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ABSTRACT 

Hippocampal volume change over time, as evaluated by MRI, offers excellent potential as a marker for Alzheimer's “disease. 

In this study, we consider, using publicly available Statistical Parametric Mapping (SPM) software, a fully automated and 

computationally efficient processing pipeline for atlas-based hippocampal volumetry in 75 amnestic subjects with mild 

cognitive impairment (MCI) from the Alzheimer's Disease Neuroimaging Initiative (ADNI). Subjects were split into two 

groups: MCI stable and MCI to probable Alzheimer's disease (AD) converters, based on follow-up diagnoses at 0, 6, and 12 

months. From the baseline T1-weighted MRI, the hippocampal grey matter volume (HGMV) was measured and adjusted for 

age and total intracranial volume. The average processing time per subject on a typical PC was less than 4 minutes. To 

identify MCI to likely AD converters, the area under the receiver operator characteristic curves of the corrected hippocampal 

grey matter volume right (HGMVR) and hippocampal grey matter volume left (HGMVL) were determined. Using one-way 

ANOVA data on the MMSE score, HGMVR, and HGMVL, a ROC CURVE is computed to compare the control group 

versus MCI and the control group versus AD. 

 

Keywords: Alzheimer’s Disease, Hippocampus Volumetry, Fully Automated, Mild Cognitive Impairment, Magnetic 

Resonance Imaging. 

1. INTRODUCTION 

Alzheimer's disease (AD) is the leading cause of dementia and a significant health concern worldwide, affecting 20% of the 

population over the age of 80 [1]. Neuropathological evaluation of AD shows diffuse brain shrinkage and “specific changes 

in cortical cell clusters” [2]. Global cognitive impairment is a progressive illness known as dementia. It was estimated that 

about 35 million people globally had dementia in 2010. According to reports, some individuals with mild cognitive 

impairment (MCI) remain stable or regain full function, while others go on to develop dementia. [3, 4]. Therefore, one of the 

main objectives in public health is the development of biomarkers that can accurately signal the presence of the disease at an 

early stage. Alzheimer's disease is linked, macroscopically, to a progressive loss of brain tissue [5], which MRI may partially 

visualize in vivo without intrusive methods [6]. Unsurprisingly, MRI has garnered a lot of attention as a method to find 

biomarkers for Alzheimer's disease. Due to the lack of readily available software tools, MRI-based hippocampus volumetry 

has not yet been included in standard clinical diagnostic patient care.” To ascertain if personal expertise mediated the 

connections between the amygdala and anterior hippocampal volume and perceived discrimination, Rosario et al. [7] 

conducted a study. Researchers analyzed T1-weighted images to obtain bilateral volumes from the hippocampus and 

amygdala using FreeSurfer 7.1.0. The usual and limbic-predominant hypometabolic subtypes of AD were the focus of Levin 

et al. [8] investigation of the connection between CR and these subtypes. We examined data from patients in the ADNI and 

ADNIGO/2 stages, including 174 AD dementia, 221 prodromal AD, and 59 Aβ-positive cognitively normal (CN). As a 

result, more sophisticated imaging techniques have lately been used to find helpful AD markers. While some research 

examined the brain as a whole [9–13], others [14–16] preferred to examine particular brain regions. Since the hippocampus  
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plays a significant role, it is aimed to investigate the adoption of the Hippocampal Unified Multi-Atlas Network as a particular 

hippocampal segmentation technique [17]. 

The AD biomarker study is notable for its groundbreaking work, especially the ADNI, a vast and comprehensive collection 

of open-source genomes, neuroimaging (positron emission tomography and MRI), and cognitive, behavioural, and clinical 

data. Specifically, the most recent phase of ADNI-3, which began in 2016 and is still in progress, has brought in updated 

MRI technologies [18], which are currently being partially studied in the literature. To compare static, structural, and dynamic 

functional aspects of the brain from resting-state functional MRI (fMRI) and structural magnetic resonance imaging (sMRI) 

between non-converters (MCI_NC) and MCI converters (MCI_C), Chen et al. [19] proposed a novel framework for inter-

cohort MCI conversion prediction. Support vector machines were used to construct prediction models. 

2. MATERIALS AND METHODS 

Mild cognitive impairment (MCI) and Alzheimer's Disease (AD) are three approaches “to clinical imaging research that can 

be used in the long-term, multisite ADNI. ADNI data is accessible to the general public via http://adni.loni.usc.edu. Further 

details on the ADNI's inclusion and exclusion standards are at (http://adni.loni.ucla.edu/wp-content/uploads/ 

2010/09/ADNI_GeneralProceduresManual.pdf). In 2003, the Food and Drug Administration (FDA), the National Institute 

on Ageing (NIA), private pharmaceutical companies, the National Institute of Biomedical Imaging and Bioengineering 

(NIBIB), and non-profit organisations established ADNI. Under the direction of Principal Investigator Michael W. Weiner, 

MD, the ADNI began operations in 2003 as a public-private partnership. The main objective of ADNI has been to determine 

whether the course of MCI and early AD may be measured with a combination of neuropsychological and clinical testing, 

serial magnetic resonance imaging (MRI), and biological markers.  

Every participant provided written informed consent, and each institution's regional ethical committees authorized the study. 

The ADNI research design is a non-randomized, natural history, non-treatment study in which the participants were solely 

utilised to identify imaging biomarkers. Neuropsychological data and MRI images were downloaded from the ADNI 

database for this project. Seventy-five participants' additional data and magnetization-prepared rapid gradient echo 

(MPRAGE) pictures were gathered. The three groups of subjects were 25 with mild cognitive impairment (MCI), 25 with 

Alzheimer's disease (AD), and 25 individuals with cognitively normal (CN). Additionally, more demographic information 

was taken from the ADNI website. The Alzheimer's Disease Neuroimaging Initiative (ADNI) database provided the data. 

The ADNI results from the combined efforts of many coinvestigators from various academic institutions and corporate 

companies. Participants were gathered from more than 50 locations in the United States and Canada. We found and 

downloaded 75 datasets from the ADNI1 database. A screening 1.5 T MRI was required for inclusion, and subjects had to 

be diagnosed with MCI at enrolment and have follow-up diagnoses” at 0, 6, and 12 months.  

ADNI-MCIs who were initially diagnosed with AD but were later reclassified as MCI were not included. 75 ADNI-MCIs in 

all were qualified: 75 ADNI-MCIs converted to AD during this time, and 103 ADNI-MCIs stayed steady for over 0 months. 

At the six-month follow-up exam, 25 MCI-to-AD converters were converted, 75 subjects were converted between the six- 

and twelve-month examinations and 25 subjects were converted between the six- and twelve-month exams. This paper also 

used the dataset obtained from the ADNI (http://adni.loni.usc.edu)database, available from October 31, 2016. The clinical, 

imaging markers and biochemical data with their statistical measurements are collected in a large number  

2.1. Image analysis 

Every subject's DICOM (Digital Information and Communication in Medicine) images were downloaded. Using the 

"dcm2niigui" utility in the MRIcron software, the downloaded DICOM images were converted to the NIfTI (Neuroimaging 

Informatics Technology Initiative)—FSL 4D NIfTI format. The present study uses a MATLAB code termed "HV," which 

is based on estimating hippocampus volume using 4D Nifti format and is fully integrated into the SPM GUI. The 'HV' toolbox 

can be used to segment hippocampus volume. 

The retrieved values from various ROIs of the CN, MCI, and AD cohorts were compared based on a statistical comparison 

of segmented hippocampal volume using the SPSS tool (Statistical Tool for Social Sciences). The overall image processing 

involves segmenting the hippocampal in 3 different stages. The intensity values of the MRI images are normalized between 

0 and 1, which provides uniform image color to do segments quickly and accurately. Then, the bias field is removed. 

Pearson’s correlation is calculated between the test image and the trained image of brain MRI, and the optimal releases are 

selected. It is used as the machine learning processes can use the discovered knowledge. The statistical features are calculated, 

and textural features are extracted to decide the HV.  

2.2. MRI acquisition and pre-processing 

All ADNI1 participants for whom a screening 1.5T MRI was downloadable and recorded as normal for an entire year 

following the baseline clinical assessment served as the control group. As a consequence, 75 subjects were included. For the 

controls, there were no additional exclusion or inclusion criteria. There was no selection based on gender or age. A detailed 

description of the MR acquisition procedure utilized on the ADNI participants has been provided. Briefly, 1.5T systems were 
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used for MR imaging, and acquisition techniques were tailored to image-specific properties on various platforms. Using a 

sagittal magnetisation-prepared rapid gradient echo (MPRAGE) sequence with an approximation, high-resolution T1-

weighted MRI images were obtained. Each individual underwent a 1.5T MRI. A “standardized MRI protocol 

(http://www.loni.ucla.edu/ ADNI/Research/Cores/index.html) was used to collect the data at several ADNI sites. This 

methodology was designed following a significant effort to evaluate and compare 3D T1-weighted sequences for 

morphometric analyses [20]. 

2.3 Estimation of Hippocampal Volume 

One control point is located at the head of the hippocampus, one at the tail, and four points are placed manually on each of 

five equally spaced image slices that align with the ipsilateral hippocampal long axis at a perpendicular (i.e., at the inferior, 

superior, lateral and medial boundaries) to serve as rough local landmarks for hippocampal segmentation and to guide the 

initial transformations. To activate the hippocampus on the other side, repeat the final step. The iterative fluid transformation 

image matching technique then does automatic hippocampus segmentation using the landmarks as initial guidance. Hsu et 

al. [21] validated the approach for measuring hippocampus volume in senior adults, including those with AD and MCI. The 

normalized and modulated GM component image for each hippocampus was multiplied by a predetermined binary mask 

from a freely accessible toolbox to determine the hippocampal grey mass (HGMV) [22]. 

2.4 Statistical Analysis  

ANOVA was used to compare more than two groups regarding age, Mini-Mental State Examination (MMSE) score, and 

TIV. If a significant effect was found, the heteroscedastic or homoscedastic unpaired two-sample t-test was used for post-

hoc analyses between groups based on the outcome of Levene's test for equality of variance. The performance metric 

employed was the area (AUC) under the ROC curve. The Youden index, J = sensitivity + specificity - 1, is symmetric in 

specificity and sensitivity, so false positive and false negative classifications incur the same penalty. Cut-off values for 

HGMVad's specificity, sensitivity, accuracy, and predictive values were established by maximizing this index [23]. The 

danger of duplicate training samples limits the amount of variance that can be used to gauge the mistakes of accuracy 

estimations over cross-validation cycles. Accuracy measurements estimate the 95% confidence interval of [24]. We first 

restricted the analysis to patients with moderate cognitive impairment, typically the group with the most completed scans at 

each site,” to lessen the impact of group heterogeneity between centres. Secondly, we increased bootstrapping using 

permutation testing. 

SPM is a software used to learn and predict the internal changes in the brain cell or tissue images captured through various 

imaging modalities such as MRI, CT, X-ray, PET, etc. The systematic flow of the Statistical parametric Map tool or software 

used in processing the input brain MRI images is shown in Figure-1. As shown in Figure-1, the first step of SPM is to 

transform the input time-series brain image by realigning the raw image. Second, using the kernel, the artefacts in the images 

are removed, and the realigned image is smoothed. This realigned image is further normalized using the image normalization 

technique. Third, a general linear model is applied to design a matrix for the input MRI image. Based on this designed matrix 

result, the statistical parametric map result of the input MRI image is evaluated. It is performed based on Gaussian field 

theory. Once the SPM value is evaluated, the final prediction result is detected.  

 

Figure-1. MRI Brain Image Processing Flow In SPM 

 

3. EXPERIMENTAL RESULTS  

There was no difference between the three categories of ADNI-MCI converters (between 0, 6,12 months) and stable 

ADNIMCIs. Compared to all three ADNI-MCI converter groupings, the stable ADNI-MCIs had a higher baseline MMSE 
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score. Regarding baseline MMSE, there was no difference between the converter subgroups. Table-1 presents the descriptive 

data of HGMVL and HGMVR. As expected, the hippocampal volumes of patients with Alzheimer's disease were smaller 

than those of people with MCI (𝑃 < 0.0001), and both groups' sizes were less than those among normal participants (𝑃 <
0.0001). In every group, there was a significant correlation between (𝑃 < 0.01) age with smaller baseline volumes. For the 

control group, the HGMVL mean ± Standard deviation is 4.340±0.5226, the MCI is 3.637±0.6468, and the AD is 

3.347±0.6328. In a similar vein, the HGMVR for AD is 3.476±0.6136, MCI is 3.667±0.8336, and for control, it is 

4.343±0.6013. The HGMVL's lower and upper 95% Confidence Intervals (CI) are 4.124±4.556 for control, 3.370±3.904 for 

MCI, and 3.286±3.608 for AD. The HGMVR's lower and upper 95% Confidence Intervals (CI) for control, MCI, and AD 

are, respectively, 4.095±4.591, 3.323±4.011, and 3.223±3.729. 

Table 1. Descriptive statistics of HGMVL and HGMVR 

 

 

This paper focuses on explaining the assessment procedure for MRI in detecting the state of AD and its progression. 

Significant atrophy, particularly for AD, is detected using voxel-based morphometry. A stand-alone SPM software tool is 

used for AD detection globally. The structural analysis of AD is examined and evaluated using statistical information 

extracted from the MRI images. The output obtained from the experiment concerning predicting AD in MRI images is shown 

in Figure-2. Figure-2(a), (b), and (c) depict the results obtained from the experiment of the proposed model on predicting 

Alzheimer's disease from the input raw brain image. In Figure-2(a), among 256 slices, 129 slices detected the diseases; the 

detected portion of the brain is depicted at a coronal angle. Figure-2(b) evaluated 240 slices, of which 112 have diseases; the 

coronal view of the detected brain sample is clearly shown in Figure-2(b). Similarly, Figure-2(c) depicts the analysis result 

of the proposed evaluation of 256 slices. Of that, 125 are detected with Alzheimer's; the detection portion with the coronal 

view of the brain image is clearly shown in Figure-2(c). 

              

(a)                                                                            (b) 
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(c) 

Figure-2. Input Sample Image Vs. AD Predicted Brain Image 

Table-2 provides the number of measurements recorded from each patient using different markers, offering a comprehensive 

overview of the data collected for the study. The brain images were collected from the ADNI dataset 

(http://adni.loni.usc.edu/) and prepared on October 31st, 2016. This dataset includes various longitudinally covered 

biochemical, clinical, and imaging markers collected from each patient with different levels. The obtained observation result 

is shown in the table, which depicts the number of measurements analyzed based on different markers from each patient. 

The analysis result in Table-2 shows that HV has been recorded with a higher measurement rate among various markers than 

structural MRI, CSF, PET, and others. Following this, Florbetapir (AV45) and Fluoro-2-deoxy-D-glucose (FDG) markers 

have been recorded with high values over 24-to-28-month visits. Compared to volumetric measurements, the 𝐴𝛽42 and total-

tau (t-tau) is highly observed but has less value through annual collection. The changes in the markers are analyzed through 

continuous iterations.  

Table-2. Measurements of Individual Patients 

 

 

3.1 ROC curve 

A lab test was performed on controls and patients. Two columns define these two groups. Unlike many statistics programs, 

Prism does not use a grouping variable. Instead, the groups are defined by columns. The values in each row are not paired in 

any way. Also, note that the sample sizes are unequal, which is fine. The proposed work aims to choose a cutoff value that 

separates 'normal' from 'abnormal' test results. To help make the decision, plot the tradeoff of sensitivity vs. specificity as a 

Receiver Operator Characteristic (ROC) curve. The ROC curve based on the MMSE score is presented in Table 3. The 95% 

CI for the control vs. MCI and control vs. AD reveals 0.7420 to 0.9508 and 0.9530 to 1.000, respectively.  Both the control 

vs. MCI and the control vs. AD comparisons are statistically significant (𝑃 < 0.0001). The ROC curve for the MMSE score 

based on 100% specificity to sensitivity is shown in Figure-2 for control vs. MCI and control vs. AD using one-way analysis 

of variance (ANOVA) data. 
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Table-3. ROC CURVE based on MMSE Score 

 

 

 

Figure-2. ROC CURVE based on MMSE score by one-way ANOVA data (a) Control vs MCI (b) Control vs AD 

 

Table-4. ROC CURVE based on HGMVL 

 

Table-4 shows the ROC curve based on HGMVL with the 95% CI for control vs. MCI, which is 0.6882 to 0.9246, and for 

control vs AD, which is 0.8259 to 0.9797. The p-value shows significance for control vs MCI as 𝑝 = 0.0002 and highly 

significant for control vs AD as 𝑝 < 0.0001. Figure 3 displays the ROC curve based on 100% specificity to sensitivity for 

HGMVL, calculated using one-way ANOVA data for Control vs. MCI and Control vs. AD.\ 
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Figure 3. ROC CURVE based on HGMVL by one-way ANOVA data (a) Control vs MCI (b) Control vs AD 

 

Table 5. ROC CURVE based on HGMVR 

 

 

 

Figure 4. ROC CURVE based on HGMVR by one-way ANOVA data (a) Control vs MCI (b) Control vs AD 

 

The hippocampal regions on the right (HGMVR) and left (HGMVL) of the Control, MIC, and AD patients. A black dot and 

triangles on each bar indicate the median and 95% confidence interval. The plots on the correct display the associated ROC 

curves and area under the curves (AUC). To determine if the mean of the difference between AUCL and AUCR was consistent 

with zero, the one-way ANOVA test was employed. Table 5 displays the HGMVR-based ROC curve, with 95% confidence 

intervals (CI) of 0.5831 to 0.8633 for control versus MCI and 0.7362 to 0.9502 for control versus AD. The control vs. MCI, 

p-value is significant at 𝑝 = 0.0068, while the control vs. AD p-value is exceptionally significant at 𝑝 < 0.0001. Figure-4 

shows the ROC curve for HGMVR based on 100% specificity to sensitivity for Control vs. MCI and Control vs. AD 

using one-way ANOVA data. 
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4. DISCUSSION 

Although the left side of the hippocampal formation appears to play a major role, as explained in [25, 26], the left side is 

typically smaller, and the accuracy of AD prediction is not as strongly correlated with laterality. Our results are consistent 

with a meta-analysis combining information from multiple research projects, which indicates that hippocampal atrophy on 

the left is typically more severe than on the right [27] and with [28], which found that in MCI and AD, the left hemisphere 

saw a much lower volume loss than the right. 

The purpose of this study is not to speculate on the importance of laterality in AD prediction. However, significant 

physiological discoveries exist connecting hippocampus laterality with putative neurodegenerative processes. Hippocampal 

volumes are obtained with a 3% precision using the “Hippocampal Unified Multi-Atlas Network (HUMAN) segmentation 

method; volume measurements successfully detect AD, with an area under the curve (AUC) of AUC1 = 0.08 ± 0.02. AUC2 

= 0.76 ± 0.05 indicates that segmented volumes can also show the more modest effects seen in MCI participants. In the long 

run, the algorithm remains consistent and repeatable, even for 24-month follow-up scans [29]. 

An algorithm for segmenting hippocampi was published by Chincarini et al. [30] and validated using the gold-standard 

manual tracing database.  ADNI participants divided 460 into groups and scanned each subject twice: once at baseline and 

once at the 12- and 24-month follow-up points (1.5T, T1 MRI). The reference cohorts are Mild Cognitive Impairment vs 

CTRL, subsequently developed into AD dementia (MCI-co/CTRL) and AD/CTRL. The bilateral age-corrected annualized 

atrophy rate (%/year) for CTRL was -1.6 (0.6); for MCI-nc, it was -2.2 (1.0); for MCI-co, it was -3.2 (1.2), and for AD it 

was -4.0 (1.5). The area under the ROC curve (AUC) = 0.88 for CTRL vs. MCI-co and AUC = 0.93 for CTRL vs. AD were 

obtained from the combined. (v, Λ) discrimination ability. 

Our findings show that the rigorous techniques of the ADNI can be used to successfully regulate site-to-site variability in 

MRI for studies of hippocampus rates. The outcome is significant since major research, such as clinical trials involving 75 

participants, needs the utilization of several MRI facility settings. We were especially curious to compare the capacities of 

multisite and single-site investigations to determine a specific atrophy rate because, as is common in investigational study 

designs,” additional variability is inherently introduced in many MRI site settings compared to a single-site setting. Lastly, 

hippocampus atrophy over 6 months and accelerated atrophy over 12 months in Alzheimer's disease patients with mild 

cognitive impairment demonstrate the capability of magnetic resonance imaging (MRI) to monitor morphological brain 

changes through time in an enormous multisite setting. 

5. CONCLUSION  

The current study suggests an SPM8-based processing pipeline for fully automated hippocampus volumetry, which performs 

comparably to more sophisticated methods for predicting MCI-to-AD conversion. The processing pipeline runs close to real-

time and is entirely based on open-source software. The area under the receiver operator characteristic curves of the corrected 

HGMVR and HGMVL were calculated to identify MCI to probable AD converters. A ROC CURVE is generated based on 

100% specificity to sensitivity to compare the control group against MCI and the control group against AD using one-way 

ANOVA data on the MMSE score, HGMVR, and HGMVL. Regardless of conversion status, neurodegeneration rates were 

higher in MCI patients. In addition, those with positive MCI demonstrated a roughly two-fold higher chance of developing 

AD, regardless of the impact of degeneration rate on conversion. This may make integrating hippocampus volumetry into 

standard clinical diagnostic treatment easier in patients with cognitive impairment. 
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