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ABSTRACT 

The primary diagnostic procedure for epilepsy is the electroencephalogram (EEG). A human expert often detects epileptic 

activity. Finding particular patterns in the multi-channel (MC) EEG is the foundation of this detection. When using EEG 

signals to detect epileptic seizures (ESD), pre-processing is essential. Pre-processing eliminates noise and artifacts to 

guarantee proper analysis and classification. Their ability for feature extraction (FE) from noisy inputs was thus limited. 

Numerous attempts are made for automating this time-consuming and challenging task using both traditional and Deep 

Learning (DL) methods. For signal pre-processing, an Improved Empirical (WT) Wavelet Transform (IEWT) is applied to 

EEG recordings, and it was suggested in this study. The boundaries are separated from the spectrum in order to execute 

IEWT. To reconstruct the spectrum's (TC) trend component, IEWT selects several points in the spectrum's Fourier transform 

(FT). Then, the Improved ResNet-50 model computes the features of EEG signals in a number of specific frequency bands 

(FB). By incorporating the residual structure and layer normalisation (LN) into a BILSTM, the Attention-based Residual 

Optimised (BI-LSTM) Bidirectional Long Short-Term Memory (AROBILSTM) network classifier is presented. The 

accuracy (ACC) and stability of epilepsy detection are eventually improved by this integration. In order to optimise the final 

feature information, this integration also provides an attention mechanism (AM) and enhances the network's FE capabilities. 

The outputs of the epilepsy network are further processed utilising seizure merging, threshold (T) comparison, and moving 

average filtering (MAF) to ascertain whether or not the tested EEG that are related to a seizure. On the scalp EEG database 

from Children's Hospital Boston-Mass Institute of Technology (CHB-MIT), the suggested approach performed better than 

alternative methods in terms of precision (P), recall/sensitivity (R/S), F-measure, and accuracy (ACC). 

 

Keywords: Epileptic seizure detection (ESD), scalp EEG, AROBILSTM network, Improved Empirical Wavelet Transform 
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1. INTRODUCTION 

Electrical disturbances in the brain that occur quickly and randomly are a symptom of ES [1], a neurological condition. A 

group of neurological dysfunctions with a persistent propensity that can lead to repeated seizures is known as epilepsy in 

neurology [2]. Frequent body convulsions, mind degradation, and cognitive disorders are all signs of an ES. As a result of 

these ES symptoms, people's quality of life is declining and there are more safety concerns. To treat patients with antiepileptic 

drugs (AEDs) and lower the risk of future seizures, accurate and early detection (ED) of ES is essential [3]. By examining 

EEG data, epilepsy patients' typical brain activity is divided into four states. 

In seizure detection (SD) research, the epileptic records are usually separated into four distinct stages of brain activity (BA): 

interictal (IL), preictal (PRL), ictal (ICL), and postictal (POL). The synchronised activity of neurons in numerous brain 

regions can be shown by this massive amount of data [4]. In recent years, ESD using MC scalp EEG data has gained more 

attention in the domain of neuro information technology. In order to diagnose epilepsy, neurology specialist typically perform 

visual assessments on patients in clinics. Additionally, neurologists typically invest a great deal of effort and time in looking 

for indications of epilepsy in long-term (LT) EEG recordings. Due to their affordability, portability, and distinct frequency- 
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domain rhythms, EEG signals are commonly chosen [5]. EEG provides the voltage variations brought on by the ionic current 

of neurons. The bioelectric activity of the brain is indicated by this EEG [6]. 

Neurophysiologists can make early predictions of upcoming seizures by closely monitoring EEG data, that includes 

recordings of the brain's electrical activity made with non-invasive (NI) electrodes placed on the scalp. This allows them to 

examine the BA during both seizure and nonseizure periods. The analysis is complicated by the fact that these signals are 

recorded across multiple channels. Muscle tremor, electrode movement, and the main power source can all produce artifacts 

in the EEG readings [7, 8]. Doctors will find it challenging to detect ES from noisy EEG readings as a result. Many studies 

are being conducted to eliminate noises utilising EWT-based techniques in order to address these challenges. The signal is 

broken down into frequency components by EWT. By creating a unique wavelet basis, EWT enables in-depth analysis. By 

extracting the required components from unwanted noise, researchers and practitioners can improve signal analysis. While 

preserving signal information, the EWT technique successfully removes noise [9, 10]. 

By employing methods like filtering, denoising, and normalisation to eliminate noise and interference, pre-processing is used 

to enhance signal quality (SQ).  The signal's usability and dependability are enhanced by pre-processing. The pre-processed 

signal's representative information is extracted as part of FE. The collected features are mapped to specified categories or 

states using machine learning (ML) and DL techniques. To accomplish precise pattern recognition (PR) and classification, 

this step entails training and implementing classification models. In terms of differentiating seizure EEG, Support Vector 

Machine (SVM), Random Forest (RF), and Artificial (NN) Neural Network (ANN) have demonstrated varying performances 

[11]– [12]. Because the testing data has a different probability distribution than the training data, many classifiers lack the 

robustness and generalisation capabilities that requires. 

The amount of labelled samples and hardware setup are critical requirements for Deep NN (DNN) [13], [14]. Thus, the 

development of the EEG classifier continues to be one of the research centres in the field of automatic SD (ASD). Nowadays, 

Convolutional NN (CNN) and BiLSTM are popular. The ability to classify EEG ES and performing outstanding automated 

FE has been demonstrated by this CNN. Therefore, it is challenging for CNN to re-establish the connection between the raw 

EEG and the outcomes of ES. Because recurrent NN (RNNs) are trained on previous outputs, they are able to retain historical 

information. In order to effectively categorise ES, hybrid DL models have proven to be more effective and superior. 

For signal pre-processing, the IEWT is applied to EEG recordings. Then, the Improved ResNet-50 model computes the 

features of EEG signals in a number of specific frequency bands. By incorporating layer normalisation and residual structure 

into a BiLSTM, the AROBILSTM network classifier is presented. Using the CHB-MIT scalp EEG database, the suggested 

approach performed better than earlier methods in terms of P, R/S, F-measure, and ACC. 

2. LITERATURE REVIEW  

An efficient ASD method based on the Stockwell transform (S-transform) and BiLSTM NN was suggested by Geng et al. 

[12]. The suggested method is specifically made for intracranial EEG recordings.The S-transform is applied first to raw EEG 

segments. In order to feed the resulting matrix into BiLSTM for FS and classification, it is then organised into time-frequency 

blocks. To enhance detection performance, postprocessing is then used. MAF, threshold judgement, MC fusion, and collar 

method are all part of this post-processing. The suggested approach is evaluated using a total of 20 patients' 689-h intracranial 

EEG recordings. According to the results, there is promising clinical practice potential for the seizure detection (SD) 

approach. 

Instead of using manual FE, Zhou et al. [15] employed a CNN based on raw EEG signals to distinguish between ICL, PRL, 

and IL segments for ESD. By contrasting the efficacy of time domain (TD) and frequency domain (FD) signals in the 

identification of epileptic signals based on the scalp CHB-MIT and intracranial Freiburg databases, the suggested approach 

examined the potential of these factors. Two binary classification (BC) problems (IL vs. PRL and IL vs. ICL) and one three-

class problem (IL vs. PRL vs. ICL) were used to examine the feasibility of this strategy. FD signals from the Freiburg 

database and the average ACC for detection from the CHB-MIT database were used to calculate the average ACC for the 

three tests. Comparing FD signals to TD signals, the classification ACC of FD signals is generally much higher. Furthermore, 

for CNN applications, FD signals are more promising than TD signals. A feature vector is created by combining non-EEG 

information after spectral and spatial features have been extracted. These feature vectors can then be used to train a SVM, 

which is subsequently used for classification. 

FE was made an obligatory step by Shoeibi et al. [16]. The handcrafting features or learning those features with the support 

of the DNN is then employed for executing the FE. The best features are then selected for signal classification on a benchmark 

dataset for assessment using Fisher scores. For a thorough comparison of FE techniques, a five-layer convolutional 

autoencoder (AE) is also used to learn features. For SD in EEG signals, a CNN-AE is used, that integrates handcrafted 

features with AE encoding. 

Based on MC scalp EEG recordings, Yuan et al. [17] suggested a unified multi-view (MV) DL architecture to capture brain 

anomalies linked to seizures. The suggested method may simultaneously train MV features from supervised SD using 

spectrogram representation and unsupervised MC EEG reconstruction. A new AE-based MV learning model incorporates 
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both intra- and intra-correlations of EEG channels. To focus the MV structure on important and relevant EEG channels, a 

channel-aware SD module was suggested. The training process was then modified by including a channel-wise competition 

mechanism. The efficacy of the suggested methodology is demonstrated through a thorough study of a benchmark scalp EEG 

dataset against baselines, which comprises both traditional handcrafted FE methods and standard DL approaches. Using five-

fold subject-independent (CV) cross validation, simulation results show that the suggested framework may provide higher 

average ACC and f1-score, 94.37% and 85.34%. The suggested approach is proving to be an effective way to classify EEG 

SD. 

Using the Fisher vector (FV) encoding and multiscale radial basis function (MRBF) networks, Li et al. [18] developed a 

unique ASD technique. In particular, the high-resolution (HR) time-frequency (TF) for FE is initially obtained using the 

MRBF networks. The two optimisation techniques: Orthogonal Least Squares (OLS) and Modified Particle Swarm 

Optimisation (MPSO) to analyse HD data by identifying ideal scales and a simplified model structure. The influence of FV 

and Grey Level Co-occurrence Matrix (GLCM) texture descriptors on the HD vectors is the main focus of the analysis.Then, 

using five frequency subbands of clinical interest from TF, discriminative features are created using these HD vectors. Before 

introducing compact data into the SVM classifier for SD, the t-test statistical approach may effectively decrease the size of 

the original feature space. Finally, two well-known EEG database are employed for evaluating the recommended technique's 

detection ability, and both datasets show good classification ACC. The outcomes of the simulation indicate that the suggested 

approach is an optimal ESD tool. 

In order to identify the ES utilising both the MC scalp and single-channel EEG signals, Reduced Deep Convolutional Stack 

AE (RDCSAE) and Improved Kernel Random Vector Functional Link Network (IKRVFLN) was suggested by Sahani et al. 

[19]. The goal of the novel RDCSAE structure is to extract the most discriminative unsupervised features from EEG signals 

in order to detect the ES activity with possible ACC. The suggested supervised IKRVFLN classifier then receives these 

features. This suggested supervised IKRVFLN classifier reduces the mean-square error cost function (MSE) to train 

efficiently. The suggested method is tested using single-channel EEG datasets from Boon University, Germany and the 

benchmark Boston Children's Hospital MC scalp EEG (sEEG). Reduced computational complexity, faster learning speed, 

improved model generalisation, accurate ESD, remarkable classification ACC, negligible FP rate per hour (FPR/h), and short 

event recognition time are the primary advantages of the suggested approach over reduced deep CNN (RDCNN), RDCSAE, 

and RDCSAE-KRVFLN methods. 

Li et al. [20] designed an end-to-end (E2E) EEG SD architecture using a novel channel-embedding spectral-temporal 

squeeze-and-excitation network (CE-stSENet) with a maximum mean discrepancy (MMD) -based information maximising 

loss (IML).  The first to combine multi-scale temporal analysis and multi-level spectral analysis at the same time is the CE-

stSENet. Hierarchical multi-domain representations are then coherently captured using a squeeze-and-excitation block 

variation.Based on FE in earlier subnetworks, classification is used for epileptic EEG recognition. A MMD-based IML is 

integrated with the CE-stSENet to mitigate the severe overfitting problem in SD, which is caused by a lack of seizure 

events. It will lead to a finite data distribution. The performance of the recommended model in detecting epileptic EEGs is 

demonstrated by experimental findings on three EEG datasets compared to the state-of-the-art (SOTA) methods. The 

suggested technique validates its strong ability in the ASD. 

A new SD technique based on the deep Bi-LSTM network was presented by Hu et al. [21]. The nonstationary quality of EEG 

signals is preserved and the processing load is decreased with the incorporation of statistical FE methods and local mean 

decomposition (LMD). Next, two separate LSTM networks with opposing propagation directions are combined to create the 

deep architecture. Information is sent from the front (f) to the back (b) via one and from the b to the f via another. The output 

state can thus be simultaneously determined by the deep model by utilising the information both before and after the currently 

analysed moment. A mean specificity (SP) of 91.85% and a mean S of 93.61% were found on an LT scalp EEG database. 

The enhanced performance for SD was shown by comparing with previous published techniques based on CNN or 

conventional ML models. 

 In order to effectively detect seizure onsets, a novel patient-independent (PI) method was suggested by Liu et al. [22]. First, 

the MC EEG signals are preprocessed using wavelet decomposition (WD). After that, the CNN functions as an EEG FE with 

the appropriate depth. The temporal variation features are then further captured by inputting the acquired features into a 

BiLSTM network. At last, the model's outputs undergo post-processing, which includes collar and smoothing, in order to 

lower the False Detection Rate (FDR) and increase the S. To improve the model's capacity for generalisation, a unique 

channel perturbation technique is introduced throughout training. Using average ACC, average S, and average Area Under 

the Receiver Operating Characteristic Curve (AUC-ROC), both the Second Hospital of Shandong University (SH-SDU) 

scalp EEG dataset and the CHB-MIT public scalp EEG dataset are used for evaluating the efficacy of the suggested method. 

An automatic spatial–temporal (S-T) ESD framework based on DL has been suggested by He et al. [23]. In particular, the 

front-end for extracting spatial features is graph attention networks (GAT). The structure of several EEG channels is thus 

fully utilised. The BiLSTM network is used as the back-end to mine time relations and make the final decision based on the 

state before and after the present moment. The studies are conducted using the CHB-MIT and Temple University Hospital 
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(TUH) datasets. According to comprehensive experimental results, the proposed method may effectively detect seizures from 

the raw EEG signals without the requirement for further FE. The suggested method executes superior than SOTA methods. 

In order to diagnose epilepsy from EEG signals, the convolutional LSTM (ConvLSTM) based the deep ST NN was 

suggested by Tawhid et al. [24]. The suggested framework first selects and resamples standard 19-channel EEG data at 256 

Hz. Next, 3-s time frames are used to separate the signals. The ConvLSTM model then uses the segmented data as input to 

distinguish epileptic patients from healthy individuals. The experiment's biases are eliminated using leave-one-out CV 

(LOOCV) schemes and five-fold CV. For the examined datasets, the simulation outcomes show that the suggested approach 

executes superior than the existing SOTA outcomes. The suggested approach qualifies it as an automated system for epilepsy 

diagnosis. 

Quadri et al., [25] proposed a series of 1-D convolution layers (CL), each with several filters with lengths varying 

exponentially. The deep Bi-LSTM layers are subsequently integrated to the design to create a densely connected feed-forward 

structure. The model effectively prioritizes ST information, thus extracting key insights for identification of interictal and 

preictal features. The proposed model has undergone comprehensive evaluations, with S, P, F1-Score, and an AUC-ROC. 

CHB-MIT dataset is utilized and fivefold CV is applied for training the model. 

Bidirectional gated recurrent unit (Bi-GRU) NN is an ASD technique that Zhang et al. [26] introduced to help with epilepsy 

diagnosis and treatment. First, EEG data are pre-processed and filtered using WT. Initially, a Bi-GRU network receives the 

relative intensities of the EEG signal in a certain FB. To ascertain whether the EEG data corresponds to a seizure, the Bi-

GRU's output is then further refined using MAF, threshold comparison, and seizure merging. The CHB-MIT scalp EEG 

database outcomes indicate that the Bi-GRU network performs better in SD. For LT EEG monitoring, the recommended 

detection technique may be beneficial. 

3. PROPOSED METHODOLOGY  

For signal pre-processing, IEWT is introduced in EEG signals. The boundaries are separated from the spectrum in order to 

execute IEWT. To reconstruct the spectrum's TC, IEWT selects various points in the spectrum's FT. Then, the Improved 

ResNet-50 model computes the features of EEG signals in a number of specific FB. By incorporating layer normalisation 

(LN) and residual structure into a BiLSTM, the AROBILSTM network classifier is presented. Through this integration, the 

network's FE capabilities are improved, an AM is included to optimise the final feature information, and the ACC and 

stability of epilepsy detection are finally improved. 

Compared to previous approaches, the CHB-MIT database was used to analyse metrics like classifying R/S, F-measure, and 

ACC as well as problems in ASD. The general procedure of the suggested model is depicted in Figure 1. 

 

FIGURE 1. OVERALL FLOW OF PROPOSED MODEL 
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3.1 Signal Pre-Processing based Improved (EWT) Empirical Wavelet Transform (IEWT) 

The vibration acceleration signal can be adaptively broken down into a number of empirical modes using EWT. The 

following three steps can be used to describe the EWT method: (1) segment the spectrum adaptively, (2) based on the 

boundaries, a suitable EW (Empirical wavelet) filter bank was created. Then, the signal is filtered and (3) Using the Hilbert 

transform (HT), the empirical modes are reconstructed, demodulated, and assessed [27]. 

Step 1: Split the boundaries in the FD 

The EEG signal's FD is split into N FB with varying bandwidths (BW) after being normalised to [0, π]. Instead of employing 

Gilles' technique, the boundary requirement is the midway of the adjacent maxima. The boundaries of each FB in the EEG 

signal are identified using the spectral (TE) trend estimation (STE) approach, which is based on the key function. 

Step 2: Create an EWT filter bank 

Gilles decided to use the Meyer wavelet (MWT) as the basis function to generate an EW. During the transition phase, a set 

of orthogonal trigonometric functions is produced. Here, a constant is created in the FB and the FB boundary is identified. 

Step 3: Execute an EWT 

The FT is F(.), and the inverse FT (IFT) is F(.). The EWT transform is defined using a methodology akin to the conventional 

WT. Spectrum segmentation and border optimisation are two of EWT's flaws that are examined and explained. By 

determining the spectrum's FT function, a novel IEWT technique determines the spectrum's TC. The EEG signal is 

reconstructed using the minimum points of the TC as boundaries. Different TC will be reconstructed by choosing different 

points in key functions (KF). Reasonable EWT boundaries can be obtained with an appropriate TC. The following are the 

precise stages: 

Phase 1: The EEG signals with periodic impacts y(t) are collected. The spectrum Υ(f)  is obtained using the Fast FT (FFT) 

technique. Further, the FFT approach yields the key function K(f), which is the FT function of Υ(f). 

Phase 2: To inverse the FT and reconstruct the spectrum's TC (Tc(f)), a specific amount of points are taken out of the K(f). 

The spectrum will be split into multiple sections when more points are used to reconstruct the complicated TC since there 

will be more extreme points in the TC. The reconstructed function is close to the trend of spectrum changes, and the spectrum 

will be split up into fewer pieces. 

Phase 3: Determine and optimise the spectrum's boundaries. The minimum point sequence serves as the boundary array, 

with the TC serving as the basis function. The wavelet threshold optimises the boundary array when the TC is complicated. 

To a certain degree, the invalid components produced by noise are reduced using the technique of optimising spectrum 

boundaries based on threshold denoising (TD) of the EEG signal. 

    Phase 4: Use EWT to carry out signal processing (SP). Select MWT as the basis function after normalising the signal's 

FD into [0,π]. This MWT constructs adaptive filters (AF), divides the signal into its constituent parts, and defines the 

empirical scaling function ϕn(ω)  and the empirical wavelets Ψn(ω). 

• TE Technique depends on the 𝐊𝐅 

The trend of the spectrum can be reconstructed using the suggested method's TE step based on the KF. The theoretical basis 

of the FT is integrated into this approach. The algorithm is more efficient than the conventional EWT. This algorithm has a 

faster computation time than an interpolation algorithm. 

Phase 1: In equation (1), the FFT algorithm is used for obtaining the FB of the estimaed signal  

𝚼(𝐟) = 𝐅𝐅𝐓(𝐲(𝐭)) (1) 

Phase 2: Use equation (2) to determine the FT function of Y(f). 

𝐊(𝐟)  = 𝐅𝐅𝐓 𝚼(𝐟) (2) 

Phase 3: Equation (3) establishes a close relationship between the spectrum and the KF components. 

𝐓𝐜(𝐟) = 𝐢𝐅𝐅𝐓(𝐊𝐁(𝐟)) (3) 

Here, Tc(f)  is a TC and KB(f)  is the left portion of boundary B in K(f). The TC resembles a straight line, as TC is soft, and 

fluctuates very little. When there are fewer reconstructed points than the initial maximum value of the KF B1, this TC is not 

obvious from the spectrum fluctuation pattern. 

The spectrum of the EEG signal is split into two areas by one minimum. There is a lot of information in the first area. This 

first region does not separate the spectrum's appropriate frequency components. The thirty-point reconstruction of the TC is 
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bounded by the minimum values. A cluster of modulation data with a side band in the spectrum is displayed by the impact 

and modulation components. As a result, while handling EEG signals, the TE approach based on the KF provides advantages. 

Selecting too many EEG signals from the KF for the inverse transformation (IT) will result in a rough partition that can hold 

the modulation data with side-band frequency but cannot separate the information with close frequency. To a certain degree, 

the suggested approach can retain and eliminate the unnecessary elements. Some details, such as the elements having spectra 

exist near to each other, can be retrieved from simulation EEG signals when several points are chosen for IT; however, this 

will result in an excessive number of areas in the spectrum. To address these problems, the threshold noise-reduction (TNR) 

technique is presented [28]. 

• TD method  

Wavelet TD is the main application for TD. The wavelet coefficients (WC) are recovered from the original EEG signal.This 

WC are obtained via wavelet decomposition (WD). The coefficients are then denoised. Different threshold functions 

(TF) have an impact on the reconstruction outcomes as well as the denoising effect during the TD process. When estimating 

data, setting the threshold is crucial. The noise-induced spectrum fluctuation must be minimised during the TD process 

because this method does not have to fully display the trend. The hard TF by equation (4) [28] is one of the often-utilised 

TF. 

𝐬̂ = {
𝐬|𝐬| ≥ 𝛌
𝐨|𝐬| < 𝛌

 
(4) 

Using equation (5) for the soft TF, 

𝐬̂ = {
𝐬𝐠𝐧(𝐬). (|𝐬| − 𝛌)|𝐬| ≥ 𝛌

𝐨|𝐬| < 𝛌
 

(5) 

Here, the EEG signal to be processed is denoted by s. The EEG signal after denoising is represented by  ŝ.Then, a fixed 

threshold of λ is offered by this ŝ  [29]. 

𝛌 = 𝛔√𝟐𝐈𝐧(𝐍) (6) 

The equation (6) required signal length is denoted as N. The estimated noise variance is denoted by σ2. The reconstructed 

signal (RS) oscillates at the discontinuity point due to the discontinuity of s at λ and - λ. But, the hard T can effectively retain 

the signal's local data during processing. Soft threshold processing improves the overall continuity of ˆs. Even yet, there is a 

constant discrepancy between s and ŝ , and the derivatives are discontinuous. This could have an impact on the reconstruction 

ACC. This approach may ignore these soft threshold defects and just requires the spectrum trend. The threshold (T) used to 

process the signal sequence is λ = 0.5m/s2  . The graph makes the good continuity of soft thresholds very evident. There 

are local steps in the hard thresholds. 

 

 

FIGURE 2. SEGMENT OF ICTAL EEG AND ITS 

RECONSTRUCTED SIGNALS. 

FIGURE 3. SEGMENT OF INTERICTAL EEG AND 

ITS RECONSTRUCTED SIGNALS 
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Two EEG segments and their RS are shown in Figures 2 and 3. The ictal and interictal EEG signals are displayed in the 

upper panels of Figures 2 and 3, respectively. The RS on scales 1 to 5 are represented as s1 to s5, following WD and 

reconstruction on five scales. Figures 2 and 3 demonstrate the clear amplitude variations among the two EEG classes in the 

RS on scale 3 to 5. 

3.2 FE based Improved ResNet-50 NN  

The introduction of skip connections (SC) is one of the main characteristics of the ResNet-50 FE model. By using identity 

mappings (IM), these SC enable input EEG signals to pass through one or more layers and pass directly to next layers. The 

gradient vanishing problem (GVP) has been effectively solved using this SC. Instead of learning a mapping function directly, 

the network can learn the residual from the input and output via ResNet. This method improves training efficiency and FE 

capability by ensuring that the network's performance doesn't deteriorate when depth increases. Training deeper networks is 

now possible due to ResNet. ResNet enables steady training performance and efficient gradient flow maintenance for models 

with hundreds or even thousands of layers. 

The components of the improved ResNet-50 model include a fully connected (FC) layer, four groups of residual layers, a 

global average pooling (GAP) layer, a batch normalisation (BN) layer, a ReLU (AF) activation function, a 3×3 max (PL) 

pooling layer (MPL) , and a M×N CL. The input EEG signal is directly added to the output in this design using residual 

blocks (RB) with SC. This integration improves training stability and FE while effectively minimising the GVP in deep 

networks. The subsequent sections offer a thorough description of the model construction and training procedure based on 

this network structure [30]. 

• Initial CL 

Equation (7) illustrates how to first pre-process the input ECG signal and calculate the related input tensor. 

𝐗 ∈ 𝐑𝐍×𝟑×𝐇×𝐖 (7) 

   

Here, the batch size is denoted by N. Samples supplied into the NN during each training iteration are denoted by N. The 

image height is denoted as H. The image width is represented as W. The pre-processing of the image data is finished after 

the input tensor is acquired. The DL network is adequately ready for FE, gradient propagation, and optimisation due to this 

pre-processing. The image data is then subjected to the M × N convolution (Conv) operation. Equation (8) expresses its 

mathematical formulation. 

𝐘 = 𝐖 ∗ 𝐗 + 𝐛 (8) 

Here, each Conv kernel's parameters are denoted as W. After the (Conv) process, Y is the output feature map (FM). The bias 

term is indicated by b. Equations (9-10) computes the dimensions of convolutional output FM.  

 𝐇′ =
𝐇+𝟐𝐩−𝐤

𝐬
+ 𝟏 (9) 

𝐰′ =
𝐰 + 𝟐𝐩 − 𝐤

𝐬
+ 𝟏 

(10) 

About half of the original size of the FM's spatial dimensions is lost in the ECG signal, after the M×N Conv, and it  can be 

seen from the calculations above. In order to guarantee a more stable activation distribution and promote the network's 

convergence, each FM channel are then independently normalized. Equation (11) provides the normalisation for each channel 

of the FM output by the M × N Conv. 

𝐱̂𝐢 =
𝐱𝐢 − 𝛍𝐁 

√𝛔𝐁
𝟐 + 𝛜

. 𝛄 + 𝛃 
(11)     

Here, the variance and mean of each channel in the current batch are denoted by σB
2  and μB. Learnable parameters are γ and 

β. FM go via the ReLU AF after the FM of each channel has been normalised. The purpose of the ReLU function is to 

suppress negative activation values while improving the ResNet-50 model's nonlinear (NL) representation capacity. 

Enhancing model sparsity and enabling more efficient feature learning are two benefits of the ReLU function. After that, the 

FM size is further reduced by applying a 3×3 max PL. According to equation (12), down sampling (DS) specifically uses a 

3×3 pooling kernel with a stride of 2. 
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𝐲𝐢𝐣 = 𝐦𝐚𝐱
𝐦,𝐧∈{𝟎,𝟏,𝟐}

𝐱(𝟐𝐢+𝐦)(𝟐𝐣+𝐦) (12) 

The MPL further reduces the FM's spatial dimensions to half of the Conv output FM, according to calculations. 

• Residual Module (RM) Design 

Three CL and one SC make up each residual block in an improved ResNet-50 network model. Restoring the number of 

channels, extracting spatial features, and lowering computational complexity are the three CL tasks. The SC then enhances 

deep network training's stability and learning potential, mainly addressing the GVP. The RB's computational procedure is 

explained in the part that follows [31]. Two 1×1Conv and one 3×3 spatial Conv make up the three CL. 

The 1×1 dimension reduction Conv processes the EEG data by first computing the input tensor using equation (13-14). Here, 

X1 ∈ ℝN×Cmid×H×W.  is the output of executing steps in Equation (14). X2 ∈ ℝN×Cmid×H′×W′
 is the output of calculating the 

FM's 3×3 spatial Conv by equation (15). Then, utilising Equation (16), the resultant FM is processed through a 1×1 expansion 

Conv. X3ϵRN×Cout×H′×W′
 is the final output obtained by restoring the number of channels using a scaling factor (SF) of 4. 

𝐂𝐦𝐢𝐝 = ⌊𝐂𝐨𝐮𝐭 ×
𝐰𝐢𝐝𝐭𝐡

𝟔𝟒
⌋ 

(13) 

𝐗𝟐 = 𝐖𝟐 ∗ 𝐗𝟏 + 𝐛𝟐 (14) 

Here, H′ =  
H

2
, W′ =

W

2
, a stride of s = 2 is used in this experiment. The computed outcomes are given below the equation 

(15) 

𝐗𝟑 = 𝐖𝟑 ∗ 𝐗𝟐 + 𝐛𝟑 (15) 

The key component of the ResNet network model is the residual connection. It overcomes the difficulties of deep network 

training by employing cross-layer SC. Preventing VGP, improving information flow, and boosting optimisation performance 

are the main purposes of residual connections. Equation (16) provides a basic formulation. 

𝚼 = 𝓕(𝐗, {𝐖𝐢}) + 𝐗 (16) 

Here, the input FM is represented by X. The final output is immediately skipped over X. The first three CL are FM derived 

from the EEG signal, which is denoted by ℱ(X, {Wi}). The final output EEG signal FM is denoted by the Y. On the other 

hand, When the stride is 2, the FM size is halved, resulting in an output size of 
H′

2
+

W′

2
 from an input size of H×W. Because 

of their mismatched spatial dimensions, the input X in this instance cannot be applied directly to ℱ(X)  . 

These steps are used to address this using DS residual connections. In order to enable element-wise addition, the input X is 

first adjusted using a 1×1 Conv to match ℱ(X)  in shape. D espite extending the receptive area, DS between stages aids in 

lowering computational complexity. The FM's spatial dimensions shrink as the number of channels rises with each stage 

transition. As a result, more abstract and high-level (HL) features can be processed by deeper network layers without 

considerably rising processing costs. Furthermore, a wider receptive field aids in capturing more contextual data, improving 

the model's capacity for global perception. 

• Stage-Wise (SW) Residual Stacking (RS) 

The EEG signal is recorded using the SW ResNet-50 model. Higher detection ACC is attained by the SW ResNet-50 model. 

To improve the seizure model's feature learning capabilities, stacking RB has been implemented. The stride is kept at 1 in 

the next blocks, but it is set to 2 in the first RB of each stage for DS in order to maximise computing efficiency. Computational 

complexity is effectively decreased by this method. This technique balances variations in the number of channels while 

enlarging the receptive field. Additionally, the potential of the framework in effectively training and extracting seizure-

associated attributes at various levels is ensured [31]. 

• Global Feature Aggregation (GFA) and Classification 

The network eventually generates an output FM of size Xstage ∈ ℝN×2048×m×n
   after stacking the RB across four stages. 

Global information modelling is improved with the application of GFA to further process this FM. Every m×n ECG signal 

FM is specifically compressed to a 1×1 size using Equation (17). This compression preserves the channel dimension 

information and ensuring that global information is effectively aggregated.  Consequently, Ypool ∈ ℝN×2048×1×1
.   is the size 

of the final output FM. 
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𝐲𝐜 =
𝟏

𝐦 × 𝐧
∑  

𝐦

𝐢=𝟏

∑ 𝐱𝐜𝐢𝐣

𝐧

𝐣=𝟏

 
(17) 

The pooled output of the cth channel is denoted by yc. In the cth channel, xcij represents the feature value at row i and column 

j. The output from equation (18) needs to be flattened because the FC layer can only take one-dimensional inputs. 

Specifically, the flattened function from the Torch library is used. A flattened FM of Yflat ∈ ℝN×2048 will result from this. 

An FC layer is used to map the 2048-dimensional feature vector into a 7-dimensional ECG category prediction vector.  

𝐙 = 𝐖𝐟𝐜𝐘𝐟𝐥𝐚𝐭 + 𝐛𝐟𝐜 (18) 

 

Here, the weight matrix of the FC layer is represented by Wfc ∈ ℝNclasses×2048  . The bias term is then indicated as bfc ∈
ℝNclasses . Unnormalized classification scores are represented by Z ∈ ℝN×Nclasses  . In order to transform the logits into a 

probability distribution for every class, the classification scores determined in EQN (19) must be further processed using the 

Softmax function after being unnormalized. The normalised Pi is guaranteed to satisfy ∑ Pi 
Nclasses
i=1 = 1 by the computation 

provided by Equation (20). 

𝐏𝐢 =
𝐞𝐳𝐢

∑ 𝐞𝐳𝐣𝐍𝐜𝐥𝐚𝐬𝐬𝐞𝐬
𝐣=𝟏

 
(19) 

  

Here, zi is a representation of the sample's logit score for class i. Pi is the expected probability that the sample belongs to 

class i. 

3.3 Classification based AROBILSTM 

The AROBILSTM serves as the basis for SD. The three main parts of the network structure are depicted in Figure 4. They 

are: improved ResNet-50, ROBILSTM, and Attention. The EEG signal's signal features are extracted by the first component, 

Improved Resnet50. The ROBILSTM component enhances the framework's capacity to identify LT dependencies in the 

EEG signal by fusing the advantages of BILSTM with residual connections. To further improve the final detection, AM is 

added. 

 

FIGURE 4. AROBILSTM MODEL 

 

• ROBILSTM 

Both forward (F) and backward (B) information are considered by the two-way LSTM network known as BILSTM. By 

capturing bidirectional relationships, BILSTM improves FE when compared to the LSTM network. Thus, it is appropriate 

to use a BILSTM network to extract signal properties from an EEG signal [32–33]. 



Ramya.K, Dr. M.Kokilamani 
 

pg. 1758 

Journal of Neonatal Surgery | Year: 2025 | Volume: 14 | Issue: 32s 

 

 

FIGURE 5. ROBILSTM MODEL 

 

The ROBILSTM network is made up of F and B LSTM networks, as seen in Figure 5. The final encoding information is 

then combined into the F and B states once each LSTM has been added to the ResNet and LN. Figure 6 displays the unique 

residual structure. 

 

 

FIGURE 6. RB OF RESNET50 MODEL 

Equation (20) can be used to express every RB. 

𝐱𝐢+𝟏 = 𝐱𝐢 + 𝐅(𝐱𝐢, 𝐰𝐢) (20) 

Here, xi  is a direct mapping, the RB are separated into two parts. The residual part is denoted as F(xi, wi). Likewise, the 

encoder component of the Transformer model is designed using the previously discussed structure. Based on the advantages 

of this structure, research provides a ResNet based on the BILSTM network. In the BILSTM network, normalisation 

techniques can also be applied. Compared to BN, LN is especially beneficial for RNN. It is calculated similarly to BN and 

may be written in the following way with the equation (21): 

𝐳(𝐢) =
𝐱(𝐢) − 𝚬(𝐱(𝐢))

√𝐯𝐚𝐫(𝐱(𝐢))
 

(21) 

Here, the input vector for the i dimension is denoted by x(i). After LN, the output is represented as z(i). As seen in Figure 5, 

a new combination known as ROBILSTM is presented, that combines ResNet and LN in a BILSTM network. The recursive 

feature information y is expressed as equation (22-24): 
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𝐱𝐭
𝐟(𝐢+𝟏)

= 𝐋𝐍 (𝐱𝐭
𝐟(𝐢) + 𝐋(𝐱𝐭

𝐟(𝐢), 𝐰𝐢)) (22) 

𝐱𝐭
𝐛(𝐢+𝟏)

= 𝐋𝐍 (𝐱𝐭
𝐛(𝐢) + 𝐋(𝐱𝐭

𝐛(𝐢), 𝐰𝐢)) (23) 

𝐲𝐭 = 𝐜𝐨𝐧𝐜𝐚𝐭(𝐱𝐭
𝐟, 𝐱𝐭

𝐛) (24) 

Here, layer normalisation is denoted by LN. In the LSTM network, L is the processing of input states. The tth moment in the 

EEG signal is indicated by the subscript t in xt
f(i+1)

. The F state is denoted by the f in the superscript, and the B state by b. 

Here, (i+1) is the number of stacked layers, and the encoded data yt at time t is spliced together from the F state and the B 

state. 

• AM 

Specific parts of the input EEG signal can be the focus of an AM in DL. Different elements are given varying weights by 

AM. The weight of the recursive data y produced by ROBILSTM is determined to be α. The final feature information C is 

obtained by multiplying and adding each weight α to y. 

 

 

FIGURE 7. AM 

The FE calculation approach is explained as follows the equation (25), and it is presented in Figure 7: 

𝐞𝐭 = 𝐟(𝐲𝐭), 𝛂𝐭 =
𝐞𝐱𝐩(𝐞𝐭)

∑ 𝐞𝐱𝐩(𝐞𝐢)
𝐓
𝐢=𝟏

 , 𝐂 = ∑ 𝛂𝐭𝐲𝐭

𝐓

𝐭=𝟏

 

(25) 

Here, back propagation (BP) across the FC layer can be used to learn the function f expression. Throughout the training 

process, the weight αt is continuously changing, and the feature information C gets more representational as training goes 

on. 

• Optimization Mechanism 

One effective method for tuning the hyperparameters (HP) in the BILSTM model is Bayesian Optimisation (BO). By creating 

a probabilistic model of the objective function (OF), it effectively explores the HP space. BO directing the search for 

configurations that show promise. Set the training epoch count to 150 and the learning rate to 0.001. Set the batch size to 64 

because of the computer's memory limitations. The model incorporates dropout to avoid overfitting. To prevent excessively 

employing computing resources by excessive fine-tuning (FT), other HP are kept relatively unaltered. 

4. RESULTS AND DISCUSSION  

With an i7 CPU, 16GB of RAM, and an NVIDIA RTX3050 GPU, MatlabR2019a was used to apply the ESD techniques. 

The testing data from every case in the CHB-MIT database was used to assess the SD approaches' efficiency. 

4.1 Database  

The Children's Hospital Boston collected the CHB-MIT scalp EEG database from 

https://physionet.org/content/chbmit/1.0.0/. The International 10-20 system of EEG electrode locations, with a sampling rate 

of 256 Hz and 16 bits resolution, was employed in the EEG data collecting process. EEG recordings from 23 epileptic patients 

https://physionet.org/content/chbmit/1.0.0/
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were gathered and categorised into 24 cases in the CHB-MIT database. Cases chb21 and chb01 were extracted from the same 

subject one and a half years apart. The majority of continuous EEG files (which vary from 9 to 42) consist of 1 hour of EEG 

signals, with the exception of a few files from cases chb04, chb06, chb07, chb09, chb10, and chb23, that are 2-4 hours 

duration. 

The CHB-MIT Scalp EEG Database currently contains the EEG recordings of 22 paediatric subjects who had unexpected 

seizures. In order to describe seizures and find whether the subjects were candidates for surgery, they were observed for a 

few days after stopping anti-seizure medication. Annotated are the beginnings and endings of 198 seizures in total. In the 

training dataset, the non-seizure (NS) EEG might resemble the seizure (S) EEG by a factor of two to four. A total of around 

198.14 minutes of EEG recordings were used as training data for the 24 cases in Table 1. 

TABLE I. CHB-MIT EEG DATASET 

 

 

4.2 Performance assessment  

Evaluation metrics such as P, R/S, F-measure, and ACC are used to assess how well the SD methods perform. The following 

formulas can be used to determine each of these evaluation criteria (26–29). 

𝐏 =
𝐓𝐏

𝐓𝐏 + 𝐅𝐏
 

(26) 

𝐑 =
𝐓𝐏

𝐓𝐏 + 𝐅𝐍
 

(27) 
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𝐅 − 𝐦𝐞𝐚𝐬𝐮𝐫𝐞 =
𝟐 × 𝐏 × 𝐑

𝐏 + 𝐑
 

(28) 

𝐀𝐂𝐂 =
𝐓𝐏 + 𝐓𝐍

𝐓𝐏 + 𝐅𝐏 + 𝐓𝐍 + 𝐅𝐍
 

(29) 

The number of S and NS segments that the detection system accurately detects is referred to as True Positive (TP) and True 

Negative (TN). The number of non-seizure EEG segments that the detection system mistakenly interprets as seizure is known 

as False Positive (FP). Seizures with incorrect labels are known as false negatives (FN). 

TABLE 2. PERFORMANCE COMPARISON OF SOME SD APPROACHES 

APPROACHES P (%) R (%) F-MEASURE (%) ACC (%) 

CONVLSTM 83.25 86.63 84.91 85.22 

BI-LSTM 85.57 87.79 86.67 86.83 

BI-GRU 87.38 89.52 88.44 88.21 

S-TRANSFORM WITH BILSTM 89.76 90.87 90.31 89.78 

CE-STSENET 91.51 92.88 92.19 91.54 

AROBILSTM 93.65 94.23 93.94 93.57 

 

The performance comparison of SD approaches like ConvLSTM, Bi-LSTM, Bi-GRU, S-transform with BiLSTM, CE-

stSENet, and AROBILSTM with respect to P, R, F-measure, and ACC are shown in Table 2.  

 

FIGURE 8. PRECISION COMPARISON OF SEIZURE DETECTION METHODS 
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Figure 8 shows the precision results comparison of seizure detection methods like ConvLSTM, Bi-LSTM, Bi-GRU, S-

transform with BiLSTM, CE-stSENet, and AROBILSTM. It shows that the proposed classifier has highest results of 93.65%, 

other methods such as ConvLSTM, Bi-LSTM, Bi-GRU, S-transform with BiLSTM, CE-stSENet gives some lowest results 

of 83.25%, 85.57%, 87.38%, 89.76%, and 91.51%. 

 

FIGURE 9. RECALL COMPARISON OF SEIZURE DETECTION METHODS 

Figure 9 shows the recall results comparison of seizure detection methods like ConvLSTM, Bi-LSTM, Bi-GRU, S-transform 

with BiLSTM, CE-stSENet, and AROBILSTM. It shows that the proposed classifier has highest results of 94.23%, other 

methods such as ConvLSTM, Bi-LSTM, Bi-GRU, S-transform with BiLSTM, CE-stSENet gives some lowest results of 

86.63%, 87.79%, 89.52%, 90.87%, and 92.88%. 

 

FIGURE 10. F-MEASURE COMPARISON OF SEIZURE DETECTION METHODS 

F-Measure comparison of seizure detection methods like ConvLSTM, Bi-LSTM, Bi-GRU, S-transform with BiLSTM, CE-

stSENet, and AROBILSTM are illustrated in figure 10. It shows that the proposed classifier has highest results of 93.94%, 

other methods such as ConvLSTM, Bi-LSTM, Bi-GRU, S-transform with BiLSTM, CE-stSENet gives some lowest results 

of 84.91%, 86.67%, 88.44%, 90.31%, and 92.19%. 
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FIGURE 11. ACC COMPARISON OF SD APPROACHES 

 

Accuracy comparison of SD approaches like ConvLSTM, Bi-LSTM, Bi-GRU, S-transform with BiLSTM, CE-stSENet, and 

AROBILSTM are illustrated in figure 11. It indicates that the suggested classifier has highest results of 93.57%, other 

methods such as ConvLSTM, Bi-LSTM, Bi-GRU, S-transform with BiLSTM, CE-stSENet gives some lowest results of 

85.22%, 86.83%, 88.21%, 89.78%, and 91.54%. 

5. CONCLUSION AND FUTURE WORK   

This SD presented makes use of an AROBILSTM NN and time-frequency analysis of EEG components. EEG recordings 

from children with uncontrollable seizures are included in the CHB-MIT dataset. By tackling noise and TC, signal pre-

processing techniques such as IEWT and TNR are employed to improve signal quality. With a TE based on a KF, IEWT 

seeks to recover the trend of the signal. The goal of TNR is to eliminate noise artifacts. RB with SC is used in an improved 

ResNet-50 model, which is very helpful for FE from EEG signals. By directly adding the input EEG signal to the output of 

the RB, these linkages enhance training stability and FE capabilities. The purpose of stacking RB is to enhance the seizure 

model's feature learning capabilities. The residual structure and LN are integrated into a BILSTM to introduce the 

AROBILSTM network classifier. Among AROBILSTM is ResNet-50. Signal FE from the EEG signal is the responsibility 

of this ResNet-50. The ROBILSTM component develops the framework's capacity to identify LT dependencies in the EEG 

data by fusing the advantages of BILSTM with residual connections. To further optimise the model, AM and BO are also 

added. On the CHB-MIT dataset, evaluation measures such as P, R, F-measure, and ACC are used to compare the outcomes 

of the suggested model to current detection techniques. The number of EEG electrodes has no effect on the suggested 

detection method. Future studies are needed to see whether this recommended method heps specific epilepsy patient in 

offering an effective detection model. Promoting detection effectiveness in PI applications and real-time clinical EEG data 

with more noise and artifacts should be the main goals of future research. 

REFERENCES 

[1] Vidyaratne, L.S. and Iftekharuddin, K.M., 2017. Real-time epileptic seizure detection using EEG. IEEE 

Transactions on Neural Systems and Rehabilitation Engineering, 25(11), pp.2146-2156. 

[2] Bhattacharyya, A., Pachori, R.B., Upadhyay, A. and Acharya, U.R., 2017. Tunable-Q wavelet transform based 

multiscale entropy measure for automated classification of epileptic EEG signals. Applied Sciences, 7(4), pp.1-

18. 

[3] Kulaseharan, S.; Aminpour, A.; Ebrahimi, M.; Widjaja, E. Identifying lesions in paediatric epilepsy using 

morphometric and textural analysis of magnetic resonance images. Clin. NeuroImage 2019, 21, pp.1-8. 

[4] Zazzaro, G., Cuomo, S., Martone, A., Montaquila, R.V., Toraldo, G. and Pavone, L., 2021. EEG signal analysis 

70

75

80

85

90

95

100

Methods

A
c
c
u
ra
c
y
(%
)

ConvLSTM

Bi-LSTM

Bi-GRU

S-transform with BiLSTM

CE-stSENet

AROBILSTM



Ramya.K, Dr. M.Kokilamani 
 

pg. 1764 

Journal of Neonatal Surgery | Year: 2025 | Volume: 14 | Issue: 32s 

 

for epileptic seizures detection by applying data mining techniques. Internet of Things, 14, pp.1-17. 

[5] Chakrabarti, S.; Swetapadma, A.; Pattnaik, P.K. A review on epileptic seizure detection and prediction using 

soft computing techniques. In Smart Techniques for a Smarter Planet; Springer: Cham, Switzerland, 2019; pp. 

37–51. 

[6] Liu, X.Y., Wang, W.L., Liu, M., Chen, M.Y., Pereira, T., Doda, D.Y., Ke, Y.F., Wang, S.Y., Wen, D., Tong, 

X.G. and Li, W.G., 2025. Recent applications of EEG-based brain-computer-interface in the medical 

field. Military Medical Research, 12(1), pp.1-42. 

[7] Kedadouche, M., Thomas, M. and Tahan, A.J.M.S., 2016. A comparative study between Empirical Wavelet 

Transforms and Empirical Mode Decomposition Methods: Application to bearing defect diagnosis. Mechanical 

Systems and Signal Processing, 81, pp.88-107. 

[8] Zheng, J.D.; Pan, H.Y.; Yang, S.B. Adaptive parameterless empirical wavelet transform based time-frequency 

analysis method and its application to rotor rubbing fault diagnosis. Signal Process. 2017, 130, 305–314. 

[9] Liu, W. and Chen, W., 2019. Recent advancements in empirical wavelet transform and its applications.  IEEE 

Access, 7, pp.103770-103780. 

[10] Elouaham, S., Dliou, A., Jenkal, W., Louzazni, M., Zougagh, H. and Dlimi, S., 2024. Empirical wavelet 

transforms based ECG signal filtering method. Journal of Electrical and Computer Engineering, 2024(1), pp.1-

13. 

[11] Wei Z., J. Zou, J. Zhang, and J. Xu, “Automatic epileptic EEG detection using convolutional neural network 

with improvements in time-domain,” Biomed. Signal Process. Control, vol. 53, Aug. 2019, Art. no. 101551, 

pp.1-11. 

[12] Geng M., W. Zhou, G. Liu, C. Li, and Y. Zhang, “Epileptic seizure detection based on stockwell transform and 

bidirectional long shortterm memory,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 28, no. 3, pp. 573–580, 

Mar. 2020. 

[13] Rashed-Al-Mahfuz, M., Moni, M.A., Uddin, S., Alyami, S.A., Summers, M.A. and Eapen, V., 2021. A deep 

convolutional neural network method to detect seizures and characteristic frequencies using epileptic 

electroencephalogram (EEG) data. IEEE journal of translational engineering in health and medicine, 9, pp.1-

12. 

[14] Prabin Jose J., M. Sundaram, and G. Jaffino, “Adaptive rag-bull rider: A modified self-adaptive optimization 

algorithm for epileptic seizure detection with deep stacked autoencoder using electroencephalogram,” Biomed. 

Signal Process. Control, vol. 64, Feb. 2021, Art. no. 102322, pp.1-11. 

[15] Zhou, M., Tian, C., Cao, R., Wang, B., Niu, Y., Hu, T., Guo, H. and Xiang, J., 2018. Epileptic seizure detection 

based on EEG signals and CNN. Frontiers in neuroinformatics, 12, pp.1-14. 

[16] Shoeibi, A.; Ghassemi, N.; Alizadehsani, R.; Rouhani, M.; Hosseini-Nejad, H.; Khosravi, A.; Panahiazar, M.; 

Nahavandi, S. A comprehensive comparison of handcrafted features and convolutional autoencoders for 

epileptic seizures detection in EEG signals. Expert Syst. Appl. 2021, vol.163, no.113788, pp.1-16. 

[17] Yuan Y., G. Xun, K. Jia, and A. Zhang, “A multi-view deep learning framework for EEG seizure detection,” 

IEEE J. Biomed. Health Inform., vol. 23, no. 1, pp. 83–94, Jan. 2019. 

[18] Li Y., W.-G. Cui, H. Huang, Y.-Z. Guo, K. Li, and T. Tan, “Epileptic seizure detection in EEG signals using 

sparse multiscale radial basis function networks and the Fisher vector approach,” Knowl.-Based Syst., vol. 164, 

pp. 96–106, Jan. 2019. 

[19] Sahani, M., Rout, S.K. and Dash, P.K., 2021. Epileptic seizure recognition using reduced deep convolutional 

stack autoencoder and improved kernel RVFLN from EEG signals. IEEE transactions on biomedical circuits 

and systems, 15(3), pp.595-605. 

[20] Li, Y., Liu, Y., Cui, W.G., Guo, Y.Z., Huang, H. and Hu, Z.Y., 2020. Epileptic seizure detection in EEG signals 

using a unified temporal-spectral squeeze-and-excitation network. IEEE Transactions on Neural Systems and 

Rehabilitation Engineering, 28(4), pp.782-794. 

[21] Hu, X., Yuan, S., Xu, F., Leng, Y., Yuan, K. and Yuan, Q., 2020. Scalp EEG classification using deep Bi-

LSTM network for seizure detection. Computers in Biology and Medicine, 124, pp.1-8. 

[22] Liu, G., Tian, L. and Zhou, W., 2022. Patient-independent seizure detection based on channel-perturbation 

convolutional neural network and bidirectional long short-term memory. International journal of neural systems, 

32(06), pp.1-17. 

[23] He J., J. Cui, G. Zhang, M. Xue, D. Chu, and Y. Zhao, “Spatial–temporal seizure detection with graph attention 

network and bi-directional LSTM architecture,” Biomedical Signal Processing and Control, vol. 78, no.103908, 



Ramya.K, Dr. M.Kokilamani 
 

pg. 1765 

Journal of Neonatal Surgery | Year: 2025 | Volume: 14 | Issue: 32s 

 

pp.1-9, 2022.  

[24] Tawhid M. N. A., S. Siuly, and T. Li, “A convolutional long short-term memory-based neural network for 

epilepsy detection from EEG,” IEEE Transactions on Instrumentation and Measurement, vol. 71, pp. 1–11, 

2022. 

[25] Quadri, Z.F., Akhoon, M.S. and Loan, S.A., 2024. Epileptic Seizure Prediction using Stacked CNN-BiLSTM: 

A Novel Approach. IEEE Transactions on Artificial Intelligence, vol.5, no.11, pp. 5553 – 5560. 

[26] Zhang, Y., Yao, S., Yang, R., Liu, X., Qiu, W., Han, L., Zhou, W. and Shang, W., 2022. Epileptic seizure 

detection based on bidirectional gated recurrent unit network. IEEE Transactions on Neural Systems and 

Rehabilitation Engineering, 30, pp.135-145.  

[27] Liu, W. and Chen, W., 2019. Recent advancements in empirical wavelet transform and its applications.  IEEE 

Access, 7, pp.103770-103780. 

[28] Bhattacharyya, A., Sharma, M., Pachori, R.B., Sircar, P. and Acharya, U.R., 2018. A novel approach for 

automated detection of focal EEG signals using empirical wavelet transform. Neural Computing and 

Applications, 29, pp.47-57. 

[29] Xu, Y., Zhang, K., Ma, C., Li, X. and Zhang, J., 2018. An improved empirical wavelet transform and its 

applications in rolling bearing fault diagnosis. Applied sciences, 8(12), pp.1-24. 

[30] Wen, L., Li, X. and Gao, L., 2020. A transfer convolutional neural network for fault diagnosis based on ResNet-

50. Neural Computing and Applications, 32(10), pp.6111-6124. 

[31] Yadav, R.K., Mishra, A.K., Saini, J.B., Pant, H., Biradar, R.G. and Waghodekar, P., 2024. A Model for Brain 

Tumor Detection Using a Modified Convolution Layer ResNet-50. Indian Journal of Information Sources and 

Services, 14(1), pp.29-38. 

[32] Siami-Namini, S., Tavakoli, N. and Namin, A.S., 2019, The performance of LSTM and BiLSTM in forecasting 

time series. In 2019 IEEE International conference on big data (Big Data), pp. 3285-3292. 

[33] Cheng, J., Zou, Q. and Zhao, Y., 2021. ECG signal classification based on deep CNN and BiLSTM. BMC 

medical informatics and decision making, 21, pp.1-12. 

 
 


