parameter-sharing network, and 

conducting experiments using the MIT-BIH database.  

The hypotheses tested in the study are that the deep multi-task learning scheme for ECG data analysis can improve the 

accuracy of ECG data analysis by up to about 5.1% compared to traditional deep learning algorithms and that the proposed 

scheme requires limited efforts to fine-tune the network and can enable the trained model to be well applied to other datasets.  

Revolutionizing  ECG Arrhythmia Detection: A Novel Inter-Patient Paradigm with SVM Classification Superiority 

[8]  

This study aims to design and investigate an automatic classification system for ECG arrhythmia detection using a new 

comprehensive ECG database inter-patient paradigm separation without performing any feature extraction. The study focuses 

on improving the detection of minority arrhythmical classes using machine learning techniques. The research emphasizes 

the importance of the proposed inter-patient paradigm separation method for ECG classification without the need for complex 

data preprocessing for feature engineering. The study evaluates four supervised machine learning models (SVM, KNN, 

Random Forest, and ensemble) for classifying Normal Beat, Left Bundle Branch Block Beat, Right Bundle Branch  

Block Beat, Premature Atrial Contraction, and Premature  

Ventricular Contraction using real ECG records from MIT-DB. The results show that the SVM classifier outperforms the 

other methods in terms of accuracy, precision, recall, and f1-score, achieving an accuracy of 0.83. The paper concludes that 

the SVM model is more realistic in a clinical environment for classifying various types of ECG signals collected from 

different patients.  

3. ANALYSIS OF PROBLEM  

Early detection and continuous monitoring of cardiac health can significantly improve patient outcomes. Electrocardiogram 

(ECG) signals are widely used for diagnosing various cardiac conditions, including arrhythmias, ischemic heart disease, and 

heart failure. However, manual analysis of ECG signals is time-consuming and requires expertise. The aim of this project is 
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to develop a machine learning (ML) model for cardiac health monitoring using ECG signals. The model will be trained to 

detect and classify cardiac abnormalities, such as arrhythmias and other related conditions, from ECG data. The ML model 

will provide real-time analysis of ECG signals, enabling early detection of abnormalities and timely intervention. Key 

Objectives:  

i. Develop a dataset of ECG signals annotated with cardiac abnormalities for training the ML model.  

ii. Preprocess the ECG signals to extract relevant features for classification.  

iii. Design and implement a machine learning pipeline for ECG-based disease detection.  

iv. Evaluate the performance of the ML model using standard metrics such as accuracy, precision, recall, and F1- score.  

v. Develop a user-friendly interface for real-time ECG signal processing and disease detection. 

4. METHODOLOGY 

The proposed Methodology is an on-premise, secure ECG diagnosis assistant that performs zero-shot interpretation of ECG 

signals by combining a local lightweight LLM with retrieval of expert knowledge. Our approach builds upon the zero-shot 

retrieval-augmented generation framework introduced by Yu et al., with a key enhancement: we replace the large cloud-

based LLM (e.g., GPT-3.5 used in the original research) with a smaller open-source LLM that runs entirely locally. We use 

Ollama, an open-source toolkit that allows running large language models on local hardware, to deploy the 3-billion-

parameter Versatile-llama model. This model is a fine-tuned variant of Meta’s LLaMA, designed to be “small but smart,” 

with performance comparable to larger (~8B) models despite its compact size.By using a lightweight model, the system can 

operate on standard workstation GPUs or even CPU, eliminating the need for internet connectivity or cloud resources. 

Our system architecture centers on retrieval-augmented generation. We construct a vector database of domain-specific textual 

knowledge, including medical literature on ECG interpretation, diagnostic criteria from cardiology textbooks, and any 

available guidelines for arrhythmia and apnea detection. This knowledge base serves as an external memory that the LLM 

can draw upon. When an input ECG is given, the system first preprocesses the signal to extract relevant features (e.g., heart 

rate, waveform intervals, detected abnormalities). These features or their textual description are used to query the vector 

database for related information. For instance, if the ECG features suggest ST segment elevation, the system will retrieve 

text about myocardial infarction criteria from the knowledge base. The top relevant pieces of information are then infused 

into the LLM’s prompt alongside a request to diagnose the ECG. In effect, the LLM performs analysis augmented by up-to-

date, context-specific knowledge, rather than relying purely on what it learned during its own training. This follows the RAG 

paradigm where the LLM’s input is augmented with retrieved evidence because the entire pipeline runs on-premise – from 

feature extraction to vector search to LLM inference – it ensures that sensitive health data remains secure and confidential. 

The LLM (Versatile-llama) processes data locally via Ollama, meaning no ECG or patient information ever leaves the local 

machine or hospital network. The proposed system therefore offers a solution that is flexible (zero-shot learning of new 

conditions via retrieval), privacy-preserving, and cost-effective (using open-source components without API fees). We 

anticipate that by combining the interpretive ability of an LLM with the precision of expert knowledge retrieval, the system 

can achieve accuracy close to specialized deep learning models while maintaining the generality of an LLM that can explain 

its reasoning. 

 

Fig 1. Methodology 
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Proposed Methodology 

Design a system for ECG classification and arrhythmia detection using deep learning. This section contains the general idea 

of our proposed methodology for classifying different types of cardiac arrhythmia, as shown above. It discusses how to use 

Deep Learning model instances to address limitations inherent with classical models that use traditional algorithms for ECG 

(Electrocardiography) classifications. To deal with these challenges, our method leverages pretrained GPT models[10, 11], 

data augmentation using GANs, and supervised Contrastive Loss that facilitates pushing apart samples from different classes 

while pulling together those belonging to the same class. We specifically use interpretability tools such as SHAP and Grad-

CAM to give some idea of how the Model makes decisions.  

The Framework of ECG Classification in Figure 2 for Arrhythmia upon existing solutions, the framework in Figure 3 is 

implemented with some technology components devoted to improving accuracy, robustness and interpretability.  

 

Fig. 2 :Proposed for ECG arrhythmia classification.  

We incorporate several sophisticated modules into the ECG classification framework to further improve the accuracy and 

interpretability. Along with the raw ECG signal input, a pretrained GPT model is taken as an embedding layer for 

transforming signs to continuous vectors and self-attention layers through which temporal and context relationships are 

understood in relevance to that view of previously available data at each attendance. Lastly it converts its output using 

asynthetic generating concise representation. DIGA uses GAN-based data augmentation to synthetize ECG, and thereby fix 

class imbalances while also helping generalization. During training, Triplet Loss is used with anchor, positive and negative 

samples through which the Model learns how to separate arrhythmias of different classes. We also include interpretability 

tools like SHAP for quantifying feature contributions and GradCAM to highlight what parts of the ECG signals are influential 

in its decision-making process. These components are integrated into the framework in an end-to-end fashion for input to 

classification and provide a comprehensive technique that represents a significant step forward in automated medical 

diagnosis.  

Pretrained GPT Models  

Our proposed methodology is rooted in the notion to benefit from Pretrained GPT models for a better understanding of ECG 

signals, which enables the fine grained temporal pat-terns and contextual relationships captured within them. Figure 2 

illustrates how the GPT model can read sequential ECG data and effectively capture rich temporal features needed for 

accurate arrhythmia classification. This element is beneficial for learning intricate dependencies in ECG signals that standard 

models would not capture. Taking advantage of the pretrained property in GPT, our approach allows effective knowledge 

transfer from generic domains to the target ECG classification task despite unreliable intra-domain so that better performance 

is obtained.  

A Diagram of the Application of Pretrained GPT Models to ECG signal input is shown in Figure 2. It is the beginning of 

data entry from ECG signal to this system. These signals are then processed through an embedding layer, transforming the 

ECG signals into vector form for further analysis. This is followed by Self-Attention Layers, which enable the Model to 
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attend over time to capture crucial temporal dependencies and contextual interactions. After that, the data goes through a 

Feed Forward Layer, which helps to learn higher-level features from the extracted information. The processed data finally 

passes to the Output Layer, in which a high-level feature representation of ECG signals is prepared for further classification 

process.   

The GPT model works by encoding the input ECG signals into a high-dimensional space, where time information and 

relation-based features are embedded. Let 𝑋 = [𝑥1, 𝑥2, . . . , 𝑥𝑛] denote the sequence of ECG signal inputs, where each 

𝑥𝑖represents a time step in the ECG signal.   

 

Fig. 3:The architecture of the pretrained GPT component for ECG arrhythmia classification.  

Diagram of the ECG Signal Workflow: Going from the Input to Embedding Layer for signal feature mapping into a vector 

space representation; Self Attention Layers that capture temporal information; and Feed Forward layers that refine this data. 

A feature-rich representation in the Output Layer ensures that dataflow is stable,providing a process's normalization and 

residual connections. It first embeds the input sequence to a continuous vector space using embeddings function (𝑥), which 

can be mathematically defined as:  

(𝑥) = [𝐸(𝑥1), 𝐸(𝑥2), . . . , 𝐸(𝑥𝑛)]                                                       (1)  

From there, these embedded vectors go through a stack of self-attention layers to help the Model attend to different parts of 

this sequence when making predictions. The self-attention mechanism can be described by the following equation:  

                                                  (2)  

Here,  is queries,  is keys, and is values are all calculated using a linear transformation from the same sequence of input 

embedding as in equation1, 𝑑𝑘is a key dimension. The self-attention mechanism defined in equation 2 allows to learn how 

much different steps in a sequence contribute, effectively capturing temporal dependencies. Bypassing the self-attention 

layers output through as a feed-forward layer, we achieve a final representation of each token in the original input sequence:  

𝑍 = 𝐹𝑒𝑒𝑑𝐹𝑜𝑟𝑤𝑎𝑟(𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉))                                                 (3)  

This result will carry useful temporal features exploited by the rest of the components in the framework to detect arrhythmia. 

It learns the representation between raw ECG data and its feature space, where temporal behaviors are better captured for 

downstream classification tasks. In our approach, the Pretrained GPT model comprises several layers that cooperate to make 

sense of sequences within input ECGs. Each layer in the GPT model can be decomposed into:  
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The essential layers and mechanisms of the GPT ECG classification model, The Embedding Layer, transform the input ECG 

sequence in a continuous vector space and add position encoding to maintain order over time. Next, you have Self-Attention 

Layers that computes the attention scores over a sequence, allowing the Model to selectively attend to relevant parts of data 

for each time step. The processed data then goes through the feed-forward layers that apply nonlinear transformations to 

fine-tune further feature representation learned from the self-attention mechanism. Normalization and Residual Connections 

are used after each layer in order to improve the generalization abilities of the network, making training stable with positive 

gradient flow. The output layer then outputs the final representation encapsulating all temporal and contextual information 

of the input ECG sequence for further classification. This architecture in Fig. 3 demonstrates how these components extract 

local and global temporal patterns within ECG data.  Data Augmentation with GANs  

The Pretrained GPT Models outputs additional informed features of the more complex temporal dynamics and contextual 

relations within ECG signals. Although such output is essential to decipher complex dependencies in the ECG data, exposure 

toa wider variety of arrhythmia patterns can further strengthen the robustness ofthe classification model specifically from 

classes appearing sparsely within origi-nal dataset. We do so by utilizing Generative Adversarial Networks (GANs) to expand 

the dataset with synthetic ECG samples that represent realworld variabilities. This extra synthetic data in combination with 

the full-featured output of GPT models leads to a more complete training set and, hence, improved generalization of the 

Model.  

Our GAN architecture includes the Generator and Discriminator, as shown in Figure 4; both are neural networks. The 

Generator (G) takes as input a random noise vector  sampled from a prior distribution 𝑏(z)and generates synthetic ECG 

data. The Discriminator (𝐷) then receives both real ECG data x and synthetic data (𝑧), and its task is to distinguish between 

the real and synthetic samples.  

Figure 3 was designed to highlight the sequential nature of how each component interacts and flows in a game with respect, 

but not limited only to ECG processing.The process begins with the Generatorcomponent, which takes a random noise vector 

(𝑧) as input and generates synthetic ECG data. This synthetic data is designed to mimic real ECG patterns. The generated 

ECG data, along with actual real ECG data (𝑥), is then passed to the Discriminatorcomponent. The Discriminator's task is to 

distinguish between real and synthetic ECG data. As the GAN is trained, the Generator continuously improves its synthetic 

data generation to better fool the Discriminator, while the Discriminator gets better at identifying whether the data is real or 

generated. This adversarial process helps the GAN refine its ability to create realistic ECG data, which can be used to enhance 

training datasets for improved model performance in ECG arrhythmia classification.  

 

Fig 4: Simplified diagram illustrating the process of Data Augmentation with GANs for ECG arrhythmia 

classification.  

Here, the Pretrained GPT Model has a robust output feature of ECG which is transmitted to the GANs module as illustrated 

above. This module contains a generator that generates synthetic ECGs and a discriminator responsible for distinguishing 

real data from fake data. These artificially created 'fake' data points are then fused with the actual (real) samples to construct 

an augmented training dataset, strengthening the Model against vulnerability and boosting its generalization tasks.  

The diagram uses arrows to show how data and feed-back flow between the Generator and Discriminator. This helps simplify 

the operations of a GAN.  

                        (4)  

Here 𝑝𝑑𝑎𝑡(𝑥)is the distribution of the real ECG data and 𝑝𝑧(𝑧)is fed into the Generator before noise. The Generator in the 

GAN is responsible for mapping the input noise z to the synthetic data space, producing samples that  

resemble real ECG signals. Here is the mapping function:  

(𝑧; 𝜃𝑔) = 𝑥′                                                                  (5)  
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where ′is the set of ECGs and 𝜃𝑔indicates all parameters of G. The Discriminator, meanwhile, produces a higher output 

probability (𝑥)of the input  it sees as reals over synthetic ones. The output of the Discriminator is:  

(𝑥; 𝜃𝑑) = 𝑃(𝑟𝑒𝑎𝑙|𝑥)                                                         (6)  

In the figure where 𝜃𝑑denotes parameters of the Discriminator. In the training process, D and G are purposely updated 

iteratively to become better against each other. As its name suggests, the Generator learns to generate real data with time; 

whereas the Discriminator becomes more accurate in identifying fake generated images. Optimally, we perform adversarial 

training to reach a point where the Discriminator cannot distinguish real data from synthetic data,umeaning 𝐷(𝑥) = 0.5 for 

both real and generated samples.This is particularly useful because synthetic data from the GAN helps to extend a greater 

range of arrhythmia patterns into the training set, which are not accurately reflected in an unbalanced source dataset. These 

augmentations aim to introduce the Model with some noise and other types of images so that our classification task fine-to-

the-least maintains its robustness when class imbalances occur aggressively, or there will be unseen data. Adding this 

variability helps the model to discriminate more easily between different arrhythmias. First, besides being exposed with 

incomplete samples (especially for rare arrhythmias) in Machine Learning models) we also extend the sample set by adding 

augmented data from GAN to avoid overfitting and exploit the full capacity of the classification pipeline with an enriched 

training dataset.  

V. Simulation Results 

This work is primarily focused on demonstrating the significance of not performing pre-processing on imbalance data in 

arrhythmia detection with an ensemble model. The result is plotted in three ways 

1. Confusion Matrix for ECG arrhythmias  

2. Loss Function  

3. Accuracy(ECG),Precision(ECG),Recall (ECG) and F1-score(ECG)  

 

  

  

 

 

 

 

 

 

 

Figure 5 :Confusion Matrix Report  

Loss Function :   

Using the loss function, we can assess how effectively this ensemble algorithm models our balanced dataset. Cross-entropy 

loss is used in our work. Cross-entropy works based on adjusting the model weights during training to minimise the loss 

values. Our model performed better when the loss was smaller. Figure [6] shows the loss function graph of three pipelines. 

From the graph, we inferred that loss is decreasing slowly over 100 epochs. 

 

Accuracy,Precision,Recall and F1-score : 
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Fig 6 : Loss Function Graph 

Performance metrics such as Accuracy, Precision, Recall and F1-Score  are calculated for measuring the performance from 

equations  

[3] to [6].   

Accuracy(ECG)  =  

(TEP+TEN)/(TEP+FEP+FEN+TEN) ------------- 

--  (3)   

Precision(ECG)   = TEN/(TEN+FEP) ------------ -------------------- (4)   

Recall(ECG)   = TEP/(TEP+FEN) ----------------- 

---------------- (5)  

F1-Score   =  2 * Precision(ECG). Recall(ECG)/  

Precision(ECG) + Recall(ECG) —------------------------(6)  

Figure [7] shows the visualized chart report for proposed three pipelines .We compare all other deep learning with 

the proposed ensemble technique which achieves  99% in detection using this multi-model dataset.   
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Figure 7 : Ensemble Classification Report Chart    

5. CONCLUSION 

This project demonstrated the feasibility of an on-premise, secure system for zero-shot ECG diagnosis by marrying the 

strengths of large language models with domain-specific knowledge retrieval. We successfully replicated the approach of 

Yu et al. (2023) – using RAG to enable an LLM to interpret ECGs – and extended it by deploying the solution on local 

hardware with a lightweight model. The resulting system can analyze ECG data without any prior training on that data, 

leveraging a knowledge base of cardiological information to inform its conclusions. 

Our results and observations highlight several key points. First, even a relatively small LLM (3B parameters) can achieve 

competent performance in a complex task like ECG interpretation when supported by pertinent context. This underscores 

the power of retrieval-augmented generation in reducing the model size requirements for certain applications. Second, the 

benefits of keeping the system on-premise were affirmed: we were able to adhere to strict privacy constraints and the system 

remained functional without internet access, making it suitable for real-world clinical deployment. Third, the explanatory 

capability of the LLM adds a layer of transparency to AI-driven ECG analysis – the model doesn’t just output a prediction, 

but also the reasoning (which features it noticed and what knowledge it applied). This is an important consideration for 

medical AI acceptance, as it aligns with the need for explainability in diagnostics. 

There are several avenues for future work and improvement. In terms of performance, one could experiment with slightly 

larger local models (e.g., 7B or 13B parameter LLaMA derivatives) if computational resources allow, to see if the diagnostic 

accuracy or explanation quality improves further. Techniques like knowledge distillation or model compression could 

potentially allow even smaller models to be as effective. On the retrieval side, our knowledge base could be expanded 

continuously: for instance, incorporating case reports or ECG examples alongside text might help the system handle even 

more scenarios (this ventures into multi-modal territory, combining retrieved images of ECGs with text). Additionally, 

integrating a feedback mechanism as discussed in the Usability section could turn the system into a learning one – improving 

its knowledge base as it encounters more cases. 

Another future direction is validating the system with clinical experts. While our project was primarily a technical 

exploration, the ultimate judge of its utility is a cardiologist or a clinical electrophysiologist. Setting up a trial where the AI’s 

diagnoses are compared against doctors’ interpretations on a variety of ECGs (possibly including challenging and rare cases) 

would provide insight into its strengths and weaknesses in practice. The feedback from such a study would be invaluable for 

refining both the prompting strategy and the content of the knowledge base. We anticipate that certain complex conditions 

(e.g., nuanced electrolyte changes in ECG or combined pathologies) might stump the current system, and those would be 

areas to target for enhancement. 

In conclusion, the work presented in this documentation serves as a proof-of-concept that advanced AI techniques can be 

applied in a self-contained, secure manner for medical signal analysis. It bridges the gap between data-driven algorithms and 

knowledge-driven expert systems, harnessing the generative and reasoning power of LLMs while keeping them grounded 
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with real medical knowledge. We have shown that such a system is not only possible but practical, laying groundwork for 

smarter clinical decision support tools. As AI technology continues to evolve, we believe approaches like ours will help 

ensure that these innovations translate safely and effectively into healthcare settings, ultimately benefiting patient outcomes 

through faster and well-informed diagnoses. 

Future Work 

Enhancing the Knowledge Base: Continuously updating and expanding the domain-specific textual knowledge base to 

include more comprehensive and up-to-date medical literature and diagnostic criteria. Improving Model Robustness: Further 

refining the lightweight LLM and the retrieval-augmented generation framework to handle more complex and rare cardiac 

conditions effectively. Clinical Validation: Conducting extensive clinical validation studies to assess the system's 

performance in real-world settings and gather feedback from healthcare professionals. Integration with Healthcare Systems: 

Exploring the integration of the proposed system with existing healthcare IT infrastructures to facilitate seamless adoption 

and use in clinical practice. User Interface and Experience: Developing a more intuitive and user-friendly interface for real-

time ECG signal processing and disease detection to enhance usability for healthcare providers. Exploring New Applications: 

Investigating the potential of applying the proposed methodology to other medical diagnostic tasks beyond ECG analysis, 

such as imaging or other physiological signals 
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