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ABSTRACT

In medical diagnosis, there is usually noisy, incomplete, or imprecise data that causes uncertainty in the decisions that are
made. Powerful models Traditional machine learning models can be very powerful, but they tend to give deterministic
predictions without considering the associated uncertainty. The given paper dwells upon the use of probabilistic machine
learning (ML) methods to handle uncertainty in medical diagnostics. Probabilistic ML has advantages over modeling
predictions as point estimates by providing interpretable measures of confidence to improve clinical trust, make risk-sensitive
decisions, and improve the overall diagnostic accuracy. This work contains a comparative review of probabilistic techniques,
such as Bayesian Neural Networks, Gaussian Processes, and Monte Carlo Dropout, on open health care data. The experiment
results demonstrate that the inclusion of uncertainty estimation can already lead to a significant increase in performance and
reliability which opens the door to safer Al-based medical systems.

Keywords: Probabilistic Machine Learning, Medical Diagnosis, Uncertainty Estimation, Bayesian Neural Networks,
Gaussian Processes, Confidence Intervals, Clinical Decision Support, Explainable Al

1. INTRODUCTION

One of the most important and complicated spheres in healthcare is medical diagnosis. The correct diagnosis is fundamental
not only to the successful planning of treatment but also to decreasing chances of complications, incorrect diagnosis, and
medical errors. Nevertheless, diagnosis is always uncertain because of a plethora of reasons. These factors are missing patient
histories, inaccurate measurements, symptoms that overlap among different diseases, and variability of the individuals in the
response of their physiological state. As an illustration, such symptoms as fatigue, fever, or chest pains may be associated
with a variety of conditions, and the task of differentiating diagnosis even to an experienced clinician may be difficult [1].

Since the advent of machine learning (ML) in the medical field, diagnostic tools are being designed more and more to assist
or even replace decision-making. Nevertheless, the majority of those models make deterministic predictions, that is, they
assign a single class label or value without estimating the confidence or uncertainty of the decision. This is issue in clinical
settings where interpretation of how certain a model is could be as significant as the prediction itself.
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Suppose the model is a prediction of a breast mass being malignant or benign. A deterministic model can be quite certain
that a tumor is benign when in fact the input data is noisy, or is otherwise not in the distribution of the training data. When
this happens, clinicians might be ignorant to rely on faulty results, which can cause life-threatening situations. Therefore, the
ability to estimate uncertainty in ML models would be relevant towards developing more robust, explainable, and clinically
acceptable systems [12].

In ML, uncertainty may be caused by two broad categories: epistemic (model-related) uncertainty and aleatoric (data-related)
uncertainty. Epistemic uncertainty is caused by deficiency of knowledge - e.g. limited training data or parameters that have
not been learned well, whereas aleatoric uncertainty is caused by the inherent noise in data, e.g. different sensor readings or
unclear patient symptoms. Probabilistic machine learning seeks to characterise both sources of uncertainty using distributions
over predictions, instead of point estimates. This enables medical Al systems not to just predict outcomes but to state the
level of uncertainty they have over the outcomes.

A number of probabilistic ML methods have been suggested to resolve this problem. Bayesian Neural Networks (BNNs)
provide an estimation of uncertainties, where model weights are seen as probability distributions and Bayesian inference is
used to learn the posterior [13]. A second probabilistic model that is especially amenable to uncertainty in small or noisy
data is Gaussian Processes (GPs). As a practical approximation of Bayesian inference, Monte Carlo (MC) Dropout adds
stochasticity to the inference process and produces distributions over predictions with very few architectural modifications.
Such techniques enable the system to not only provide a diagnosis class, but also the likelihood that the diagnosis is accurate-
providing vital information to clinicians making high-risk decisions.

Although probabilistic ML is gaining interest, it has yet to be applied to actual medical diagnostics since it is computationally
demanding and suffers scalability issues, as well as standardized evaluation measures. In addition, there is a paucity of
research that compares the numerous probabilistic methods on many different datasets to measure reliability and usefulness
in clinical practice. The current paper attempts to close this gap by comparing and contrasting state-of-the-art probabilistic
ML algorithms on standard publicly available medical datasets. We do not just evaluate their classification accuracy but also
pay attention to calibration and predictive uncertainty as well as the option to mark uncertain cases to be reviewed by a
human.

With the further shift of healthcare systems towards digital transformation, the incorporation of uncertainty-aware ML
models into the clinical process may become a fundamental milestone on the way to developing Al-based tools that are not
merely accurate but safe, transparent, and conforming to the expectations of medical professionals and patients. In this paper,
the researcher seeks to explain how probabilistic methods can be used to reconcile high-performance machine learning and
clinically responsible decision-making [15-17].

Novelty and Contribution

The contributions in this paper to the uncertainty-aware medical diagnostics with probabilistic machine learning are as
follows:

e End-to-end Comparison of Proprobabilistic Models in Medical Diagnosis: Unlike the previous studies that
frequently consider only one method, our research paper establishes a face-off among the three prominent
probabilistic ML methods Bayesian Neural Networks, Gaussian Processes, and Monte Carlo Dropout on several
healthcare datasets. It allows understanding the performance of the different uncertainty estimation strategies in a
holistic manner in terms of clinical conditions and data types.

e Dual-Focus on Predictive Performance and Uncertainty Quantification: Most research programs maximize
classification accuracy but we propose a multi-dimensional assessment scheme which additionally quantifies
predictive uncertainty (based on metrics such as entropy, variance and expected calibration error (ECE)). This
enables us to look beyond the accuracy of a model, to determine how trustworthy and calibrated are its predictions.

e  Decision Deferral via Uncertainty: A key contribution of this paper has been to show how uncertainty estimates can
be used selectively to prediction - to send uncertain cases to human experts. Risk-sensitive Al This approach would
allow the safer use of ML tools in clinical practice since it yields fewer high-confidence errors, inspired by risk-
sensitive Al

e The experiments are reminiscent of sensible diagnostic conditions involving tabular and time-series data,
demonstrating the practical usefulness of the suggested methods.

e Confidence Intervals and Calibration Plots: To increase the clinical usability we focus on the model interpretability,
using visualization of prediction intervals, calibration curves, and confidence histograms. These instruments enable
clinicians to know model behavior, and to make decisions, which are well informed, and based on prediction and
confidence.

e  Our findings will give practical recommendations on how and where to apply a particular probabilistic method in
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relation to the size and complexity of the data and the sensitivity of the diagnostics.

The combination of the contributions makes a compelling argument that probabilistic ML should become a default way of
conducting medical diagnostics, as it allows not only making predictions reliably but also providing explanatory, risk-
conscious decision support that fits actual clinical needs [11].

2. RELATED WORKS

In 2022 W. V. Padula et al., [14] introduced the uncertainty modelling and machine learning in health care sphere have been
intersected more and more as the Al systems are commonly used in the clinical diagnostics. Conventional classification and
regression models applied in medical practice are normally interested in maximizing accuracy, sensitivity, or specificity. The
problem with these models though is that they have no means of indicating how certain they are with their prediction and
this can be quite problematic in the case of vital health decisions. To address this shortcoming, there has been a momentum
of research efforts on uncertainty estimation in machine learning models, specifically in high-risk applications namely
disease detection, radiological interpretation, and prognosis prediction.

Deterministic classifiers (e.g. decision trees, logistic regression and support vector machines) were commonly used as one
of the earliest applications of machine learning to healthcare. It is because these models give crisp decisions without stating
the variability or the confidence of their results. These models are appropriate in pattern recognition tasks; however, they do
not reproduce the variability of biological systems and clinical measurements. As the shortcomings of these fixed structures
became increasingly obvious, there was a move towards filling Al systems with probabilistic reasoning to aid interpretability
and safety.

Probabilistic machine learning models Probabilistic machine learning models attempt to provide a principled approach to
dealing with uncertainty, either via modeling distributions over predictions, or learning the posterior distributions over model
parameters. A number of works have been devoted to the use of such models in medical diagnostics, in particular, in such
tasks as tumor classification, patient risk prediction, and the early diagnosis of chronic diseases. The mentioned approaches
are especially valuable in the situations, in which the class boundaries are not clearly defined, and the input data provided by
clinical sources contain noise, ambiguity, or missing values [10].

In 2024 S. Asif et al., [9] proposed the bayesian neural networks are a commonly prevalent type of probabilistic model aimed
to approximate epistemic uncertainty. The key difference between Bayesian neural networks and the traditional neural
networks is that Bayesian neural networks can learn a distribution over weights instead of learning point estimates, which
enables them to quantify their uncertainty in the model and its predictions. The property is especially beneficial in the cases
where the training data is scarce or in the scenarios of making predictions on out-of-distribution inputs. These models have
been used in diagnostic classification problems where calibrated level of confidence is important- such as in the classification
of benign versus malignant lesions or prediction of cardiovascular events.

A different line of research, related to non-parametric models, is the use of Gaussian processes, which are better adapted to
quantification of uncertainty. Gaussian processes have closed-form expressions of predictive means and variances, which
are specifically interpretable and robust when it comes to the small dataset regime. But the scale of the Gaussian processes
is an issue in large scale datasets and attempts have been made in establishing sparse approximations and kernel
optimizations.

Predictive Ensemble-based methods have also been used to handle predictive uncertainty. Ensembles offer a way of model
averaging by training many models and combining their predictions, which can assist in capturing variation in different
decision boundaries. This has proved to be useful in minimizing the variance and enhancing reliability, specifically on
complicated classification duties. However, ensembles carry the overhead cost of increased computation that can be a
limiting factor in the use of ensembles in real-time clinical decision systems.

A newer and more useful variant is to use dropout regularization as a approximate Bayesian inference tool. The method is
lightweight and computationally effective, requiring no complicated Bayesian calculations, making it a means of uncertainty
estimation. It has already found application in image based diagnosis e.g. interpretation of CT and MRI scans where visual
ambiguity needs a probabilistic interpretation.

Besides these modeling methods, calibration of medical Al systems has also been highlighted in numerous studies.
Alternatively, a model can be well-calibrated but still have low accuracy, which is also likely to provide misleading
information to clinical decision-making. Measure of calibration, including the Brier score, expected calibration error, and
reliability diagrams, are becoming more popular ways to evaluate whether the predicted probabilities in a model are close to
the observed outcomes. Adequate calibration makes the estimates of uncertainty credible and applicable in the clinical work
process.

In 2021 M. Abdar et al., [2] suggested the models that are uncertainty-aware have been considered in settings where the
model has the ability to postpone making a decision. When operating in such an environment, when a model is confident
that its prediction is uncertain, then the model has the option of consulting a human expert. This interactive process of
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selective prediction has been shown to be useful in reducing false positives and false negatives when the task of diagnosis is
of high stake. It allows a mixed decision-making mode in which the Al is assistive and not replacement of the clinician-
safety and accountability are increased.

A second direction of recent interest is uncertainty estimation can be used to identify out-of-distribution samples. In medical
practice, test inputs do not always follow the same distribution as training data, particularly when rare conditions or new
diseases or unusual patient profiles are concerned. Probabilistic models can indicate when a test input is out of domain of
what they have learned so the system can raise an alarm instead of making an unjustified prediction. The functionality is
critical towards the development of credible Al systems that act conservatively when there is uncertainty in the environment.

In spite of these developments, the probabilistic machine learning is yet to be incorporated into clinical environments.
Computational scalability, complexity of probabilistic modeling, absence of standardized measures of uncertainty assessment
and the inability to interpret probabilistic output in time-pressured clinical settings are key issues. There is also the case that
when moving to actual hospital use of the models, regulatory frameworks must be met that include transparency, traceability,
and performance assurances.

In order to bridge those gaps, active research in this area focuses on designing easy-to-use tools, visualizations, and interfaces
to aid medical professionals in interpreting estimates of uncertainty. There is also a focus on integrating uncertainty modeling
with explaineable Al, where the reasons and the confidence of predictions can be displayed side by side. Such advancements
are essential to gain the trust of medical professionals and make sure that probabilistic models are responsible.

To draw a conclusion, although many research works confirmed the usefulness of probabilistic machine learning applications
in healthcare, in particular, diagnosis setting, a lot of room is still available in terms of comparative studies, scalable
experiments, and real-world testing. With the approach of general adoption of medical Al, uncertainty-aware models will
likely become important elements of improving diagnostic safety, clinician confidence, and patient outcomes [8].

3. PROPOSED METHODOLOGY

To systematically handle uncertainty in medical diagnosis, our methodology leverages probabilistic machine learning
frameworks such as Bayesian Neural Networks (BNNs), Monte Carlo Dropout (MC Dropout), and Gaussian Processes
(GPs). The overall workflow begins with preprocessing clinical data, followed by model training using probabilistic
formulations, uncertainty quantification, and evaluation under clinical metrics [3-5].

Let D = {(x;, y;)})., be the medical dataset, where x; represents input features (e.g., vital signs, imaging data) and y; €
{0,1} is the binary disease label. Traditional models aim to learn a function fy(x) = y, but probabilistic ML instead estimates
a distribution over the function:

p(y | x,D) =f p(y 1 x,0)p(6 | D)do
Here, p(6 | D) is the posterior distribution over the model parameters.

Due to the intractability of exact Bayesian inference, we use Monte Carlo approximation for predictions. This involves
drawing T samples 6, 65, ..., O from the posterior and averaging the results:

T
1
p(v1x,D) ~ 72 p(y | x,6,)
t=1

In MC Dropout, we retain dropout layers during test time and perform multiple stochastic forward passes to simulate
sampling. The predictive mean for classification is:

~l =

T
3% Z Softmax(f ®(x))

t=1

To quantify predictive uncertainty, we compute the entropy of the predictive distribution:

Cc
Hy1x) == Flog .
c=1

This entropy value helps identify uncertain predictions, typically those with low confidence (near-uniform distributions).

For regression tasks, we model both aleatoric and epistemic uncertainty. The total predictive variance is computed as:
Var(y) = E,gpy[Var(y | x,0)] + Varyoipy [E(Y | x,0)]

Aleatoric Epistemic

To optimize Bayesian neural networks, we maximize the Evidence Lower Bound (ELBO):
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L(8) = Eqe)[log p(D | 0)] = KL(q(8)Ip(6))

This objective ensures the approximate posterior q(6) remains close to the true posterior while maximizing data likelihood.

In Gaussian Processes, the predictive distribution for a test point x, is Gaussian:
p(f. | x., X, y) = N(f. | p, 02)
Where,
. = KO, X)[K(X,X) + 6217y and 02 = K(x,,x,) — K(x,, X\)[K(X,X) + 217K (X, x,)
Here, K is the kernel function, and o2 is the noise variance.
We also apply a confidence score for selective prediction:

Conf(x) = maxy,
Cc

Instances with Conf(x) < t are flagged as uncertain and referred to human experts.

Finally, we evaluate calibration using the Expected Callbration Error (ECE), given by:
M
| B |
ECE = W lacc(B,,) — conf(B,,)|
m=1

Where B,, is the set of samples whose confidence falls into bin m, and acc and conf are average accuracy and confidence in
that bin.

FIGURE 1: UNCERTAINTY-AWARE MEDICAL DIAGNOSIS USING PROBABILISTIC ML
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4. RESULT & DISCUSSIONS

Experimental assessment was performed on a domain-specific clinical dataset of real-world diagnostic attributes comprising
imaging-based data, blood tests results, and discrete symptoms on 1000 patients. The data was randomized and divided into
70 percent training and 30 percent testing, keeping the stratification to balance the classes. Three probabilistic models,
Bayesian Neural Networks (BNN), Monte Carlo Dropout (MC Dropout), and Gaussian Processes (GPs) were compared with
each other to study how the uncertainty modeling affects the quality of predictions, confidence calibration, and selective
diagnosis in high-risk cases [6].

Regarding the classifications accuracy, the models performed relatively similarly, with the results ranging around over 89
percent. The distinction however, came in the way the models handled their forecasts in situations characterized by
uncertainty. MC Dropout model was found to be robust to noisy test data, with a precision of 91.2% (as opposed to the 85.9
% precision of the deterministic baseline). Figure 2 shows the relative accuracy and uncertainty overlap amongst the three
models, which shows better calibration performance of the MC Dropout-based classifier in separating confident and
ambiguous predictions. This number is a clear indication of the fact that the models that include uncertainty do not only
forecast the presence of the disease but also provide a quantifiable certainty concerning the forecast, which is indecision
deferral.

Prediction Accuracy with Uncertainty Scores
100 92.1 90.7 885
80
60
40

20

0.19 0.24 0.21

MC Dropout Bayesian NN Gaussian Process

B Accuracy (%) B Avg. Uncertainty Score

FIGURE 2: PREDICTION ACCURACY WITH UNCERTAINTY SCORES

MC Dropout had the best ECE of 2.8% indicating a small difference between the predicted confidence and the true accuracy.
The model was the Gaussian Process whose variance estimation was of high quality in small-sample regimes, thus it would
be most appropriate in rare disease diagnosis where samples are least available. Conversely, BNNs took many more iterations
to converge and were susceptible to hyper parameter selections. Table 1 contains a summary of the main performance
indicators of all three models, contrasting accuracy, ECE, and average entropy.

TABLE 1: PERFORMANCE COMPARISON OF PROBABILISTIC MODELS FOR MEDICAL DIAGNOSIS

Model Accuracy (%) ECE (%) Avg. Entropy
MC Dropout 92.1 2.8 0.19
Bayesian NN 90.7 4.3 0.24
Gaussian Process 88.5 3.1 0.21

The modeling of uncertainty was further demonstrated in selective prediction experiments of practical importance. Applying
a confidence threshold (0.75) the MC Dropout model held off approximately 12 percent of test cases to human experts, but
had a 97 percent precision on the predictions kept. An impressive result, this already shows how probabilistic ML can be
deployed safely, by avoiding to make predictions when confidence is not high. This threshold behavior is captured in Figure
3 which demonstrates the impacts of predictive confidence on the decision-making and the reduction in false positives upon
deferral activation. It can be easily seen in the visualization that the confidence of the retained cases after thresholding is
high and the entropy is low.
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Confidence Thresholding Effects
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FIGURE 3: CONFIDENCE THRESHOLDING EFFECTS

In regression based diagnostic outputs, e.g. predicting biomarker concentration or severity scores, the Gaussian Process
model worked better in terms of Mean Squared Error (MSE) because of its smooth prior assumptions and uncertainty-aware
posterior estimation. The regression results with 95 predictive intervals are displayed in Figure 4, and it can be observed that
the true values fall mostly within the uncertainty shaded areas thus demonstrating that the model has the capacity to explain
both aleatoric and epistemic components. This Property is very desirable in real-time ICU monitoring systems where trends
and not only point predictions can be used to affect patient triage.

Predicted vs.Actual Severity Scores

8.7
Predicted Score (£95% ClI)
7.6
8.9
True Score
7.8
0 | 2 3 4 5 6 7 8 9 10

mP249 mP|78 mPI|03

FIGURE 4: PREDICTED VS. ACTUAL SEVERITY SCORES

To be considered practical to integrate in hospitals, it is essential that the models are not only accurate but also explainable
and feasible. Thus, the model output uncertainty was used together with a straightforward decision rule: cases with low
confidence should be deferred, and predictions associated with high uncertainty should be automatically sent to radiologist
review. Such a hybrid was compared with deterministic CNN classifier. This side-by-side comparison was summarized in
Table 2, where the probabilistic model showed fewer misclassifications and enhancements in recall in important cases.
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TABLE 2: IMPACT OF UNCERTAINTY-AWARE DEFERRAL ON DIAGNOSTIC SAFETY

Metric Deterministic CNN Probabilistic (MC Dropout)
Misclassified Critical Cases 14 4

Overall Precision (%) 86.5 92.7

Cases Deferred (%) 0 11.6

In implementation point of view, the MC Dropout method provides the best complexity-scalability tradeoff. It makes only
minor modifications to standard deep networks, but offers plausible uncertainty responses through easy stochastic sampling.
Gaussian Processes have more profound probabilistic interpretation, but the bottlenecks of its scalability and the kernel
dependence might limit its application to a large-scale hospital setting in real time.

These findings together support the conclusion that probabilistic machine learning algorithms, and in particular those which
make use of dropout and Bayesian inference, can handle diagnostic uncertainty without suffering a loss of predictive ability.
Besides, their combination with deferral systems not only makes them compliant with the ethical standards of Al in healthcare
but also makes the diagnostic systems more resilient and clinician-friendly. Future work could involve multimodal fusion,
i.e., bringing together text (doctor notes), image, and laboratory reports, in order to further improve uncertainty estimates,
particularly in the real time clinical setting [7].

5. CONCLUSION

In medical diagnosis, taking uncertainty into consideration in machine learning models offers great benefits in safety,
reliability and interpretability. Bayesian Neural Networks, Gaussian Processes, and Monte Carlo Dropout are probabilistic
methods that allow predictive uncertainty to be modeled explicitly, and this is important in safety-critical settings, such as
healthcare.

We have empirically shown that along with equaling or exceeding the diagnostic accuracy of traditional ML these models
also provide the critical ability to identify unclear or novel inputs. With the further development of medical Al systems,
uncertainty-aware machine learning should become one of their key features to establish clinician trust and ensure patient
safety.

Hybrid probabilistic-deep learning models, real-time uncertainty-aware clinical decision tools, and standards of uncertainty
metrics should be considered in the future research, uncertainty metrics should be standardized to be accepted by regulatory
bodies and pushed into practice.
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