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ABSTRACT 

Introduction: Maternal health remains a critical global issue, with high mortality rates in low-resource areas due to delayed 

risk detection and limited healthcare access. Despite medical progress, preventable conditions like hypertensive disorders 

and gestational diabetes persist, highlighting the need for early diagnostic tools aligned with SDG 3. This study develops 

machine learning models using clinical data (e.g., blood pressure, glucose) to predict maternal risks, aiming to (1) identify 

key predictors, (2) evaluate model performance, and (3) support clinical decisions. Challenges include data privacy and 

quality. The methodology emphasizes preprocessing, model training (XGBoost, KNN), and interpretability for practical 

deployment, advancing AI-driven solutions for maternal care and SDG 3. Objectives: This study develops machine learning 

models to predict maternal health risks using clinical indicators like blood pressure and glucose levels. It compares XGBoost, 

KNN and Random Forest algorithms, evaluating their performance through accuracy, precision and recall metrics. The 

research identifies key predictive features while examining how data preprocessing affects results. The goal is to create an 

interpretable risk prediction tool that balances accuracy with clinical usability, particularly for low-resource settings. 

Implementation addresses data privacy compliance and EHR integration to support healthcare decision-making and improve 

maternal outcomes. Methods: The study utilized the Maternal Health Risk Dataset, comprising 1,014 entries with features 

like age, blood pressure, and blood sugar levels. Data preprocessing included outlier removal, encoding, and scaling. Three 

models—XGBoost, K-Nearest Neighbors (KNN), and Random Forest—were trained and evaluated using accuracy, 

precision, recall, and F1-score. Hyperparameter tuning was performed via GridSearchCV. Results: The Random Forest 

model outperformed others, achieving 86.70% accuracy with standardized full features. It excelled in identifying high-risk 

cases (96% precision, 95% recall). XGBoost followed closely (86.21% accuracy), while KNN lagged (80.30%). Partial 

feature sets reduced performance across all models. Conclusions: The Random Forest model is recommended for deployment 

due to its high accuracy and interpretability. Future work includes expanding datasets and integrating real-time EHR systems 

to enhance predictive capabilities and maternal healthcare outcomes. 

 

Keywords: machine learning; maternal health risk prediction; clinical decision support systems. 

1. INTRODUCTION 

Maternal health remains a pressing global challenge, with high mortality and morbidity rates disproportionately affecting 

low-resource regions. Despite medical advancements, approximately 295,000 pregnancy-related deaths occurred in 2017, 

primarily due to delayed risk identification and inadequate healthcare access (WHO, 2017; Yunida, 2022). Hypertensive 

disorders and gestational diabetes exemplify preventable risks that underscore the need for early detection tools aligned with 

UN Sustainable Development Goal 3 (SDG 3) targets (Mu et al., 2023). This study addresses this gap by developing machine 

learning models to predict maternal health risks using clinical indicators like blood pressure and glucose levels. 
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The research pursues three objectives: (1) identifying critical risk predictors to enable targeted interventions, (2) comparing 

model performance across accuracy and interpretability metrics, and (3) delivering actionable insights for clinical decision-

making. However, challenges include ensuring data privacy (HIPAA/GDPR compliance), managing dataset quality, and 

balancing model complexity with healthcare usability. 

Methodologically, the research follows a structured pipeline—data preprocessing (outlier handling, feature scaling), model 

development (XGBoost, KNN, Random Forest), and deployment—to create a clinically viable solution. By prioritizing 

interpretability alongside predictive power, this work aims to equip healthcare providers with a reliable tool for proactive 

maternal risk management, ultimately reducing preventable complications. The findings contribute to both AI applications 

in public health and the operationalization of SDG 3 in maternal care systems. 

2. OBJECTIVES 

This research aims to develop machine learning models for early prediction of maternal health risks to address critical gaps 

in healthcare accessibility and risk identification. The study focuses on analyzing clinical indicators such as blood pressure, 

glucose levels, and age to determine their predictive significance for classifying maternal health risks into low, mid, and high 

categories. Feature importance analysis and correlation metrics are employed to prioritize key variables that enable targeted 

clinical interventions. 

The study evaluates and compares three machine learning algorithms - XGBoost, KNN, and Random Forest - using 

standardized performance metrics including accuracy, precision, recall, and F1-score. A critical examination is conducted 

on how data preprocessing techniques like outlier removal and feature scaling, along with feature completeness in full versus 

partial datasets, impact model performance and reliability in risk prediction. 

The research seeks to translate technical findings into clinically actionable tools by developing an interpretable and 

deployable risk prediction system. This system is designed to balance predictive accuracy with practical usability, particularly 

for healthcare providers in resource-limited settings. Implementation considerations are thoroughly addressed, focusing on 

compliance with data privacy regulations like HIPAA and GDPR, as well as exploring pathways for integration with existing 

electronic health record systems to enhance clinical workflow and decision-making. 

3. METHODS 

Dataset Understanding 

The dataset used in this analysis is the Maternal Health Risk Dataset, which consists of 1014 entries and 7 columns: Age, 

SystolicBP (Systolic Blood Pressure), DiastolicBP (Diastolic Blood Pressure), BS (Blood Sugar), BodyTemp (Body 

Temperature), HeartRate, and RiskLevel. This dataset is crucial for predicting maternal health risks, which can be used to 

improve maternal healthcare outcomes by identifying high-risk cases early on (UCI Machine Learning Repository, 2023). 

 To gain deeper insights into the dataset, data visualization techniques were employed. These visualizations help identify 

patterns, trends, and potential anomalies that might not be apparent from summary statistics alone. 
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Figure 2: Histogram Data Visualization 

 Histograms were created for each numerical feature to visualize their distribution. As shown in Figure 2, the histogram for 

Age revealed that the majority of patients are between 20 and 40 years old, with a peak around 25-30 years. SystolicBP and 

DiastolicBP histograms showed that most blood pressure readings cluster around 120 mmHg and 80 mmHg, respectively, 

with some outliers indicating variability in blood pressure among patients. The Blood Sugar (BS) levels displayed a right-

skewed distribution, with most values ranging between 6 and 10 mmol/L, highlighting potential cases of gestational diabetes. 

Body Temperature readings were tightly clustered around 98°F, as expected, with a few higher readings potentially indicating 

fever. The Heart Rate histogram showed a distribution centered around 70-80 beats per minute, within the normal range, 

with lower and higher values suggesting variability in cardiovascular conditions among the patients. 

  

Figure 3: Age, SystolicBP, DiastolicBP with Outliers 

 Histograms were created for each numerical feature to visualize their distribution, with red dashed lines indicating the IQR 

bounds (lower and upper bounds based on the Interquartile Range, IQR). This visualization provides an initial sense of the 

data spread and helps detect outliers that lie beyond the normal data distribution. 
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Figure 4: BS, BodyTemp, DiastolicBP with Outliers 

 The analysis revealed distinct distributions across key maternal health indicators. Age data showed a predominant 20-40 

year range (peak: 25-30 years), with outliers defined as ages >69 years. Blood pressure metrics demonstrated: (1) SystolicBP 

clustered at 120 mmHg (outliers >150 mmHg, suggesting hypertension), and (2) DiastolicBP centered at 80 mmHg without 

significant outliers (upper bound: 127.5 mmHg). Blood sugar levels (BS) exhibited right-skewed distribution (6-10 mmol/L 

normal range), with values >9.65 mmol/L flagged as potential gestational diabetes cases. Physiological measures showed 

expected patterns: Body Temperature tightly distributed around 98°F and Heart Rate normally distributed at 70-80 bpm 

(outliers >95 bpm). Categorical RiskLevel data contained no outliers. 

As shown in Figure 3-4, outlier detection employed standard IQR methodology (LB = Q1-1.5×IQR; UB = Q3+1.5×IQR), 

visually represented by red dashed boundaries. All out-of-range values were excluded to prevent analytical distortion. 

 

Figure 5: Age, SystolicBP, DiastolicBP with without outliers 

 Following the application of the IQR method and the removal of outliers, updated histograms were plotted (Figure 2). These 

histograms displayed a cleaner distribution for each feature, with no extreme values beyond the established IQR boundaries. 

 

Figure 6: BS, BodyTemp, DiastolicBP without Outliers 

 As shown in Figure 5, for Age, patients older than 69 were removed, resulting in a distribution more concentrated around 

the 20-40 age group. The SystolicBP values now predominantly centered around 120 mmHg, with no values exceeding 150 
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mmHg after the removal of outliers. As shown in Figure 6, the BS histogram, after the removal of values above 9.65 mmol/L, 

focused on typical blood sugar ranges, highlighting the tighter distribution of normal values. Body Temperature was similarly 

tightened, removing slight deviations above 98°F, while Heart Rate values were cleaned to reflect a normal range of 70-80 

bpm after the removal of higher values. 

 

Figure 7 : Heatmap variables 

As observed in the heatmap (Figure 7), The heatmap and correlation matrix revealed significant relationships between clinical 

variables. Systolic and diastolic blood pressure showed strong collinearity (r≈0.79), reflecting their physiological 

interdependence while potentially introducing multicollinearity in predictive modeling. A moderate association emerged 

between age and blood sugar levels (r≈0.47), indicating elevated glucose measurements in older patients - a clinically relevant 

pattern for gestational diabetes risk stratification. These correlations informed feature selection by identifying both redundant 

variables requiring careful handling and meaningful demographic-metabolic relationships crucial for risk prediction. 

The study identified notably weak correlations (r<0.3) between heart rate, body temperature and other clinical variables. 

These minimal associations suggest these vital signs operate independently of core cardiovascular and metabolic indicators 

in the dataset. While demonstrating limited predictive value for the primary health outcomes, their inclusion in modeling 

requires careful consideration as they may capture unique physiological signals not reflected in other measurements. This 

finding proved particularly valuable for feature selection, helping distinguish between redundant variables and those offering 

independent information for risk prediction. 

Data preparation 

Data preparation transforms raw data into an analysis-ready format by addressing inconsistencies, outliers, and other quality 

issues that may affect model performance. Key steps include: data cleaning, outlier handling, categorical encoding, feature 

scaling, and train-test splitting. 

Outliers Checking 
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Figure 10: Boxplots After Outlier Removal 

 The boxplots in Figure 8 visually confirm that outliers have been successfully removed from the dataset, ensuring that the 

data is now clean and better suited for predictive modeling. By eliminating extreme values, we improve the reliability and 

accuracy of the analysis, particularly in identifying trends and relationships related to demographic and cardiovascular health 

factors. The cleaned data distribution provides a more accurate representation of the patient population, allowing for more 

meaningful and interpretable results in maternal health risk prediction. 

Data Splitting 

 

Figure 11: Label Encoding of Risk Level 

 As shown in figure 11, label encoding transforms the RiskLevel categories into integer values: 0 for 'low risk', 1 for 'mid 

risk', and 2 for 'high risk'. This transformation ensures that the categorical data is now represented numerically, making it  

compatible with machine learning algorithms. This step is crucial for ensuring that the model can process and learn from the 

risk levels associated with each patient. 

 

Figure 12: Variable after min max scaling 

 As shown in figure 11, the numerical features were successfully rescaled to fall within the 0 to 1 range. 

Feature scaling was applied to standardize the numerical features (Age, SystolicBP, DiastolicBP, BS, BodyTemp, and 

HeartRate) using min-max normalization, transforming them to a consistent [0,1] range to prevent variables with larger scales 

from disproportionately influencing the model. This preprocessing step ensures equitable feature contribution and enhances 

learning efficiency, particularly for gradient-dependent algorithms like neural networks and support vector machines where 

input magnitude significantly affects performance. The standardized dataset maintains clinical relevance while optimizing 

model convergence and predictive accuracy. 

The final step in data preparation is splitting the dataset into training and testing sets. This step is essential for evaluating the 

model's performance on unseen data, which helps to prevent overfitting and assess the model's generalizability. The dataset 

was split using an 80-20 ratio, where 80% of the data was used to train the model, and the remaining 20% was reserved for 

testing. 

Modeling 

Modeling is the core of predictive analytics, where we apply machine learning algorithms to the prepared dataset to predict 

outcomes and extract insights. In this section, we will explore several models, discussing their theoretical background, 

implementation, and performance evaluation. 

XGBoost (Extreme Gradient Boosting) is a high-performance machine learning algorithm particularly effective for modeling 

complex, non-linear relationships in data (Chen & Guestrin, 2016; Tarwidi et al., 2023). For this maternal health risk 

prediction task - classifying outcomes as low, mid, or high risk - we selected XGBoost for its superior ability to capture 

intricate feature interactions characteristic of medical data, outperforming simpler models like Logistic Regression in 

handling such complex patterns. 

KNN (K-Nearest Neighbors) is a non-parametric classification algorithm that predicts outcomes based on data point 

similarity (Roudak et al., 2024). Applied to our three-class maternal risk prediction task (low/mid/high risk), KNN provides 

a distribution-free approach that captures local data patterns through proximity-based classification (Jin et al., 2023). Its 

simplicity and ability to model complex, non-linear decision boundaries (Bolandraftar et al., 2013) offer a valuable contrast 

to parametric methods like Logistic Regression. 

Random Forest is an ensemble method that aggregates predictions from multiple decision trees to enhance accuracy while 

mitigating overfitting (Grillone et al., 2020). For our three-tier maternal risk classification (low/mid/high), this approach 

proves particularly effective for handling the complex feature interactions in medical data (Khan et al., 2024). By combining 
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numerous weak learners, Random Forest achieves superior predictive performance compared to single decision trees, while 

maintaining robustness against noisy clinical measurements. 

4. RESULTS 

Comparison of Models 

Must be presented in the form of text, tables and illustrations. The contents of the tables should not be all repeated in the text. 

Instead, a reference to the table number may be given. Long articles may need sub-headings (mentioned on page1 as 

Subdivisions) within some sections to clarify their contents. 

5. DISCUSSION 

Partial Feature Selection 

Table 1: The key metrics of the models 

Model Accuracy Precision 

(Macro) 

Recall 

(Macro) 

F1-Score 

(Macro) 

Standardized Data (Full Features) 

XGBoost (Full Features - Standardized) 86.21% 87% 87% 87% 

KNN (Full Features - Standardized) 80.30% 81% 82% 81% 

Random Forest (Full Features - Standardized) 86.70% 88% 88% 87% 

Standardized Data (Partial Features) 

XGBoost (Partial Features - Standardized) 67.98% 69% 69% 69% 

KNN (Partial Features - Standardized) 68.47% 71% 68% 69% 

Random Forest (Partial Features - 

Standardized) 

69.46% 70% 71% 70% 

Non-Standardized Data (Raw Data - Full Features) 

XGBoost (Full Features - Raw Data) 85.71% 87% 86% 86% 

KNN (Full Features - Raw Data) 68.47% 71% 68% 69% 

Random Forest (Full Features - Raw Data) 86.21% 87% 87% 87% 

Non-Standardized Data (Raw Data - Partial Features) 

XGBoost (Partial Features - Raw Data) 70.44% 72% 71% 71% 

KNN (Partial Features - Raw Data) 59.61% 61% 60% 60% 

Random Forest (Partial Features - Raw Data) 67.00% 69% 67% 68% 

Table 1 shows that the models' performance in predicting maternal health risks varies across key evaluation metrics including 

accuracy, precision, recall, and F1-score. These metrics provide critical insights into each model's classification effectiveness 
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for high, mid, and low-risk categories, enabling identification of the optimal model for clinical deployment. 

 Table 2: The full and Partial Features of the models 

Model Standardized Data 

- Accuracy (%) 

Non-Standardized 

Data - Accuracy 

(%) 

Standardized Data 

- F1-Score (Macro) 

(%) 

Non-Standardized 

Data - F1-Score 

(Macro) (%) 

XGBoost 

(Full 

Features) 

86.21 85.71 87 86 

KNN (Full 

Features) 

80.30 68.47 81 69 

Random 

Forest (Full 

Features) 

86.70 86.21 87 87 

XGBoost 

(Partial 

Features) 

67.49 70.44 68 71 

KNN (Partial 

Features) 

68.47 59.61 69 60 

Random 

Forest (Partial 

Features) 

69.46 67.00 70 68 

Table 2 shows that all models experienced significant performance degradation with partial feature sets across both 

standardized and non-standardized data conditions, underscoring the necessity of comprehensive clinical datasets for 

accurate risk stratification. Notably, XGBoost exhibited greater robustness with raw data compared to its standardized partial 

feature performance, while Random Forest and KNN demonstrated stronger dependence on feature standardization. These 

findings particularly highlight the challenges in differentiating mid- and low-risk cases when working with reduced feature 

sets, emphasizing the clinical importance of maintaining complete patient data for reliable predictions. 

In conclusion, the Random Forest model with full feature sets demonstrates optimal performance for clinical deployment, 

achieving 86.70% accuracy while maintaining superior interpretability. Its ensemble approach provides reliable predictions 

across all risk categories, with decision tree structures that offer transparent clinical insights - crucial for healthcare 

compliance and patient care. XGBoost emerges as a competitive alternative (86.21% accuracy), particularly excelling in 

high-risk detection (93% precision, 91% recall). While its predictive capability is marginally stronger, the model's relative 

complexity may limit adoption in settings requiring maximum interpretability. KNN shows limited applicability due to its 

sensitivity to data preprocessing and feature completeness. The algorithm's performance constraints make it less suitable for 

nuanced maternal risk stratification compared to ensemble methods. For healthcare implementation, Random Forest provides 

the ideal balance of accuracy and explainability. XGBoost remains valuable for specialized high-risk screening where 

maximum detection sensitivity justifies accepting greater model complexity. 

6. DISCUSSION 

The partial feature set (Age, SystolicBP, DiastolicBP) was selected for its ability to capture essential demographic and 

cardiovascular predictors of maternal health risk. This choice balanced feature importance rankings, target variable correlatio 

n (RiskLevel_encoded), and practical model considerations like interpretability and generalizability. 
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Figure 8: 

  

The RandomForest feature importance analysis in Figure 8 reveals blood sugar (BS) as the most significant predictor (0.352) 

of maternal health risk, followed by systolic blood pressure (0.193), age (0.159), and diastolic blood pressure (0.127). 

Correlation analysis with the target variable (RiskLevel_encoded) further confirms BS's dominant predictive value (-0.480 

correlation), exceeding diastolic BP (-0.285), age (-0.212), and systolic BP (-0.209). Despite BS demonstrating both the 

highest feature importance and strongest correlation, it was deliberately excluded from the final feature set due to several 

critical considerations regarding model robustness and clinical applicability. 

The exclusion of blood sugar (BS) from the final feature set was a deliberate choice despite its strong predictive performance 

(feature importance: 0.352; correlation: -0.480). 

To prevent model overfitting and enhance generalizability. While BS showed excellent predictive power in our dataset, its 

inherent biological variability across populations could compromise model robustness. Age and blood pressure 

measurements (SystolicBP: 0.193, DiastolicBP: 0.127) provide more stable, universally applicable predictors of 

cardiovascular and demographic risks. 

To optimize clinical utility. Blood pressure and age data are routinely collected in standard prenatal care, unlike BS 

measurements which require specialized testing. This makes our model more practical for real-world deployment across 

diverse healthcare settings. 

To maintain model parsimony. BS showed significant correlation with existing blood pressure features (SystolicBP: -0.209, 

DiastolicBP: -0.285), potentially introducing redundant information. The selected triad of Age, SystolicBP and DiastolicBP 

provides comprehensive coverage of distinct risk dimensions without feature overlap. 

This balanced approach yields a clinically interpretable model that captures fundamental physiological relationships while 

maintaining strong predictive performance across populations. The feature set aligns with established medical knowledge 

about maternal health determinants, ensuring both scientific validity and practical applicability in clinical decision-making. 

Several limitations were identified in this study. The restricted dataset size and limited demographic coverage may affect 

model generalizability. Future work should incorporate more diverse samples and additional clinically-relevant features (e.g., 

BMI, genetic markers, socioeconomic factors) to improve predictive robustness. The model showed reduced performance in 

minority class prediction (mid/low-risk cases), suggesting need for improved class imbalance techniques. Implementation of 

advanced methods like cost-sensitive learning or hybrid sampling approaches could enhance classification accuracy across 

all risk categories. Current system limitations include lack of EHR integration for real-time monitoring. Future development 

should prioritize seamless EHR connectivity to enable continuous risk assessment throughout pregnancy, along with cloud-

based deployment for broader accessibility. 

7. CONCLUSION 

This research focused on predicting maternal health risks based on key health indicators and has been a comprehensive and 

successful exploration of machine learning techniques in healthcare. We meticulously prepared the dataset, addressing 

critical issues such as removing duplicates, handling outliers, and transforming categorical data into a numerical format using 

label encoding. This careful data preprocessing set the foundation for training and optimizing several machine learning 

models, including K-Nearest Neighbors (KNN), XGBoost, and Random Forest. Among these, the Random Forest model 

emerged as the most effective, delivering superior results in terms of accuracy, precision, recall, and F1-score, making it the 

ideal choice for our predictive task. 

The Random Forest model proved to be highly efficient in handling complex health data, providing accurate predictions of 

maternal health risks based on features such as age, blood pressure, blood sugar levels, body temperature, and heart rate. Its 

ensemble approach gave it an edge in managing both imbalanced datasets and non-linear relationships between features. 

Through GridSearchCV, we fine-tuned the hyperparameters of the model, such as the number of estimators, depth, and 
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minimum samples per split, significantly enhancing its performance. Additionally, the use of SMOTE helped in balancing 

the classes, improving the model’s ability to correctly classify mid-risk and low-risk cases. 

Another limitation lies in the model’s struggle with predicting minority classes, particularly mid-risk and low-risk cases. 

Further exploration of cost-sensitive learning or alternative resampling techniques may improve the model’s ability to address 

class imbalance. In addition, the deployment currently lacks real-time data integration with electronic health record (EHR) 

systems, which would allow continuous monitoring and real-time updates on maternal health throughout pregnancy. 

Future improvements could also focus on increasing model explainability by incorporating interpretability tools like SHAP 

(Shapley Additive Explanations). While Random Forest provided accurate predictions, its complexity, like other ensemble 

methods, can make it challenging for healthcare professionals to understand the reasoning behind each decision. Enhanced 

explainability would increase trust in the model, making it more practical for healthcare providers. 

Several future directions offer opportunities for growth. The first is real-time integration with hospital and clinic EHR 

systems, enabling continuous monitoring of patient data. Cloud-based or mobile integration would further extend access to 

under-resourced regions, where infrastructure and computational power are limited. Creating a patient-facing mobile app 

would also empower pregnant women to monitor their health and receive timely advice, fostering proactive healthcare 

management..Lastly, using longitudinal data to track patient progress throughout pregnancy would allow for more 

personalized and accurate risk predictions. 
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