Long-term outcomes of distraction osteogenesis in craniofacial reconstruction ## Dr. Deepa Pande¹, Professor DR. Senthilnathan², Dr. Thennarasu A R³, Silky bhargava⁴, Nivashini Murugaraj⁵, Dr. Rutvi V. Shah⁶ ¹MDS Oral and maxillofacial surgery, The Oxford Dental College Bangalore, Bangalore. Email ID: drdeepa.pande@gmail.com ²MDS FDSRCPS, Sree Balaji Dental College & Hospital, Palllikaranai, Chennai 600100. Email ID: drsenthilnathan41@gmail.com ³Cleft and craniofacial surgeon, Consultant, Kavan hospital Harur. Email ID: a.rthennarasu05@gmail.com 4MDS orthodontist, Jaipur dental college Jaipur Rajasthan. Email ID: silkybhargava17@gmail.com ⁵Senior lecturer, Department of orthodontics and dentofacial orthopaedics, CSI college of dental science and research center, Madurai. Email ID: nivashinim25@gmail.com ⁶Lecturer, Department of orthodontics and dentofacial orthopaedics, Dharmsinh Desai University, Faculty of Dental Science, Nadiad. Email ID: drrutvishah31@gmail.com Cite this paper as: Dr. Deepa Pande, Professor DR. Senthilnathan, Dr. Thennarasu A R, Silky bhargava, Nivashini Murugaraj, Dr. Rutvi V. Shah, (2025) Long-term outcomes of distraction osteogenesis in craniofacial reconstruction. *Journal of Neonatal Surgery*, 14 (32s), 2443-2451. #### **ABSTRACT** Distraction osteogenesis (DO) has become a new phenomenon in craniofacial reconstruction, especially in treating complex malformations like midface hypoplasia, mandibular deficiencies, and orbital malformations. Compared to conventional procedures that entail osteotomies and bone grafting, DO allows gradual lengthening of the skeleton and associated soft tissue adaptation, which minimizes donor site morbidity and improves stability. The method has been particularly effective in children, as it allows natural facial development and solves functional and cosmetic issues. DO is used clinically to treat syndromic craniosynostoses (e.g., Crouzon and Apert syndromes), Pierre Robin Sequence, and post-traumatic deformities. Despite its benefits, long-term observation shows problems of device complications, infections, asymmetry, and secondary surgery. Patient compliance and careful planning are key to successful results. This has been enhanced by the ongoing innovations in 3D virtual surgical planning and custom distractor design that have increased precision and lowered the rate of complications. Nonetheless, interdisciplinary management is indispensable to achieve long-lasting functional recovery and aesthetic balance of patients undergoing DO to correct craniofacial deformities. **Keywords:** Distraction osteogenesis, Craniofacial deformities, Midface hypoplasia, Mandibular deficiency, Pediatric reconstruction, Skeletal regeneration ### 1. INTRODUCTION Craniofacial deformities are a heterogeneous group of congenital and acquired disorders affecting the skull and facial bones' form, symmetry, and functionality. Causes of such deformities include genetic syndromes (e.g., Crouzon, Apert, and Treacher Collins syndromes), trauma, tumor removal, or developmental abnormalities such as cleft lip and palate. Such conditions have significant functional implications, which may severely affect crucial body functions such as respiration, mastication, vision, speech, and psychosocial development [1]. Facial disfigurement also has a significant psychosocial impact, such as stigma, anxiety, and poor self-esteem, particularly in developing children [2]. Traditionally, surgical treatment of craniofacial deformities was based on the methods of osteotomies and bone grafting. They were repositioned and reconstructed by traditional facial skeletal reconstruction modes involving Le Fort osteotomies, calvarialremodeling, and autologous grafting [3]. Even though these procedures reportedly offered immediate facial form Journal of Neonatal Surgery | Year: 2025 | Volume: 14 | Issue: 32s and functional enhancement, they were not without their limitations, which included relapse, morbidity of the donor site, limited tissue supply, as well as a failure to adapt to facial growth in children [4]. Moreover, traditional methods often required numerous revisions, at least in those patients with syndromic craniosynostosis or hypoplasia of the midface, where the inherent growth deficiency remained even after the correction [5]. Distraction osteogenesis (DO) introduced into craniofacial surgery was the paradigm shift in the method of skeletal reconstruction. DO was initially used to lengthen long bones by Gavriil Ilizarov in the 1950s, but was modified to work on craniofacial bones in the early 1990s by McCarthy and colleagues [6]. The technique entails a mechanical and controlled gradual separation of bone parts after a corticotomy or osteotomy. This facilitates new bone development in the gap made up by intramembranous ossification. At the same time, the surrounding soft tissues, such as skin, nerves, blood vessels, and muscles, experience adaptive elongation, which is known as distraction histogenesis [7]. DO is usually performed in three different stages, which are the latency stage, in which the healing process starts after the osteotomy (usually 3-7 days); the distraction stage, in which the bone segments are gradually pulled apart at a rate of 0.5-1mm/day; and the consolidation stage, in which the regenerate bone mineralizes and stabilizes [8]. The procedure enables major skeletal progressions without comprehensive grafting, increases stability, and reduces complications compared to conservative bone grafting procedures [9]. The primary benefit of DO is that it allows the natural development of the facial skeleton of a pediatric patient. DO enables progressive correction, unlike conventional osteotomies that need to be repositioned in a static manner, which is more in line with the dynamic process of facial growth [10]. This has been particularly useful in treating midface hypoplasia, mandibular deficiencies, cranial vault deformities, orbital dystopias observed in syndromic craniosynostoses, and congenital anomalies [11]. ### 2. Clinical Applications in Craniofacial Reconstruction #### Midface Hypoplasia Distraction osteogenesis (DO) has been revolutionary in treating midface hypoplasia, especially in syndromic craniosynostosis, e.g., Crouzon and Apert syndromes. It is done in stages of Le Fort III osteotomies, then gradual advancement with internal or external distractors in Table 1. The technique enables concomitant skeletal growth and soft tissue adaptation, enhancing functional results such as airway patency, eye protection, and occlusal alignment [12]. It has been proposed that relapse may occur in long-term studies, but the results tend to be generally positive of the correct distraction procedures are followed and followed up on [13]. Hypercorrection at initial distraction is usually advised to consider future growth deficiency and relapse propensity [14]. #### **Mandibular Deficiencies** Mandibular distraction is significant in treating micrognathia and glossoptosis in Pierre Robin Sequence. To treat airway obstruction in neonates, bilateral mandibular distraction osteogenesis is very effective as it moves the jaw forward to relieve the airway and the tongue forward [15]. The functional outcomes are decreased tracheostomy requirement, better feeding, and speech development [16]. After long-term follow-up, there is stable growth of the mandible but asymmetry, slight nerve damage, or secondary procedures may be seen in a small proportion of patients [17]. #### Orbital, Maxillary, and Zygomatic Reconstructions Orbital, maxillary, or zygomatic reconstruction is usually necessary to treat patients with post-traumatic deformities or congenital anomalies. DO allows for more accurate realignment of these bones through gradual segmental motion than is possible with traditional osteotomy. When the zygomatic hypoplasia or orbital dystopia is present, distraction corrects the facial profile, redefines the orbital volume, and may correct asymmetries without using bone grafts [18]. Custom distractors and 3D virtual planning have increased surgical precision and decreased postoperative complications, including infraorbital nerve damage and device displacement [19]. ## **Unilateral vs Bilateral Reconstructions** Bilateral and unilateral reconstructions are two different challenges in distraction osteogenesis. Unilateral DO, which is standard practice in hemifacial microsomia, must be planned to provide symmetry with the non-affected side, and in many cases, multi-vector distractors are used [20]. In severe mandibular hypoplasia or Pierre Robin Sequence, bilateral reconstructions are usually suggested, with a symmetrical lengthening of the mandible and a more balanced functional and aesthetic result [21]. Prolonged follow-ups revealed early bilateral DO positively impacts breathing, feeding, and craniofacial development in syndromic conditions [22]. Table 1. Clinical Applications of Distraction Osteogenesis in Craniofacial Reconstruction: Indications, Techniques, and Outcomes Across Age Groups | Clinical
Conditi
on | Examples
/
Syndrom
es | Anat
omic
al
Regio
n | Age
Group | DO
Type | Surgi
cal
Appr
oach | Distrac
tion
Device | Distr
actio
n
Rate | Bon
e
Gai
n | Functi
onal
Outco
me | Comm
on
Compli
cations | Clinical
Notes | |---|---|---|------------------------------------|-------------------------------------|--|--|------------------------------------|-----------------------------------|--|--|---| | Midfac
e
hypopl
asia | Crouzon,
Apert
syndrome | Maxil
la,
zygo
ma,
nasal
compl
ex | Pediatri
c to
adolesc
ent | Le Fort
III DO | Subcr
anial
osteot
omy | External /internal distract or | 0.5-1
mm/d
ay | 10–
15
mm | Impro
ved
airway
,
occlusi
on,
and
aesthet
ics | Device
failure,
relapse,
scarrin
g | Require
s long-
term
follow-
up for
growth
adaptati
on | | Mandi
bular
deficien
cies | Pierre
Robin
Sequence,
HFM | Mand
ibular
ramus
, body | Neonat
e to
adolesc
ent | Mandib
ular DO | Intrao
ral or
extra
oral
osteot
omy | Internal
distract
or | 1
mm/d
ay (2
× 0.5
mm) | 15–
25
mm | Airwa
y
impro
vemen
t,
feedin
g,
occlusi
on | Nerve
injury,
asymm
etry | Often
used in
airway
obstructi
on cases
in
neonates | | Orbital, maxilla ry, and zygoma tic reconst ruction | Traumatic
defects,
cleft
sequelae | Orbit
al
rim,
infrao
rbital
floor | Adoles
cents
and
adults | Segmen
tal DO | Custo
m
osteot
omies | Bone-
borne
distract
ors | 0.5
mm/d
ay | Vari
able
(5–
10
mm) | Facial
symm
etry,
orbital
volum
e
restora
tion | Device infectio n, scarrin g | Advanc ed planning with 3D imaging enhance s outcome s | | Unilate ral reconst ruction s | Hemifacia
l
microsomi
a | One
side
of the
face | Pediatri
c to
adult | Unilater
al
mandib
ular DO | Osteo
tomy
on the
affect
ed
side | Internal
distract
or | 1
mm/d
ay | 10–
20
mm | Impro
ved
symm
etry
and
functio
n | Overco
rrection
,
relapse | Overcor rection is often planned to accomm odate growth | | Bilater
al
reconst
ruction
s | Bilateral
mandibula
r
hypoplasi
a | Both
rami
and
corpu
s | Infants
to
adolesc
ents | Bilatera
l
mandib
ular DO | Bilate
ral
osteot
omy | External
/internal
distract
ors | 0.5
mm ×
2/day | Up
to
25
mm/
bon
e | Enhan
ced
airway
,
occlusi
on,
symm
etry | Pain,
device
misalig
nment | Critical in neonatal respirato ry support cases (e.g., PRS) | | Maxilla
ry
advanc | Cleft
lip/palate
with Class | Maxil
la | Adoles
cent to
adult | Le Fort I
DO | Intrao
ral Le
Fort I | Rigid
external
distract | 1
mm/d
ay | 8–
12
mm | Class
III
correct | VPI,
relapse | May
require
seconda | # Dr. Deepa Pande, Professor DR. Senthilnathan, Dr. Thennarasu A R, Silky bhargava, Nivashini Murugaraj, Dr. Rutvi V. Shah | ement | III | | | | osteot | or | | | ion,
speech
impro
vemen | | ry bone
grafting | |--|--|------------------------------------|----------------------------------|-----------------------------------|--|---|---|----------------------|---|--|---| | Midfac
e
advanc
ement
(growt
h stage) | Growing
CLP
children | Midfa
ce
suture
zones | 8–12 years | Trans-
sutural
DO
(TSDO) | Sutur
e-
based
tracti
on | OSNS-g
uided
TSDO
device | 0.5
mm/d
ay | 5-
10
mm | Avoid s osteot omy, promo tes sutural bone growth | Minima
l (less
invasiv
e) | Used increasi ngly for early interven tion in cleft-affected patients | | Post-
trauma
tic
facial
asymm
etry | Zygomati
c/maxillar
y fractures | Zygo
ma,
maxil
la | Adults | Segmen
tal
osteoge
nesis | Custo
mize
d
osteot
omy | Internal
distracti
on
system | Varia
ble | Vari
able | Re-
establi
shes
pre-
injury
symm
etry | Hardwa
re
exposur
e | Often
used
when
primary
repair is
subopti
mal | | Orbital
dystopi
a
correcti
on | Craniofaci
al
syndrome
s, trauma | Orbit
al
floor
& rim | Childre
n/adult
s | Orbitoz
ygomati
c DO | Orbit
al
segm
ent
osteot
omy | Internal
distract
or | 0.5–1
mm/d
ay | 6–
10
mm | Leveli
ng of
orbital
height
and
eye
alignm
ent | Eye movem ent restricti on (rare) | Require s delicate handling near orbital structure s | | Asymm
etry
correcti
on in
syndro
mic
cases | Hemifacia
l
microsomi
a (Grade
II/III) | Mand
ible,
zygo
ma | 5–18
years | Multipl
anar DO | Custo
m-cut
osteot
omy | Hybrid
distract
ors
(multi-
vector) | Varia
ble | 10-
20
mm | Signifi
cant
impro
vemen
t in
lower
third
symm
etry | Infectio
n,
relapse | Multidis
ciplinar
y
planning
essential | | Second
ary DO
after
failed
surgery | Post-
osteotomy
relapse | Maxil
la or
mandi
ble | Adoles
cents
and
adults | Re-do
DO | Scarr
ed
regio
n
distra
ction | Internal
device | Slow
er
rate
(0.5
mm/d
ay) | 5-
10
mm | Correc
tion of
relapse
, better
stabilit
y | Reduce
d
regener
ation
speed | Require s cautious handling of fibrotic tissues | | Pediatr
ic
syndro
mic DO
plannin
g | Treacher
Collins,
Nager
Syndrome | Midfa
ce
and
mandi
ble | 1–12
years | Staged
distracti
on | Age-
adapt
ed
plann
ing | External
/internal
based
on age | Varia
ble | Up
to
20
mm | Impro
ves
airway
,
aesthet
ics,
and
feedin
g | Growth
unpredi
ctabilit
y | Staging
helps
match
with
facial
growth
trajector
ies | #### 3. Complications and Challenges in Long-Term Follow-Up Distraction osteogenesis (DO) has transformed craniofacial reconstructive surgery, particularly in pediatric and syndromic patients in Table 2. Nevertheless, some complications and difficulties are to be considered in the long-term follow-up. DO has succeeded in craniofacial reconstruction, but significant complications are observed in the long-term follow-up. Problems with devices include loosening hardware, hardware breakage, and malfunction, particularly with external distractors, because of exposure errors and handling errors. Internal devices are more stable but can break, and reoperation becomes necessary. The incidence has been reported as 10-30 %, depending on the type of device and location [23,24]. Another common issue is infection, especially at pin sites, which happens in 10-15% of patients. Inadequate hygiene and long distraction are contributing factors. Fibrosis and scarring may not jeopardize the functioning. However, they may present long-term aesthetic difficulties and influence patient satisfaction [25,26]. In growing children, skeletal asymmetry (or overcorrection) may frequently occur because the vectors are not planned accurately, or children may not develop as predicted. These problems, which occur in up to 20 percent of patients, often require revision surgeries [27]. In addition, the success of the treatment depends on the patient's adherence. The inadequate compliance with the activation procedures and hygiene guidelines can result in complications, whereas psychosocial issues, including anxiety and dissatisfaction, particularly among adolescents, can also influence treatment outcomes [28,29]. In 20 40 percent of long-term follow-ups, secondary procedures such as orthognathic surgery or bone grafting are usually necessary. The patients of pediatric age are most susceptible to relapse because their facial form and structure are still developing; unless overcorrection is performed adequately, recurrence rates can be up to 30% [30,31]. Soft tissue resistance can limit bone movement, and incomplete osteogenesis or fibrous union may occur when rapid distraction or infection occurs [32]. Neurological damage, e.g., infraorbital or mental nerve damage (510%), is rare. Also, exposure of a device by thin soft tissue or inadequate vascularity may require repositioning or removal of the device [33,34]. In general, the long-term outcome will be based on comprehensive planning, timely management of complications, patient adherence, and an interdisciplinary approach. Clinicians should be ready to make some changes to achieve functional restoration and aesthetic harmony. Table 2.Summary of Complications and Challenges in Long-Term Follow-Up of Distraction Osteogenesis in Craniofacial Reconstruction | S.
N
o. | Complic ation | Descriptio
n | Repor
ted
Incide
nce | Risk
Factors | Timing | Manage
ment
Strategy | Impact
on
Outcom
e | Need
for
Revisi
on
Surger | Patient
Group
Affecte
d | Long-
Term
Progno
sis | |---------------|---|---|---------------------------------------|---|--|--|--|---------------------------------------|--|--| | 1 | Device-
related
complica
tions | Breakage,
loosening,
or
malfunctio
n of
internal/ex
ternal
distractors | 10–
30%
(varies
by
device | Device
type,
improper
placemen
t | During
the
distractio
n phase | Device
replacem
ent,
stabilizati
on,
reoperati
on | May
delay
treatment
, increase
morbidit
y | Yes | Childre
n,
adults | Good if
correcte
d early | | 2 | Infection | Local or deep infection around pin sites or osteotomy regions | ~10-
15% | Poor
hygiene,
prolonged
device
duration | Postoper
ative
(early-
late) | Antibioti
cs,
debridem
ent, and
early
device
removal | Can
jeopardiz
e bone
regenerat
ion | Someti
mes | All age groups | Favorab
le with
early
treatme
nt | | 3 | Fibrosis
and
scarring | Excessive
tissue
response
leading to
scarring or
fibrosis at | Comm | Excessive
movemen
t, poor
wound
healing | Late
postoper
ative | Physical
therapy,
scar
revision
surgery | May
impair
facial
symmetr
y and
mobility | Rare | Pediatri
c post-
distracti
on | Variabl
e, often
a
cosmeti
c issue | Journal of Neonatal Surgery | Year: 2025 | Volume: 14 | Issue: 32s # Dr. Deepa Pande, Professor DR. Senthilnathan, Dr. Thennarasu A R, Silky bhargava, Nivashini Murugaraj, Dr. Rutvi V. Shah | | | surgical
sites | | | | | | | | | |---|---|--|---|--|--|--|--|----------------|--------------------------------------|---| | 4 | Asymmet
ry or
overcorre
ction | Uneven
distraction
or
excessive
advancem
ent beyond
ideal
anatomical
targets | 5–20% | Improper
vector
planning,
patient
growth
changes | Consolid
ation &
growth
phase | Adjusted distraction vectoring, revision osteotom y | Aesthetic
and
functiona
l
challenge
s | Often | Growin
g
children | Relapse
risk is
higher
in
younger
patients | | 5 | Psychoso
cial
issues | Anxiety, depression , discomfort with appearanc e, or the treatment process | Not
quantif
ied;
signifi
cant | Adolesce
nce,
external
distractor
s | During
and post-
treatmen
t | Psycholo
gical
counselin
g, patient
support
programs | Impacts
complian
ce,
satisfacti
on | No | Adolesc | Improve
d with
early
support | | 6 | Patient
complian
ce | Poor
adherence
to device
activation
or hygiene
protocols | Variab
le | Age,
understan
ding of
protocol | Entire
treatmen
t
duration | Educatio n, regular follow- up, and caregiver involvem ent | Device
failure,
relapse
risk | Indirec
tly | Childre
n, the
elderly | High
relapse
without
complia
nce | | 7 | Secondar
y
procedur
es | Need for
further
osteotomy
, bone
grafting,
or
orthognath
ic
surgeries | 20–
40%
depend
ing on
age | Incomplet
e
correction
, relapse | Long-
term
follow-
up | Orthogna
thic
surgery,
fat grafts,
and
implant
adjustme
nts | Delays
the final
reconstru
ction | Yes | All age groups | Often
necessar
y in
syndro
mic
cases | | 8 | Soft
tissue
tension or
relapse | Soft tissue
resisting
bone
movement
or causing
post-
treatment
relapse | ~10% | Inadequat
e latency
phase,
fast
distractio
n rate | Post-
consolid
ation
phase | Soft
tissue
release,
slower
distractio
n rate | Compro
mises
skeletal
advance
ment | Someti
mes | Childre
n | Relapse
rate
reduced
with
techniq
ue
optimiz
ation | | 9 | Neurolog
ical
disturban
ces | Temporar
y or
permanent
nerve
injury
(e.g.,
infraorbita
l, mental
nerve) | 5–10% | Device
placemen
t near
nerve
paths | Immedia
te or
delayed
onset | Observati
on,
surgical
decompre
ssion if
needed | May
affect
sensation
or
function | Rare | Adults,
syndro
mic
patients | Often
resolves
over
time | | 1 | Device | Skin or | 3-7% | Thin | Mid-to- | Flap | May lead | Yes | Thin- | Variabl | | 0 | extrusion
or
exposure | mucosal
breakdow
n over the
device,
especially
internal
distractors | | tissue
coverage,
poor
vasculariz
ation | late
treatmen
t | coverage,
removal,
or
reposition
ing of the
device | to
infection
or
nonunion | | skinned
or
irradiat
ed
patients | е | |-----|---|---|------------------------------|--|---------------------------------------|--|--|-------|---|---| | 1 | Incomple
te bone
regenerat
ion | Fibrous
union or
incomplet
e
osteogenes
is at the
distraction
site | 5–15% | Poor osteotom y, fast distractio n, infection | Consolid
ation
phase | Bone grafting, prolonge d consolida tion period | Increases
the
failure
rate | Yes | Childre
n with
syndro
mes | Good
with
bone
grafting | | 1 2 | Growth-
related
relapse | Discrepan
cy as the
patient
grows,
particularl
y in
younger
children | Up to 30% in long-term cases | Early
surgery
without
overcorre
ction | Years
after the
distractio
n | Follow-
up
surgery,
orthodont
ics, and
growth
monitorin
g | Affects
facial
harmony
and
occlusion | Often | Childre
n under
10 | Higher
need for
long-
term
correcti
on | #### 4. Conclusion Distraction osteogenesis (DO) has dramatically changed craniofacial reconstructive surgery by providing a less invasive, dynamic, and growth-friendly alternative to standard osteotomies and bone grafting. It can improve both skeletal structure and soft tissue adaptation simultaneously. It has been instrumental in treating more complex conditions like midface hypoplasia, mandibular deficiencies, and orbital or zygomatic deformities. DO enables a gradual correction that follows the natural developmental trends in pediatric patients, requires fewer revision surgeries, and leads to better long-term functional and cosmetic results. The long-term follow-up depicts a potential complication, which includes device-related issues, infections, skeletal asymmetry, and secondary procedures requirements. The compliance of the patient and the careful planning of the surgery are essential to the best outcomes. In addition, long-term treatment's psychological and social effects should be considered, particularly in children and adolescents. With the development of technologies, such as 3D virtual surgical planning, custom distractors, and better biocompatible materials, the safety and accuracy of DO is increasing. A multidisciplinary treatment that integrates surgical skills with orthodontic, psychological, and rehabilitative therapy is necessary to guarantee functional reconstitution andesthetic balance of the patients who undergo DO to correct their craniofacial deformities. #### REFERENCES - [1] Mundinger GS, Rehim SA, Johnson O 3rd, Zhou J, Tong A, Wallner C, Dorafshar AH. Distraction Osteogenesis for Surgical Treatment of Craniosynostosis: A Systematic Review. Plast Reconstr Surg. 2016 Sep;138(3):657-669. doi: 10.1097/PRS.000000000002475. PMID: 27127836. - [2] Stricker G, Clifford E, Cohen LK, Giddon DB, Meskin LH, Evans CA. Psychosocial aspects of craniofacial disfigurement. A "State of the Art" assessment conducted by the Craniofacial Anomalies Program Branch, The National Institute of Dental Research. Am J Orthod. 1979 Oct;76(4):410-22. doi: 10.1016/0002-9416(79)90226-4. PMID: 386802. - [3] Posnick, J. C. (2000). Craniofacial and maxillofacial surgery in children and young adults. W.B. Saunders. - [4] Neovius E, Engstrand T. Craniofacial reconstruction with bone and biomaterials: review over the last 11 years. J Plast ReconstrAesthet Surg. 2010 Oct;63(10):1615-23. doi: 10.1016/j.bjps.2009.06.003. Epub 2009 Jul 3. PMID: 19577527. - [5] Nickenig, J., Zöller, J. E., & Kreppel, M. (2023). Indications and surgical technique for distraction osteogenesis of the alveolar bone for augmentation prior to insertion of dental implants. *Periodontology 2000*, 93(1), 327-339. https://doi.org/10.1111/prd.12524 - [6] McCarthy JG, Schreiber J, Karp N, Thorne CH, Grayson BH. Lengthening the human mandible by gradual distraction. Plast Reconstr Surg. 1992 Jan;89(1):1-8; discussion 9-10. PMID: 1727238. - [7] Ilizarov GA. The tension-stress effect on the genesis and growth of tissues: Part II. The influence of the rate and frequency of distraction. Clin Orthop Relat Res. 1989 Feb;(239):263-85. PMID: 2912628. - [8] Adejuyigbe B, Gharpure M, Wahle CF, Kallini JR. Distraction Osteogenesis: A Comprehensive Review. *Applied Biosciences*. 2024; 3(4):503-516. https://doi.org/10.3390/applbiosci3040032 - [9] Gosain AK; Plastic Surgery Educational Foundation DATA Committee. Distraction osteogenesis of the craniofacial skeleton. Plast Reconstr Surg. 2001 Jan;107(1):278-80. doi: 10.1097/00006534-200101000-00050. PMID: 11176641. - [10] Yu JC, Fearon J, Havlik RJ, Buchman SR, Polley JW. Distraction Osteogenesis of the Craniofacial Skeleton. Plast Reconstr Surg. 2004 Jul;114(1):1E-20E. doi: 10.1097/01.prs.0000128965.52013.95. PMID: 15220559. - [11] Lucchese A, Gherlone EF, Asperio P, Baena RR. The distraction osteogenesis in midfacial hypoplasia. J Craniofac Surg. 2014 May;25(3):831-4. doi: 10.1097/SCS.000000000000738. PMID: 24769612. - [12] Cho BC, Kyung HM. Distraction osteogenesis of the hypoplastic midface using a rigid external distraction system: the results of a one- to six-year follow-up. Plast Reconstr Surg. 2006 Oct;118(5):1201-1212. doi: 10.1097/01.prs.0000243563.43421.0b. PMID: 17016191. - [13] Shetye PR, Kapadia H, Grayson BH, McCarthy JG. A 10-year study of skeletal stability and growth of the midface following Le Fort III advancement in syndromic craniosynostosis. Plast Reconstr Surg. 2010 Sep;126(3):973-981. doi: 10.1097/PRS.0b013e3181e60502. PMID: 20463620. - [14] Mofid MM, Manson PN, Robertson BC, Tufaro AP, Elias JJ, Vander Kolk CA. Craniofacial distraction osteogenesis: a review of 3278 cases. Plast Reconstr Surg. 2001 Oct;108(5):1103-14; discussion 1115-7. doi: 10.1097/00006534-200110000-00001. PMID: 11604605. - [15] Payne SH, Brady CM, Mercury OA, Soldanska M, Hush SE, Xiang Y, Williams JK. Mandibular Distraction in Neonatal Pierre Robin Sequence: Is Immediate Extubation Both Feasible and Safe? Plast Reconstr Surg. 2022 Jun 1;149(6):1155e-1164e. doi: 10.1097/PRS.000000000000141. Epub 2022 Apr 12. PMID: 35413037. - [16] Denny A, Kalantarian B. Mandibular distraction in neonates: a strategy to avoid tracheostomy. Plast Reconstr Surg. 2002 Mar;109(3):896-904; discussion 905-6. doi: 10.1097/00006534-200203000-00011. PMID: 11884804. - [17] Scott AR, Tibesar RJ, Lander TA, Sampson DE, Sidman JD. Mandibular distraction osteogenesis in infants younger than 3 months. Arch Facial Plast Surg. 2011 May-Jun;13(3):173-9. doi: 10.1001/archfacial.2010.114. Epub 2011 Jan 17. PMID: 21242420. - [18] Swennen G, Schliephake H, Dempf R, Schierle H, Malevez C. Craniofacial distraction osteogenesis: a review of the literature: Part 1: clinical studies. Int J Oral Maxillofac Surg. 2001 Apr;30(2):89-103. doi: 10.1054/ijom.2000.0033. PMID: 11405458. - [19] Gateno J, Teichgraeber JF, Xia JJ. Three-dimensional surgical planning for maxillary and midface distraction osteogenesis. J Craniofac Surg. 2003 Nov;14(6):833-9. doi: 10.1097/00001665-200311000-00004. PMID: 14600624. - [20] Meazzini MC, Mazzoleni F, Gabriele C, Bozzetti A. Mandibular distraction osteogenesis in hemifacial microsomia: long-term follow-up. J Craniomaxillofac Surg. 2005 Dec;33(6):370-6. doi: 10.1016/j.jcms.2005.07.004. PMID: 16256360. - [21] Tibesar RJ, Sidman JD. Mandibular distraction osteogenesis in the pediatric patient. Curr Opin Otolaryngol Head Neck Surg. 2008 Dec;16(6):548-54. doi: 10.1097/MOO.0b013e3283177f81. PMID: 19005326. - [22] Zenha, H., Azevedo, L., Rios, L., Pereira, A., Pinto, A., Barroso, M. L., & Costa, H. (2012). Bilateral mandibular distraction osteogenesis in the neonate with pierre robin sequence and airway obstruction: a primary option. *Craniomaxillofacial trauma & reconstruction*, 5(1), 25–30. https://doi.org/10.1055/s-0031-1300960 - [23] Tsai, C. Y., Lee, Y. H., Wu, T. J., Lin, S. S., Lai, J. P., & Chang, Y. J. (2022). A Comparative Study of Skeletal and Dental Outcome between Transcutaneous External Maxillary Distraction Osteogenesis and Conventional Rigid External Device in Treating Cleft Lip and Palate Patients. *Journal of personalized medicine*, *12*(7), 1062. https://doi.org/10.3390/jpm12071062 - [24] Burns, H. R., Wang, D. S., Abu-Ghname, A., & Dempsey, R. F. (2023). Craniofacial Distraction Osteogenesis. *Seminars in plastic surgery*, 37(4), 253–264. https://doi.org/10.1055/s-0043-1776298 - [25] Liu, Z., Yang, J., Zhou, C., Liu, Y., & Luo, E. (2022). A bibliometric analysis of research on craniomaxillofacial distraction osteogenesis from 2000 to 2021. Frontiers in surgery, 9, 932164. ## Dr. Deepa Pande, Professor DR. Senthilnathan, Dr. Thennarasu A R, Silky bhargava, Nivashini Murugaraj, Dr. Rutvi V. Shah https://doi.org/10.3389/fsurg.2022.932164 - [26] Murakami T, Shigeki S. Pharmacotherapy for Keloids and Hypertrophic Scars. *International Journal of Molecular Sciences*. 2024; 25(9):4674. https://doi.org/10.3390/ijms25094674 - [27] Verlinden CR, van de Vijfeijken SE, Tuinzing DB, Jansma EP, Becking AG, Swennen GR. Complications of mandibular distraction osteogenesis for developmental deformities: a systematic review of the literature. Int J Oral Maxillofac Surg. 2015 Jan;44(1):44-9. doi: 10.1016/j.ijom.2014.09.007. Epub 2014 Oct 29. PMID: 25442740. - [28] Lefebvre A, Barclay S. Psychosocial impact of craniofacial deformities before and after reconstructive surgery. Can J Psychiatry. 1982 Nov;27(7):579-84. doi: 10.1177/070674378202700712. PMID: 7172158. - [29] Noel W, Bosc R, Jabbour S, Kechichian E, Hersant B, Meningaud JP. Smartphone-Based Patient Education in Plastic Surgery. Ann Plast Surg. 2017 Dec;79(6):529-531. doi: 10.1097/SAP.0000000000001241. PMID: 29053521. - [30] Akai, T., Yamashita, M., Shiro, T., Hamada, S., Maruyama, K., Iizuka, H., &Kuroda, S. (2022). Long-term Outcomes of Non-syndromic and Syndromic Craniosynostosis: Analysis of Demographic, Morphologic, and Surgical Factors. *Neurologia medico-chirurgica*, 62(2), 57–64. https://doi.org/10.2176/nmc.oa.2021-0101 - [31] Figueroa AA, Polley JW, Friede H, Ko EW. Long-term skeletal stability after maxillary advancement with distraction osteogenesis using a rigid external distraction device in cleft maxillary deformities. Plast Reconstr Surg. 2004 Nov;114(6):1382-92; discussion 1393-4. doi: 10.1097/01.prs.0000138593.89303.1b. PMID: 15509923. - [32] Ilizarov GA. The tension-stress effect on the genesis and growth of tissues. Part I. The influence of stability of fixation and soft-tissue preservation. Clin Orthop Relat Res. 1989 Jan;(238):249-81. PMID: 2910611. - [33] Zuo KJ, Heinelt M, Ho ES, Forrest CR, Zuker RM, Borschel GH. Dynamic Reconstruction of Facial Paralysis in Craniofacial Microsomia. Plast Reconstr Surg. 2022 Apr 1;149(4):919-929. doi: 10.1097/PRS.0000000000008927. PMID: 35171871. - [34] Turatti, G., Bruni, A., Savoini, M., Giordano, M., &Gerbino, G. (2019). Maxillomandibular Transverse Osteodistraction: A Multidisciplinary Case Report with 30-Month Follow-Up. *Case Reports in Dentistry*, 2020(1), 3856412. https://doi.org/10.1155/2020/38564 Journal of Neonatal Surgery | Year: 2025 | Volume: 14 | Issue: 32s