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ABSTRACT

The Helmbholtz partial differential equation has various applications in the different fields such as electromagnetics, quantum
mechanics, engineering, physics and its mathematical models power the technologies that are crucial in neonatal diagnostics,
imaging, simulation, and intervention planning making it an essential tool in the computational background of advanced
neonatal care. We present a novel approach to solving the Helmholtz equation using Triple Laplace Transform. An inversion
of triple Laplace transforms has been achieved numerically by employing the Brancik technique. Numerical results are
represented by graphically.
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1. INTRODUCTION

The Helmholtz equation, a fundamental partial differential equation in mathematical physics, plays a pivotal role in modeling
wave propagation and diffusion processes. In the context of neonatal surgery, where precision and minimal invasiveness are
critical, the Helmholtz equation underpins several advanced medical technologies. Its applications are particularly significant
in enhancing imaging modalities such as ultrasound and diffuse optical tomography, which are essential for diagnosing and
monitoring conditions in neonates. Furthermore, it contributes to computational modeling for brain activity monitoring,
acoustic simulations, and surgical planning. By enabling accurate simulation of tissue interactions and wave behaviors, the
Helmbholtz framework supports improved diagnostic accuracy and safer, more effective neonatal surgical interventions. This
paper explores these interdisciplinary applications, highlighting the equation's role in bridging mathematical theory and
clinical practice in neonatal care. Atangana [1] obtained solution of Mboctara equation by using Triple Laplace Transform
(TLT). The paper presents various properties and theorems related to this new operator and demonstrates its utility by solving
a specific class of Mboctara differential equations. Khan et al. [2] solved the fractional order two-dimensional heat problem
using the TLT. They introduced the method of the TLT to solve a class of fractional partial differential equations. They
specifically apply this method to the two-dimensional fractional-order homogeneous heat equation, utilizing the Caputo
fractional derivative. The paper demonstrates the application of this transform to obtain analytical solutions for the heat
equation under certain initial and boundary conditions. Numerical plots are provided to illustrate the behavior of the solutions.

Juraev et al. [3] solved the Helmholtz equation for the Cauchy problem and matrix factorizations in different spaces. The
authors discuss its significance in various physical contexts, including seismology, electromagnetic radiation, and acoustics.
In the study of water waves, the equation showed the transition to more general scattering problems. Alkhalifah et al. [4]
derived the wavefield solutions using machine-learning functions that were subject to Helmholtz equation constraints. This
research introduces a novel approach that leverages neural networks to solve the Helmholtz equation in wave propagation
studies. By incorporating the equation into the loss function, the neural network is trained to predict wavefield values at
specific spatial locations. The network utilizes automatic differentiation to compute partial derivatives, ensuring adherence
to the Helmholtz equation. The authors demonstrate the effectiveness of this method through experiments on models such as
a two-box-shaped scatterer and highlighting the potential of neural networks in geophysical wavefield modeling.

H. Cheng and M. Peng [5] established the solution of Helmholtz equation in three dimensions by employing the Improved
Element Free Galerkin (IEFG) Method. The authors employed the Moving Least Squares approximation to construct trial
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functions, which enhances computational efficiency and accuracy. The study further explores the impact of weight functions,
influence domain scale parameters, node distribution, and penalty factors on solution accuracy. Numerical results
demonstrated that the proposed IEFG method not only accelerates computation compared to the traditional Element-Free
Galerkin (EFG) method. Chai et al. [6] obtained the solution of Helmholtz equation by using the Extrinsic Enriched Finite
Element Method (EFEM). To enhance numerical performance, the authors propose an extrinsic EFEM that enriches the
standard linear approximation by trigonometric functions. This enrichment is realized using the partition of unity, effectively
capturing the oscillatory nature of solutions associated with higher wave numbers.

G. Bao et al. [7] examined the pollution effect and the viability of using the discrete singular convolution (DSC) technique
and a local spectral method to obtain the solution of Helmholtz equation. S. Gong et al. [8] explored decomposition
techniques for the Helmholtz problem using parallel overlapping Schwarz domains. P. Roland and S. Olivier [9] discretize
the Helmholtz equation using finite differences in space and solved by using Stochastic Galerkin method. Brancik [6]
developed the method of numerically inverting 3D NILT using a complicated Fourier series approximation. This research is
crucial for solving complex problems in engineering and physics. The proposed technique utilizes complex Fourier series
combined with the quotient-difference algorithm to achieve accurate and efficient inversion of 3D Laplace transforms. This
approach enhances the computational efficiency and accuracy of solving multidimensional problems involving Laplace
transforms.

2. BASIC EQUATIONS
Definition 1: The TLT of f (x, y, z) is defined as [1]

Lalf(xy, 0] = F(g,s,2) = [ f, J; e” @+ f(x,y, 2)dx dy dz, (1)
provided that the integral exists and q, s, a are complex numbers.

Definition 2: The Inverse TLT is defined as [1]
Ly {f(g,5,2)} = f(x,y,2) = —— [ ePdq = [ " eV ds L [ eF(q,5,2) da, )

i Yc—ioo 2mi Yd—ico 2mi Ye—ioo

where f(q, s, a) must be analytic for all g, s, a in the region defined by Re (q) = a,Re (s) = b, Re (a) = c for some a, b, ¢
are constants to be chosen suitably.

Theorem: If u(x,y,z) is any continuous function for x, y,z = 0 & L3[u(x,y,z)] = U(q, s,a). Then by [2]

an -1 .n-ij—1 @
LxLyLz [a?u(x, Y, Z)] = anU(q, S, a) - {1=01 an it 9z U(q, S, 0)’ (3)
o -1 .n—j-1 @
LyL,Ly [ﬁ u(x,y, Z)] =s"U(q,s,2) — Xi5y' s - U(q, 0,a), 4)
o -1 n-j-1 0
LoLyLy [75 UGy, 2)] = q"0(q,5,2) = ZI5 4" 7700, 5,2). ®)
The Helmholtz equation [3] is given by
(V2 +kHu=0, (6)

where V2 is the Laplacian operator and k is the wave number.

Equation (6) can be extended into three-dimensional Helmholtz equation as
9%u | 4%u (’iz_u

a2 F oz t oz HICUKY,2) =0, ()

!
where, k = 7,7\ is wavelength.

3. GENERAL PROCEDURE
The general method for applying the TLT to solve the three-dimensional Helmholtz Equation is presented in this section.
Consider equation (7) as

9%u 0%u

62
= W+a—zlzl+k2u(x,y, z) =0, (8)

Applying TLT on equation (8), we obtain

d a
q°U(qg,s,a) — qU(0,s,a) — &U(O, s,a) + s?U(g,s,a) —sU(q,0,a) — @U(q, 0,a) +a?U(q,s,a)
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—aU(q,s,0) — %U(q, s,0) + k?U(q,s,a) = 0,

[q? + s? + a% + k?] U(q,s,a) = qU(0,s,a) + %U(O, s,a) +sU(q,0,a) + (%U(q, 0,a) +aU(q,s,0) + %U(q, s,0),

QU(0,52)+55U(0,5,2)+5U(q,0,2) +3-U(q,0,2) +aU(G,5,0) +35U(a,5,0)

U(q' S, a) = q2+s2+a2+k? ’ (9)
Utilizing Inverse TLT on equation (9), we obtain
B qU(O,s,a)+6%U(0,s,a)+sU(q,0,a)+%U(q,0,a)+aU(q,s,0)+%U(q,s,0)

u(x,y,z) = L3t

(10)

q2+s2+a2+k? ’

Equation (9) represents the general solution in Laplace domain. To find an original function, an inversion of the TLT of the
solution obtained in equation (10) has been performed numerically by employing Brancik (2010) technique.

4. ILLUSTRATIVE EXAMPLES

The section focuses on providing basic examples to demonstrate the general procedure for the problems. We present graphs
to demonstrate the computational analysis of the relevant examples.

EXAMPLE 1:

9%u . 9%u

Consider —+—
ax2 = ay?

+az—u+k2u(x z)=0 (11)
922 ] y; ’
subject to following initial conditions
U(x,y,0) =xy,U(x,0,z) = xz,U(0,y,2) = yz,
a a ]
&U(O, s,a) = a—yU(q, 0,a) = ZU(q, s,0) =0. (12)

Applying TLT on equation (11) and using equations (3) — (5), we obtain
d d
[q? +s? +a% + k?] U(q,s,a) = qU(0,s,a) + &U(O, s,a) +sU(q,0,a) + a—yU(q, 0,a) + aU(q,s,0)

a
+£U(q, s,0),

[q® +s% +a* + k?*] U(q,s,a) = qU(0,s,a) +sU(q,0,a) +al(qg,s,0),
[q® + s + a% + k%] U(q,s,a) =ﬁ+;+ .

q2a? ' q2s2’

q?+s?+a? (13)
q?s%a?[q2+s2+a2+k?]’

U(g,s,a) =
Utilizing inverse TLT on equation (13), we obtain

u(x,y,z) = Lgl [q252

(14)

Equation (13) represents the general solution in the Laplace domain. An inversion of the TLT of the solution found in
equation (14) has been carried out numerically using the Brancik [10] technique in order to identify the solution in the original
domain.

q2+s2+a? ]
a2[q2+s2+a2+k2]l’

w104 Line Plot of 30 MNILT at y = 4.8387, z = 4.8387
T T T T T T T T

fix, y‘ixed, zf\xed)
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Figure 1: Solution of equation (14) by taking y =z = 4.8387
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Contour Plot of 3D NILT at z = 4.8387

.

X

Surface Plot of 30 NILT at z = 45357 i

Figure 3: Surface plot of equation (14) by taking z = 4.8387

EXAMPLE 2:

Consider
9%u  9%u |, 0%u 2 _
a?-'_ﬁ-l_a?-'—k u(x,y,z) =0, (15)
subject to following initial conditions
U (%,y,0) = sin(x) sin(y), U(x, 0,z) = sin(x) sin (z), U(0,y,z) = sin(y)sin (z),
a a a
&U(O,S,a) _a_yU(qIOIa) —EU(Q:S; 0) - 0 (16)
Applying TLT on equation (15) and using equations (3) — (5), we obtain

[q? + 5% +a% + k2] U(q,s,2) = qU(0,5,2) + 52 U(0,5,a) +sU(q,0,) +5-U(q, 0,a) +al(q,s,0) +5-U(q,s, 0),
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[q? + s? + a® + k2] U(q,s,a) = qU(0,s,a) + sU(q,0,a) + aU(q, s, 0),

1 1 1
(s2+1)(@%+1) = (q2+1)(@%+1) = (q2+1)(s2+1)’

[q%2 +s? +a% +k?] U(q,s,a) =

_ q%+s%+a%+3
U(q' S a) T (q2+1)(s2+1)(a2+1)[q2+s2 +a2+k2]’ (17)

If we take wave number A = 3.6276 then k? = 3.

Hence equation (17) becomes,
q2+52+az+3

(@2+1)(s?+1)(a%+1)[q2+s2+a2+3]’

1
U(g,s,a) = FOEID@ED (18)

U(qg,s,a) =

Equation (18) represents the general solution in Laplace domain. By applying inverse TLT on equation (18), we obtain

—_1-1 1
uy,2) = Ls [(q2+1)(52+1)(a2+1) ’ (19)
u(x,y,z) = sin(x) sin(y) sin(z). (20)

The nature of obtained solution i.e., equation (20) is presented graphically in figures 3 to 6.

Figure 5: 2D plot of solution of equation (20) by takingy =z = 0.5
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Figure 6: 2D surface plot of solution of equation (20) by taking y =z = 0.5

5. CONCLUSIONS

We have solved three-dimensional Helmholtz equation that arises in various fields such as electromagnetics, quantum
mechanics, engineering and physics in modeling wave propagation and diffusion processes. First, the Triple Laplace and
Inverse Triple Laplace transforms were used to determine the solution in Laplace domain and original domain. Additionally,
the suggested method's approximation strategy has been applied to get the numerical solutions. Numerical and graphical
results validate the efficiency of the proposed approach.
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