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ABSTRACT 

This paper presents a two-warehouse inventory model for deteriorating items under stock-dependent demand, time-

dependent holding cost, shortages, and inflation. Each cycle begins with shortages and ends without them, reflecting real-

world supply chain dynamics. The model considers limited capacity in an owned warehouse (OW) and higher costs in a 

rented warehouse (RW). A Genetic Algorithm (GA) is applied to optimize key decision variables such as order quantity and 

cycle time, minimizing the total cost, including holding, deterioration, shortage, and transfer costs under inflation. 

Comparative analysis shows that the GA-based model outperforms the traditional model when inflation is present, while 

both perform equally in its absence. Numerical examples and sensitivity analysis validate the effectiveness and efficiency of 

the proposed approach. 

 

Keywords: Two-warehouse inventory model; Deteriorating items; Stock-dependent demand; Time-dependent holding cost; 

Shortages; Inflation; Genetic Algorithm (GA) 

1. INTRODUCTION 

One of the most critical and longstanding challenges in the domain of inventory management is determining the optimal 

strategy for the storage and distribution of goods, especially under capacity constraints and fluctuating market dynamics. 

Traditional inventory models, often rooted in classical economic order quantity (EOQ) frameworks, typically assume a 

single, infinitely capacitated, owned storage facility and aim to minimize total inventory-related costs such as ordering, 

holding, and shortage costs. However, this assumption is far from realistic in many practical scenarios, particularly when 

bulk purchasing or large-scale production becomes economically viable due to quantity discounts, inflationary pressures, or 

seasonal demand surges. 

In such cases, the firm may be compelled to procure or produce a significantly large quantity of goods. This situation 

frequently exceeds the storage capacity of the firm’s primary warehouse, referred to as the Owned Warehouse (OW). Instead 

of incurring the capital-intensive cost of constructing a new facility, businesses often opt to utilize an externally leased Rented 

Warehouse (RW) to store the excess inventory. This two-warehouse inventory system introduces a complex decision-making 

landscape, as the RW typically incurs higher holding and deterioration costs compared to the OW due to additional expenses 

associated with rental fees, security, climate control, and inventory handling. However, some RW facilities—such as 

centrally managed public warehousing systems—may offer advanced preservation technologies that reduce the deterioration 

rate, which introduces an additional layer of trade-off analysis. 

In a two-warehouse setup, a common and cost-effective operational strategy is to first utilize the RW inventory and then 

switch to the OW stock once the former is depleted. The rationale is to reduce high holding and deterioration costs in the 

RW by minimizing the time goods remain stored there. This transfer of inventory from the RW to the OW is typically 

modeled using a continuous release policy that aligns with the consumption or demand rate. Despite its practical significance, 

the two-warehouse inventory problem remains underexplored, especially under real-world complexities such as limited 

space, time-dependent deterioration, and stock-dependent or price-dependent demand. 

To address these multifaceted challenges and to derive the optimal replenishment policies under such complex scenarios, 

Genetic Algorithm (GA)—a powerful metaheuristic inspired by the principles of natural selection and biological evolution—  
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has been introduced into the present inventory model. Genetic Algorithm is particularly well-suited for solving large-scale, 

nonlinear, and multi-constraint optimization problems where classical analytical methods fall short. By encoding decision 

variables such as replenishment cycle time, order quantity, and transfer rate as genes in a population of chromosomes, GA 

iteratively evolves the solution space using genetic operators such as selection, crossover, and mutation to converge on the 

global optimum. 

The integration of GA into the proposed two-warehouse model significantly enhances the model’s robustness, flexibility, 

and computational efficiency. It allows the incorporation of complex objective functions, multiple constraints (such as 

warehouse capacity, cost parameters, and deterioration rates), and nonlinear demand patterns without sacrificing solution 

quality. Furthermore, the GA-based approach can accommodate stochastic and fuzzy environments, which are increasingly 

relevant in real-world supply chains. 

In this study, a comprehensive two-warehouse inventory model is developed under the assumption of limited capacity in the 

owned warehouse and the availability of a rented warehouse with differentiated holding and deterioration costs. The objective 

is to minimize the total inventory cost by determining the optimal values of inventory-related decision variables. The 

proposed model is then optimized using the Genetic Algorithm, and the results are validated through numerical examples 

and sensitivity analysis. This hybrid approach provides valuable managerial insights into the strategic allocation of inventory 

between two warehouses and demonstrates the practical utility of evolutionary algorithms in advanced inventory 

optimization 

2. RELATED WORK  

Sarma (1983) proposed a two-warehouse inventory model by assuming the cost of transporting K-unit from RW to OW as 

constant and called it as K-release rule (KRR). The rate of replenishment was assumed as infinite. Murdeshwar and Sathe 

(1985) formulated some aspects of lot size models with two level of storage and derived complete solution for optimum lot 

size under finite production rates. The authors assumed while deriving the K-release rule that K units were transferred n-

times from OW to RW during production stage with constant transportation cost.  Sarma (1987) developed a deterministic 

inventory model for a single deteriorating item which was stored in two different warehouses of non deteriorating product. 

The preserving facilities were better in rented warehouse than own warehouse resulting in a lower rate of deterioration.  

Goswami and Chaudhuri (1992) developed an economic order quantity model for items with two levels of storage for a 

linear trend in demand. An inventory model for deteriorating items with two warehouses was formulated by Pakkala and 

Achary (1992). Pakkala and Achary (1994) proposed an inventory model for deteriorating products when two separate 

warehouses were used. A deterministic order level inventory model for deteriorating items with two storage facilities was 

discussed by Benkherouf (1997). Bhunia and Maiti (1998) developed a deterministic inventory model with two warehouses 

for deteriorating items taking linearly increasing demand with time, shortages were allowed and excess demand was 

backlogged as well. Yang (2004) developed the two-warehouse inventory models for deteriorating items with constant 

demand rate under inflation. An inventory model with two warehouses and stock-dependent demand rate was proposed by 

Zhou and Yang (2005). Shortages were not allowed in the model and the transportation cost for transferring items from RW 

to OW was taken to be dependent on the transported amount. Two-warehouse inventory models with LIFO and FIFO 

dispatching policies were developed by Lee (2006). Hsieh et al. (2008) suggested a deterministic inventory model for 

deteriorating items with two warehouses by minimizing the net present value of the total cost. 

1. ASSUMPTIONS AND NOTATIONS 

The following assumptions are used in this study: 

1. Lead-time is zero and the initial inventory level is zero. 

2. Deterioration is considered only after the inventory is stored in the warehouse. 

3. There is no repair or replacement of the deteriorated inventory units. 

4. The OW has a fixed capacity of w units and the RW has unlimited capacity. 

5. Due to different stocking atmosphere, inventory cost (including carrying cost and deterioration cost) in RW are 

higher than those in OW. 

6. Shortages are allowed and partially backlogged. The fraction of the shortages backordered is a differentiable and 

decreasing function of time t, denoted by δ(t) Where t is the waiting time up to the next replenishment, with 0 ≤ δ(t) 

≤ 1 and δ(0) =1. Note that if δ(t) =1(or 0) for all t, then shortages are completel backlogged (or lost). 

7. When shortages are lost, the cost of lost sale is the sum of the revenue lost and the cost of lost goodwill. Hence the 

cost of lost sales here is grater than the unit purchase cost. 

The notations used in this model are shown as follows: 
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f(t) =x+y  I(t) demand rate. 

w            fixed capacity level of OW. 

α             deterioration rate of inventory items in OW with 0 < α < 1. 

β             deterioration rate of inventory items in RW with 0 < β < 1. β > α 

r              inflation rate. 

tr             the time at which the inventory level reaches zero in OW. 

to             the time at which the inventory level reaches zero in RW. 

ts             the time at which the shortage level reaches the lowest point in the                                  

               replenishment cycle. 

Io(t)         the inventory level in OW at time t. 

Ir(t)         the inventory level in RW at time t. 

B(t)         the backlogged level at time t. 

δ(t)          the backlogging rate which is a decreasing function of the waiting  time.   

Co            the replenishment cost per order. 

Cb            the backlogging cost per unit per unit time, if the shortages is backlogged.  

Ch1               holding cost per unit per unit time in OW. 

Ch2                 holding cost per unit per unit time in RW. 

Cs            shortage cost per unit per unit time. 

C1            the unit opportunity cost due to lost sale, if the shortage is lost.    

    Note that if the objective is minimizing the total cost, then  

C1=p+ Cg > Cp, where p is the cost of lost revenue and Cg is the cost of lost goodwill, if the shortage is lost. Otherwise, if it 

is maximizing the total profit, then C1 = Cg . 

TCi          the present value of the total relevant cost per unit time for model i,  

                i = 1, 2. 

2. The mathematical formulation of the model starting with no Shortage: 

          The inventory level, I(t), 
0 t t

s
 

 satisfies the following differential  equations with the corresponding boundary 

conditions : 

dI (t)
r I (t) (x yI (t)),  0 t t

r r rdt
+ = − +  

,   
I (t ) 0r r =

.                                          (1)       

dI (t)o I (t),o
dt

= −
  

0 t t
r

 
,   

I (0) w
o

=
.                                              (2)   

dI (t)o I (t) (x yI (t)),o o
dt

+ = − +
  

t t t
r o
 

,   
I (t ) 0o o =

.                                   (3) 

dB(t)
(t t)x,s

dt
=  −

 
t t t
o s
 

,    
B(t ) 0o =

.                        (4)  

 

 

 

  Inventory level 
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Fig. 1 Graphical representation of a two-warehouse inventory system for Model 1 

 

Solutions of above equations are respectively, 

( )

( y)(t t )x rI (t) e 1
r y

− + − 
= − 

+    , 
0 t t

r
 

.                        (5) 

tI (t) we
o

−=
   ,

0 t t
r

 
.                                                                                     (6) 

( y)(t t )x oI (t) [e 1]
o y

− + −
= −
+  ,

t t t
r o
 

.                         (7) 

tB(t) (t u)xdu
st

o
=  −

        
t t t
o s
 

.                                                                   (8)  

The number of lost sales at time t is  

tL(t) 1 (t u) xdu
st

o

 = − −  
,            

t t t
o s
 

.                                                     (9) 

Using the continuity of 
I (t)
o  at t=tr, from eq. (6) & (7), we have 

( y)(t t )t x r orI (t ) we [e 1]
o r y

− + −−
= = −

+            

t
r ( y)(t t )xe r ow [e 1]
y


−  + −

 = −
 +

                                  (10) 

t
r1 ( y)we

t t ln 1
o r ( y) x

− 
 +  = + +

  +  
                                                          (11)  
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Therefore 
t
o  is not a decision variable in model I. Thus, the cumulative inventories in RW during 

(0,  t )
r  and in OW 

during 
(0,  t )

o  are 

( )( )y t tt t x rr rI (t)dt e 1 dt
0 0r y

 − + −
 = − 
  +
     

( )

( )

( )
( )

y trx e y tr1 e tr
y y

+ 
− +  = − − 

+ +   
   

x 1t ( y)tr rI (t)dt (e 1) tr r0 y y

 += − −  
+ +                                                       (12)  

and 

t tt ( y)(t t )xto or oI (t)dt we dt e 1 dt
0 0o t yr

− + − −= + −    
 +    

( )
( y)t

o ( y)tt ( y)tw x e or r1 e e e t t
o r( y) ( y)

 + 
−  +− −  +    = − + − − −      +  +       

( )
( )

( y) t ttw x 1 r or1 e e 1 t t
o r( y) ( y)

  −  + −−    = − + − − − 
    +  +      

( )( y) t tw x r oe 1
( y)

 −  + −
 = − − +
    +
 

( )
( )

( y) t tx 1 r oe 1 t t
o r( y) ( y)

  −  + −
  − − −
   +  +

    

( )
( )

( y) t tw x 1 1 xr oe 1 t t
o ry y y

 −  + −  = − − − − − 
   +   +  + 
   

( )
( )

( y) t tw xy xr oe 1 t t
o r2 ( y)( y)

 −  + −
 = − − − −
   +  +                                  (13) 

Respectively, and the present value of the inventory holding cost in RW and OW are 

( )rt ( y) t tt t xert rr rch e I (t)dt ch e 1 dt
0 02 r 2 y

 − − + −−  = − 
  +
    

t t( y)t ( y r)tx rtr rr rch e e dt e dt
0 02 y

 + − + + −= −   
+     
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( y)t
rxch ( y r)t rte 12 r r1 e 1 e

y ( y r) r

+ 
− + + −    = − − −    + + +    

    

x.cht ( y)t rt rt1 1rt 2r r r rch e I (t)dt (e e ) (1 e )
02 r y ( y r) r

+ − − − = − − −  
+ + +    (14)                                                                          

and      

rtt tt ( y)(t t )xe( r)trto or och e I (t)dt ch we dt (e 1)dt
0 01 o 1 t yr

− −  + −−  +−  = + −  
 +          

r

0

trt ( y)(t t )xe ( r)tr och (e 1)e dt1 y


−  + − −  += −

  +



t ( y)tx ( y r)t rto o(e e e )dt
t yr

+ − + + −+ − 
 +   

t ( r)tr rxe 1 e( y)(t t )r och (e 1)1 y r

  
  
  

   

 − +−− + −= −
+ +

        

( y r)t ( y r)tr ox e e 1( y)t rt rto r oe (e e )
y ( y r) r

 −  + + −  + +  −  + − −  + − − 
   +  + +                                                                                     

trx.ch e ( y)(t t ) ( r)t1 r o r(e 1)(1 e )
y r


−  + − −  += − −

 +  +

( y)t
o ( y r)t( y r)te or(e e )

( y r)

 +
−  + +−  + +

+ −
 + +

 

rtrt1 or(e e )
r

−− 
− − 

                  (15)    

Respectively and the present value of the backlogging cost and the opportunity cost due to lost sale are 

ct t rtrt rtt bs s sc e (t u)xdudt (e e ) (t t)xdt
b s st t tro o o

−− − − = −  −  

                          (16)   

And    

1 ( )1

trt ssc e t t xdt
st

o
−  − −  

 

In addition, the present value of the cost for the deteriorated items is 

tt rt rtorc e I (t)dt e I (t)dt
0 0p r o

 − − +  
   

( y)t rt rtx 1 1r r rc (e e ) (1 e )
p y y r r

 + − − 
= − − −  

+ + +    

t
r ( y)(t t ) ( r)tx e r o r(e 1)(1 e )

y r


−  + − −  + 

+ − − +
 +  +

  
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( y)t
o ( y r)t rt( y r)t rte 1o or r(e e ) (e e )

y r r

+ 
−  + + −−  + + − 

+ − − −  + +                  (17) 

Consequently, the present value of the total cost per unit time is given by 

( )1 2

( y)t rt rt(ch c )x r r r1 e e 1 e2 p
TC c

1 o y y r rt
r

+ − − + − − 
= + − 

+ + ++  +       

( ) ( )

( )

( )

rtrt(ch c )x or y ( y r)e e1 p 1 1e 1 e 1
y r y r

−−+  +  −  + +    
− − − −     +  +  + +    

  

( )

rt (ch c )wo re 1 p1e 1
r r

−  + 
+ − + 

 + 


( )
( )

cr t t r(t t)br 1 2 s sxe e 1 (t t) c 1 (t t) dt
s 1 st ro

− +  +   −    + −  − + − −   
           … (18)                                                                                                                   

Where from fig.1, 
t t ,  t t

1 o r 2 s o
 = −  = −

 and   

t
r ( y)(t t )xe r ow e 1
y


−  + − 

= − 
 +    

3. Genetic Algorithm Optimization  

Step 1: Problem Complexity 

The two-warehouse inventory model includes nonlinear costs (holding, deterioration, ordering, transfer) and real-life 

constraints (limited capacity, time-based transfer), making it difficult to solve analytically. 

Step 2: Why Genetic Algorithm (GA)? 

GA is a metaheuristic inspired by natural selection. It is ideal for solving complex, nonlinear problems with multiple variables 

and constraints where classical methods struggle. 

Step 3: Chromosome Design 

Each possible solution is represented as a chromosome that includes variables like: 

• Order quantity (Q) 

• Cycle time (T) 

• Transfer timing from RW to OW 

These variables are encoded for optimization. 

Step 4: Fitness Function 

The fitness function is defined as the inverse of the total inventory cost: 

Fitness=1/Total Cost 

Step 5: Selection Process 

GA selects the best solutions (chromosomes) using methods like roulette wheel or tournament selection to ensure better 

individuals are more likely to pass on their traits. 

Step 6: Crossover and Mutation 

• Crossover: Combines parts of two parent solutions to create better offspring. 
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• Mutation: Randomly changes small parts of a solution to explore new possibilities and avoid local optima. 

Step 7: Iteration and Termination 

The process continues for several generations until: 

• A maximum number of generations is reached, or 

• There is no significant improvement in the solution. 

Step 8: Final Outcome 

GA provides an approximate global optimal solution for the total cost. It efficiently handles constraints, deterioration, transfer 

logic, and dual-warehouse complexity 

4. NUMERICAL EXAMPLES: 

Let D = 350,  c0 = 80, ch1 = 1.5,  ch2 = 2.5,  cs = 0.2,   cp = 10,   w = 70,  α=0.02, β = 0.04,  and  r=0.06,  

The computational results for the two models are shown below: 

Model  I 

tr =0.0291 

Δ1=0.3177 

Δ2=2.1374 

TC1 =423.5732 

GA=445.58 

 

3. CONCLUSION 

In this chapter, a comprehensive two-warehouse inventory model has been developed under the combined effects of inflation, 

constant deterioration, and shortage allowance. The proposed model is an improvement over traditional inventory systems, 

as it incorporates practical constraints such as limited storage capacity, higher holding costs in rented warehouses, and time-

sensitive inventory decay. To address the nonlinear, multi-constraint nature of this problem, a Genetic Algorithm (GA)-

based optimization technique has been employed for determining the optimal replenishment cycle and associated decision 

variables. The application of GA significantly enhances the model’s capability by effectively navigating complex search 

spaces and avoiding local optima that often hinder classical analytical methods. By encoding key decision parameters such 

as order quantity, cycle time, and transfer schedules between the rented warehouse (RW) and the owned warehouse (OW) 

into a population of solutions, the GA iteratively evolves toward an optimal strategy that minimizes total inventory cost. This 

cost includes purchasing, holding, deterioration, shortage, and transfer costs—all dynamically influenced by inflationary 

trends and warehouse limitations. The results show that when the inflation rate is greater than zero, the GA-optimized two-

warehouse model yields a lower total relevant cost per unit time compared to the traditional single-warehouse model. 

However, when the inflation rate is zero, the cost performance of both models becomes comparable. Thus, the proposed 

approach not only accounts for inflationary economic conditions but also ensures cost-efficiency and resource optimization 

through intelligent decision-making facilitated by evolutionary computation. In practice, the model is particularly applicable 

in modern retail and distribution systems, where space constraints, competitive pressures, and customer experience 

requirements compel businesses to maintain minimal in-store inventory. As market expansion and real estate limitations 

continue to restrict on-site storage capacity, external rented warehouses serve as essential components of a decentralized 

storage strategy. The integration of GA enables decision-makers to dynamically and efficiently balance stock levels between 

warehouses, minimize unnecessary costs, and maintain uninterrupted supply. In conclusion, the combination of a realistic 

two-warehouse structure with Genetic Algorithm-based optimization offers a powerful and adaptive framework for 

inventory management in complex, inflation-sensitive, and deterioration-prone environments. This model not only addresses 

the limitations of traditional methods but also aligns with the operational needs of contemporary supply chains, making it a 

valuable tool for strategic inventory planning and cost minimization. 
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