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ABSTRACT 

The concept of domination is an important part of graph theory. The edge signal domination is a parameter that takes into 

account the degree of vertices as well as the edge coverage in graphs which are crucial in the field of networking. 

Transformation graph is a concept in mathematics that primarily focuses on the structural change and behavior by applying 

graph-theoretic transformations to the graphs. It is mainly used in fields like computational modelling, biological model 

systems and other fields. In this article, we rely on the edge signal domination parameter and identify the parametric values 

for three distinct operations on graphs namely line graph, middle graph and corona product in some common graph families. 
 

Keywords: Edge Signal domination number, Line graph, Middle graph and Corona product graph. 

1. INTRODUCTION 

The concept of line graph was introduced by the mathematician Abraham Albert in the year 1911 in a paper titled "A Graph-

theoretical Definition of the Line Graph". He realised that a graph could be transformed into a new graph by considering the 

edges of the original graph as vertices in a new graph with adjacency defined by shared vertices of edges in the original 

graph. It was widely studied in the 1970s and onwards as a result of increasing interest in graph algorithms and network 

theory. Researchers began to explore how line graphs could be used in practical applications like network design, scheduling, 

graph coloring, computer networks, parallel processing, and database theory. During the late 20th and early 21st centuries, 

line graphs found applications in bioinformatics, social network analysis and graph-based machine learning. 

The concept of the middle graph was formally introduced in the 1970s. In particular, the middle graph operation was 

recognized as a graph transformation that transforms the structure of a graph by subdividing edges.  Researchers began to 

investigate how this transformation affects graph properties such as planarity, graph coloring and connectivity. The process 

of subdividing edges proved to have significant effects on graph properties often simplifying or complicating certain aspects 

like connectivity or coloring. 

In 1967, while investigating novel operations on graphs, L. Roussopoulos proposed the Corona product in graph theory.  His 

objective was to investigate methods for creating new graphs from pre-existing ones with an emphasis on creating graphs 

with special qualities.  The Corona product was designed to create more intricate structures that could be examined for their 

combinatorial characteristics in addition to just combining graphs. The Corona product is an interesting and useful graph 

operation where two graphs are combined in a way that enhances their structure. It is applied in designing communication 

networks and parallel computing architectures, where the structure of a graph can represent the connectivity of nodes or 

processors in a system. 

The concept of distance plays a major role in graph theory. The distance between any two vertices 𝑢 and 𝑣 in a graph 𝐺 is 

the minimum number of edges in a path from 𝑢 to 𝑣. The shortest possible path between any two vertices in a graph is known 

as geodesic and the length of the shortest path is called as the geodetic distance. This is essentially the minimal path in terms 

of the number of edges.  A detour is a path between two vertices that is longer than the geodesic and its length is considered 

as detour distance refer to [5]. Later in the year 2010, K.M. Kathiresan [10] introduced signal distance which uses the degree 

of vertices in a graph along with the geodesic to find the shortest route. Further research on signal distance evolved it into 

signal number and edge signal number refer to [2] and [3] respectively. For further study regarding the distances, refer to 

[4]. 
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Following the lead, Jachin Samuel. S and S. Angelin Kavitha Raj studied the signal number and introduced new combination 

of domination and signal number known as the signal domination number refer to [7]. This was because domination theory 

plays a major role in every day-to-day activity. In a graph 𝐺, a subset 𝐷 of 𝑉 is said to be a dominating set of 𝐺 if every 

vertex in 𝑉 − 𝐷 is adjacent to at least one vertex in 𝐷 and the minimum cardinality of 𝐷 is called as the domination number 

of 𝐺. For a detailed study on dominating sets, refer to [13]. Later, edge signal domination number came into existence due 

to its coverage of the entire graph refer to [9]. In this paper, we study the properties of edge signal domination number and 

implement them to find out their values in certain transformation graphs like line graph, middle graph and corona product 

graph. For graph terminologies, refer [6]. Throughout the paper, we consider 𝐺 to be a connected graph. 

2. PRELIMINARIES 

Definition 2.1. [12] The signal distance 𝑑𝑆𝐷(𝑢, 𝑣) between the vertices 𝑢 and 𝑣 in a graph 𝐺 is defined as 𝑑𝑆𝐷(𝑢, 𝑣) =
𝑚𝑖𝑛

𝑆
{𝑑(𝑢, 𝑣) + (deg(𝑢) − 1) + (deg(𝑣) − 1) +  ∑ (deg(𝑤) − 2)𝑤∈𝑢−𝑣 }, where 𝑆 is a path between the pair of vertices 𝑢 

and 𝑣, 𝑑(𝑢, 𝑣) is the length of the path 𝑆  and 𝑤 indicates the internal vertices of 𝑆. The signal path between 𝑢 and 𝑣 is called 

as the geosig path. 

Definition 2.2. [2] The subset 𝑆(𝐺) ⊆ 𝑉(𝐺) is called the signal set if every vertex in 𝐺 lies in a geosig path between the 

vertices in 𝑆 and its smallest cardinality is known as signal number. It’s annotation is 𝑠𝑛(𝐺). 

Definition 2.3. [8] The subset 𝑆 ⊆ 𝑉 is called the edge signal set if every edge lies in some geosig path between the vertices 

in 𝑆 and 𝑆 with least elements is called the edge signal number of a graph. It is denoted by 𝑠𝑛1(𝐺). 

Definition 2.4. [3] A subset of 𝑉 is called a signal dominating set if it is a dominating set as well as a signal set. The smallest 

size of all the signal dominating sets is recognized as signal domination number and is denoted by 𝛾𝑠𝑛(𝐺).  

Definition 2.5. [9] A subset 𝑆 ⊆ 𝑉 is called an edge signal dominating set if 𝑆 forms a dominating set and an edge signal 

basis set. The edge signal dominating set with the least size is called the edge signal domination number and it is denoted by 

𝛾𝑒𝑠(𝐺).  

Definition 2.6. [14] Let 𝐺 be a loop-less graph. We construct a graph 𝐿(𝐺) in the following way: The vertex set of 𝐿(𝐺)  is 

in one to one correspondence with the edge set of 𝐺 and two vertices of 𝐿(𝐺)  are joined by an edge if and only if the 

corresponding edges of 𝐺 are adjacent in 𝐺. The graph 𝐿(𝐺) is called the line graph or the edge graph of 𝐺. 

Definition 2.7. [1] The middle graph 𝑀(𝐺) of a graph 𝐺 is the graph whose vertex set is 𝑉(𝐺)  ∪  𝐸(𝐺) and two vertices 

𝑥, 𝑦 in the vertex set of 𝑀(𝐺) are adjacent in 𝑀(𝐺) if one of the following conditions holds. 

1. 𝑥, 𝑦 ∈  𝐸(𝐺) and 𝑥, 𝑦 are adjacent in 𝐺. 

2. 𝑥 ∈  𝑉(𝐺), 𝑦 ∈  𝐸(𝐺) and 𝑥, 𝑦 are incident in 𝐺. 

Definition 2.8. [11] The corona product of two graphs G and H denoted by 𝐺 ∘ 𝐻 is a graph operation defined as the graph 

obtained by taking one copy of G and |V(G)| copies of H and joining the ith vertex of G to every vertex in ith copy of H.  

3. MAIN RESULTS 

3.1 Line Graphs 

In this section, we indulge in transforming some standard graphs into their corresponding edge graph using the line graph 

transformation and find out their edge signal domination number in a detailed way. 

Theorem 3.1.1. The edge signal domination number of path graph 𝑃𝑛 subjected to line graph transformation is 𝛾𝑒𝑠(𝐿(𝑃𝑛)) =

⌈
𝑛+1

3
⌉. 

Proof. Since the line graph transformation of 𝑃𝑛 is 𝑃𝑛−1, the result is obvious. 

Theorem 3.1.2. For any cycle 𝐶𝑛 with 𝑛 ≠ 3, 5 the edge signal domination number after applying the middle graph 

transformation is 𝛾𝑒𝑠(𝐿(𝐶𝑛)) = ⌈
𝑛

3
⌉. 

Proof. Since 𝐿(𝐶𝑛) ≅ 𝐶𝑛, the proof is obvious. 

Theorem 3.1.3. The edge signal domination number determined after undergoing the process of line graph transformation 

of star graph is given by 𝛾𝑒𝑠 (𝐿(𝐾1,𝑛)) = 𝑛. 

Proof. In accordance with the line graph transformation, we obtain a relation 𝐿(𝐾1,𝑛)  ≅ 𝐾𝑛 and so 𝛾𝑒𝑠 (𝐿(𝐾1,𝑛)) = 𝑛. 
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Theorem 3.1.4. For a bi-star graph 𝑆𝑝,𝑞, the edge signal domination number of line graph transformation of 𝑆𝑝,𝑞 is 

𝛾𝑒𝑠 (𝐿(𝑆𝑝,𝑞)) = 𝑝 + 𝑞. 

Proof. Since the line graph transformation of a bi-star 𝑆𝑝,𝑞 produces two complete graphs of order 𝑝 and 𝑞 whose vertices 

are connected to a single vertex, the proof is obvious. 

Theorem 3.1.5. For any two integers 𝑚 and 𝑛 with 2 ≤ 𝑚 ≤ 𝑛, the line graph transformation of complete bipartite graph 

has 𝛾𝑒𝑠 (𝐿(𝐾𝑚,𝑛)) = 𝑚(𝑛 − 1) to be its edge signal domination number. 

Proof. Following the line graph transformation, 𝐾𝑚,𝑛 is transformed into 𝐿(𝐾𝑚,𝑛) which has 𝑚 – identical, complete 

components 𝐾𝑛 that are interlinked with one another by 𝑛 number of edges. By selecting an arbitrary vertex from each 

component in such a way that the collected set of vertices forms an independent set, we obtain a minimum dominating set 

of 𝐿(𝐾𝑚,𝑛). It is obvious that the remaining vertices form a dominating set of 𝐿(𝐾𝑚,𝑛). So 𝑚𝑛 − 𝑚 number of vertices are 

found in 𝑉 (𝐿(𝐾𝑚,𝑛)) − 𝛾(𝐿(𝐾𝑚,𝑛)). Furthermore, 𝑚(𝑛 − 1) number of vertices form an edge signal cover for 𝐿(𝐾𝑚,𝑛).  

and so 𝛾𝑒𝑠 (𝐿(𝐾𝑚,𝑛)) ≤ 𝑚(𝑛 − 1).Suppose, 𝛾𝑒𝑠 (𝐿(𝐾𝑚,𝑛)) < 𝑚(𝑛 − 1), then there exists an edge in 𝐿(𝐾𝑚,𝑛) that is not 

covered by the geosig paths formed by the vertices of 𝛾𝑒𝑠 – set and so 𝛾𝑒𝑠 (𝐿(𝐾𝑚,𝑛)) = 𝑚(𝑛 − 1). 

Theorem 3.1.6. The edge signal domination number of any complete graph after applying the line graph transformation is 

found to be 𝛾𝑒𝑠(𝐿(𝐾𝑛)) = {
3                 𝑖𝑓  𝑛 = 3

4(𝑛 − 3)    𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
. 

Proof. For 𝑛 = 3, the result follows from Theorem 3.1.2. Now we prove for 𝑛 > 3. According to line graph definition, 𝐾𝑛 

is transformed into 𝐿(𝐾𝑛) which is regular with degree 2(𝑛 − 2) and |𝑉(𝐿(𝐾𝑛)| =
𝑛(𝑛−1)

2
.  We prove this by induction on 𝑛. 

Let 𝑆 be 𝛾𝑒𝑠 – set of 𝐿(𝐾𝑛). Take 𝑛 = 4. Then we have the line graph transformation 𝐿(𝐾4) having 6 vertices and 12 edges. 

Since 𝑑𝑖𝑎𝑚(𝐿(𝐾𝑛)) = 2 for every 𝑛 ≥ 4, let {𝑎, 𝑏} ∈ 𝑆 such that 𝑑(𝑎, 𝑏) = 2. Then all the vertices in 𝐿(𝐾4) is covered by 

{𝑎, 𝑏} and the edges incident with 𝑎 and 𝑏 are covered by the 𝑎 − 𝑏 geosig path. The induced sub-graph of the non incident 

edges forms a 2 - regular graph with 4 vertices. So 𝑆 contains {𝑎, 𝑏, 𝑐, 𝑑} where 𝑑(𝑐, 𝑑) > 1 and hence the result is true for 

𝑛 = 4. Similarly for 𝑛 = 5, we have {𝑥, 𝑥1, 𝑥2, 𝑥3} ∈ 𝑆 such that 𝑑(𝑥, 𝑥𝑖) = 2 for 1 ≤ 𝑖 ≤ 3. Moreover, the induced sub-

graph obtained from the non incident edges forms a 3 - regular graph with 6 vertices. By adding the vertices {𝑦, 𝑦1, 𝑦2 , 𝑦3} 

to 𝑆 from the induced sub-graph, we obtain an edge signal dominating set. However, removing any one of the vertices from 

𝑆 causes 𝑆 to lose its property of edge signal cover and therefore 𝑆 is minimum edge signal dominating set. Assume that the 

result is true for some 𝑛 = 𝑘. Now we prove for 𝑛 = 𝑘 + 1. Let {𝑢, 𝑢1, 𝑢2, … , 𝑢𝑘2−3𝑘+2

2

} ∈ 𝑆 such that 𝑑(𝑢, 𝑢𝑖) = 2 for 1 ≤

𝑖 ≤
𝑘2−3𝑘+2

2
. It is obvious that 𝑆 forms a 𝛾𝑠𝑛 – set of 𝐿(𝐾𝑛) where, 𝑛 = 𝑘 + 1. Consider the induced sub-graph that is obtained 

by selecting the edges that are not incident with the vertices of 𝑆. Then the set {𝑣, 𝑣1, 𝑣2, … , 𝑣−𝑘2+11𝑘−22

2

} ∈ 𝑆 from the induced 

sub-graph can form an edge signal basis set. Thus {𝑣, 𝑣1, 𝑣2, … , 𝑣−𝑘2+11𝑘−22

2

, 𝑢, 𝑢1, 𝑢2, … , 𝑢𝑘2−3𝑘+2

2

} forms a 𝛾𝑒𝑠 – set of 

𝛾𝑒𝑠(𝐿(𝐾𝑛)) where, 𝑛 = 𝑘 + 1. 

3.2 Middle Graphs 

In this section, we obtain some results regarding the edge signal domination number for some standard graphs that are 

transformed into their respective middle graphs. 

Theorem 3.2.1. For every 𝑛 ≥ 2, the edge signal domination number of middle graph of path graph is given by  

𝛾𝑒𝑠(𝑀(𝑃𝑛)) = 𝑛. 

Proof. Since 𝛾𝑠𝑛(𝑀(𝑃𝑛)) = 𝑛, we can deduce that 𝛾𝑒𝑠(𝑀(𝑃𝑛)) ≥ 𝑛.                              ..... (1) 

Let 𝑢1, 𝑢2, … , 𝑢𝑛 ∈ 𝑉(𝑃𝑛) and 𝑣1, 𝑣2, … , 𝑣𝑛−1 ∈ 𝐸(𝑃𝑛). In accordance with the principles of middle graph transformation, 

we transform 𝑃𝑛 into 𝑀(𝑃𝑛) whose vertex set is 𝑢1, 𝑢2, … , 𝑢𝑛, 𝑣1, 𝑣2, … , 𝑣𝑛−1. It is indisputable that the geosig path running 

between 𝑢1 and 𝑢𝑛 covers all the edges 𝑣𝑖𝑣𝑖+1 (1 ≤ 𝑖 ≤ 𝑛 − 1). Further taking into consideration, the set of vertices 

{𝑢𝑗  | 2 ≤ 𝑗 ≤ 𝑛 − 1} is chosen so that the geosig path formed by any pair of these vertices cover the remaining edges of 

𝑀(𝑃𝑛). So, {𝑢𝑖  | 1 ≤ 𝑖 ≤ 𝑛} forms an edge signal dominating set of 𝑀(𝑃𝑛). So, 𝛾𝑒𝑠(𝑀(𝑃𝑛)) ≤ 𝑛.                                                                

..... (2) 

From equations (1) and (2), we attain the desired result.  

Theorem 3.2.2. For any cycle 𝐶𝑛 with 𝑛 ≥ 3, the edge signal domination number of middle graph associated with cycle 
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graph is 𝛾𝑒𝑠(𝑀(𝐶𝑛)) = {
𝑛     𝑖𝑓 𝑛 > 3

5   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
.     

Proof. For 𝑛 > 3, according to the framework of middle graph transformation, 𝑀(𝐶𝑛) contains an outer cycle of length 2𝑛 

and an inner cycle of length 𝑛 formed by the edge set of 𝐶𝑛. So, it is easily identified that the vertices in 𝑀(𝐶𝑛) that 

corresponds to the vertices of 𝐶𝑛 can form an edge signal dominating set in 𝑀(𝐶𝑛) and hence 𝛾𝑒𝑠(𝑀(𝐶𝑛)) ≤ 𝑛. Let 𝑆 be 𝛾𝑒𝑠 

– set of 𝑀(𝐶𝑛). Suppose, 𝛾𝑒𝑠(𝑀(𝐶𝑛))  <  𝑛, then there is a vertex 𝑢1 in 𝑆 such that 𝑆 − {𝑢1} forms an edge signal dominating 

set in 𝑀(𝐶𝑛). Then it is obvious that 𝑢1 lies in some geosig path formed by the vertices of 𝑆 − {𝑢1}. However, no two 𝑢𝑖  (1 ≤

𝑖 ≤ 𝑛) is adjacent to each other in 𝑀(𝐶𝑛) which contradicts the principle of dominating set. Therefore 𝛾𝑒𝑠(𝑀(𝐶𝑛)) = 𝑛. For 

𝑛 = 3, the structure of 𝑀(𝐶𝑛) provides an insight to identify the 𝛾𝑒𝑠 – set where ∆(𝑀(𝐶𝑛)) = 4 and it is found to be 5.   

Theorem 3.2.3. In the context of the middle graph transformation of star graph, the edge signal domination number is 

𝛾𝑒𝑠 (𝑀(𝐾1,𝑛)) = 𝑛 + 1.  

Proof. Since every pendant vertices are contained in 𝛾𝑒𝑠 – set, 𝛾𝑒𝑠 (𝑀(𝐾1,𝑛)) ≥ 𝑛. Since 𝑀(𝐾1,𝑛) contains a vertex 𝑥 whose 

neighbourhood is adjacent to these pendant vertices, 𝑥 lies in 𝛾𝑒𝑠 – set of 𝑀(𝐾1,𝑛). So 𝛾𝑒𝑠 (𝑀(𝐾1,𝑛)) ≥ 𝑛 + 1. It is evident 

that all the vertices are covered by 𝛾𝑒𝑠 – set. Furthermore, the entire edges incident with 𝑥 and the pendant vertices are 

covered by the edge signal basis set. Since the geosig path formed by the pendant vertices do not cover the edges incident 

with 𝑥, we can deduce that all the edges are covered by 𝛾𝑒𝑠 – set of 𝑀(𝐾1,𝑛). So 𝛾𝑒𝑠 (𝑀(𝐾1,𝑛)) = 𝑛 + 1. 

Theorem3.2.4. The edge signal domination number of complete graph after being subjected to middle graph transformation 

is 𝛾𝑒𝑠(𝑀(𝐾𝑛)) = {
(𝑛

2
)    𝑖𝑓 𝑛 > 3

5         𝑛 = 3
. 

Proof. For 𝑛 = 3, the result is obvious from Theorem 3.2.2. Let 𝑆 be 𝛾𝑒𝑠 – set of 𝑀(𝐾𝑛). Now we assume 𝑛 > 3. Since the 

transformation maps every edge in 𝐾𝑛 to vertex in 𝑀(𝐾𝑛), it becomes clearer that 𝛾𝑒𝑠(𝑀(𝐾𝑛)) ≤  (𝑛
2

). Suppose there exists 

a vertex 𝑥 in 𝑆 such that 𝑆 − {𝑥} foms a 𝛾𝑒𝑠 – set of 𝑀(𝐾𝑛), then 𝛾𝑒𝑠(𝑀(𝐾𝑛)) <  (𝑛
2

). It is evident that 𝛾𝑒𝑠(𝑀(𝐾𝑛)) cannot 

be less than 𝑛. If 𝑥 ∈ 𝑉(𝐾𝑛), then 𝑆 − {𝑥} does not form a signal cover for 𝑀(𝐾𝑛) and contradicts our assumption. So 𝑥 ∈
𝐸(𝐾𝑛) with deg(𝑥) = 2(𝑛 − 1) in 𝑀(𝐾𝑛). Clearly, 𝑥 is adjacent to at least one of the vertices corresponding to 𝑉(𝐾𝑛) and 

so 𝑥 is dominated. According to our assumption 𝑥 is covered by the geosig path formed by the vertices of 𝑆 − {𝑥}. However, 

it is unclear that the edges 𝑥𝑥𝑖  for some 𝑖 = 1 to 2(𝑛 − 1) is covered by the edge signal basis of 𝑆 − {𝑥}. It is evident that 

the edges between 𝑥 and the vertices corresponding to 𝑉(𝐾𝑛) are covered by the edge signal basis set say 𝑥𝑥1 and 𝑥𝑥2. 

Furthermore, 𝑆 − {𝑥} contains some vertices that corresponds to 𝐸(𝐾𝑛) under the condition 𝑑(𝑥𝑖 , 𝑢𝑗) = 2 where 𝑢𝑗  (1 ≤

𝑗 ≤ 𝑛) are the vertices that corresponds to 𝑉(𝐾𝑛). This provides a contradiction to our assumption. Therefore 𝛾𝑒𝑠(𝑀(𝐾𝑛)) =

(𝑛
2

).      

3.3 Corona Product Graphs 

This section involves the formation of corona product graphs from some common graph families and a comprehensive 

determination of their edge signal domination number. 

Theorem 3.3.1. The edge signal domination number for the graph obtained by the corona product of cycle 𝐶𝑛 and complete 

graph 𝐾1 is 𝛾𝑒𝑠(𝐶𝑛⨀𝐾1) = 𝑛.     

Proof. Since the edge signal dominating set contains all the pendant vertices, 𝛾𝑒𝑠(𝐶𝑛⨀𝐾1) ≥ 𝑛. Clearly, all the vertices in 

𝛾𝑒𝑠(𝐶𝑛⨀𝐾1) is dominated and covered by the geosig paths formed by the pendant vertices. Moreover, the edges incident 

with the pendant vertices are also covered by the geosig paths of pendant vertices. It is enough to prove only if the edges in 

the cycle are covered by the geosig paths formed by the pendant vertices. Suppose there exist an edge that is not covered by 

any of the geosig paths, then there are two different geosig paths that covers the end points of that edge. This contradicts our 

assumption. So 𝛾𝑒𝑠(𝐶𝑛⨀𝐾1) = 𝑛.    

Theorem 3.3.2. For the corona product of a complete graph 𝐾𝑛 and 𝐾1, the edge signal domination number is identified as 

𝛾𝑒𝑠(𝐾𝑛⨀𝐾1) = 𝑛.     

Proof.  It is natural that all the vertices of 𝐾𝑛⨀𝐾1 are covered by the geosig paths formed by the pendant vertices. Also, the 

set of pendant vertices forms a dominating set of 𝐾𝑛⨀𝐾1. So 𝛾𝑒𝑠(𝐾𝑛⨀𝐾1) ≥ 𝑛. Since every pair of vertices of 𝐾𝑛 has a 

unique edge, all the edges are covered by the geosig paths of pendant vertices and so 𝛾𝑒𝑠(𝐾𝑛⨀𝐾1) = 𝑛. 

Theorem 3.3.3. The edge signal domination number of corona product of path 𝑃𝑛 and 𝐾1 is given by 𝛾𝑒𝑠(𝑃𝑛⨀𝐾1) = 𝑛.     

Proof. The proof is obvious. 
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Theorem 3.3.4. The edge signal domination number of the graph transformed from the cycle 𝐶𝑛 and path 𝑃𝑚 by the corona 

product operation is 𝛾𝑒𝑠(𝐶𝑛⨀𝑃𝑚) = 𝑛𝑚.     

Proof. Let {𝑢, 𝑢1, 𝑢2, … , 𝑢𝑛} be the vertex set of 𝐶𝑛 and {𝑣1, 𝑣2, … , 𝑣𝑚} be the vertex set of 𝑃𝑚. By the definition of corona 

product graph operation, we obtain 𝑛 copies of 𝑃𝑚 and let the vertex set be {𝑣𝑖1, 𝑣𝑖2, … , 𝑣𝑖𝑚} with (1 ≤ 𝑖 ≤ 𝑛). Let us 

consider the induced sub-graph of 𝐶𝑛⨀𝑃𝑚 whose vertices are 𝑢1, 𝑣𝑖1, 𝑣𝑖2, … , 𝑣𝑖𝑚 for some 𝑖. It is obvious that 𝑢𝑖 acts as a 

universal vertex and so the edge signal domination number is 𝑚. This is true for every (1 ≤ 𝑖 ≤ 𝑛). So 𝛾𝑒𝑠(𝐶𝑛⨀𝑃𝑚) = 𝑛𝑚. 

Theorem 3.3.5. The edge signal domination number of the graph obtained by the corona product operation from the cycle 

𝐶𝑛 and path 𝑃𝑚 is given by 𝛾𝑒𝑠(𝑃𝑚⨀𝐶𝑛) = 𝑛𝑚.     

Proof. The proof is similar to Theorem 3.3.4. 

Theorem 3.3.6. The edge signal domination number of corona product of path 𝐾𝑛 and 𝑃𝑚 is given by 𝛾𝑒𝑠(𝐾𝑛⨀𝑃𝑚) = 𝑛𝑚.     

Proof. The proof is identical to the Theorem 3.3.4. 

Theorem 3.3.7. For the corona product of path 𝑃𝑚 and complete graph 𝐾𝑛, the edge signal domination number is 

𝛾𝑒𝑠(𝑃𝑚⨀𝐾𝑛) = 𝑛𝑚.     

Proof. The result follows from Theorem 3.3.6. 

Theorem 3.3.8. For any two connected graphs 𝐺 and 𝐻, 𝛾𝑒𝑠(𝐺⨀𝐻) contains all the vertices of 𝐻. 

Proof. Let 𝐺 and 𝐻 be any two connected graphs of order 𝑛1 and 𝑛2 respectively. By the definition of line graph 

transformation, we have 𝑛1 copies of 𝐻 each attached to a distinct vertex of 𝐺. Since each vertex in 𝐺 is adjacent to every 

vertex of the corresponding cop of 𝐻, the edges between 𝐻 and the particular vertex of 𝐺 can only be covered by the geosig 

path formed by the vertices of 𝐻. So 𝛾𝑒𝑠(𝐺⨀𝐻) contains all the vertices of 𝐻. 

Theorem. For any two connected graphs 𝐺1 and 𝐺2, 𝛾𝑒𝑠(𝐺1⨀𝐺2) ≥ 𝑚𝑎𝑥{𝛾𝑒𝑠(𝐺1), 𝛾𝑒𝑠(𝐺2)}. 

Proof. Suppose 𝛾𝑒𝑠(𝐺1)  ≤ 𝛾𝑒𝑠(𝐺2), then by Theorem 3.3.8, the result is obvious. Suppose 𝛾𝑒𝑠(𝐺1) > 𝛾𝑒𝑠(𝐺2). Then by 

Theorem 3.3.8, 𝛾𝑒𝑠(𝐺1⨀𝐺2) contains all the vertices of 𝐺2. Also if 𝛾𝑒𝑠(𝐺1) > |𝑉(𝐺2)|, then 𝛾𝑒𝑠(𝐺1⨀𝐺2) contains all the 

vertices from each copy of 𝐺2 which can cover all the edges between 𝐺1 and 𝐺2 as well as dominate every vertices of 𝐺1. 

The geosig path formed by the vertices of 𝐺2 with each ends taken from distinct copy can cover the edge set of 𝐺1 which 

forms a minimum edge signal dominating set of 𝛾𝑒𝑠(𝐺1⨀𝐺2). 

4. CONCLUSION 

By analyzing the line graph, middle graph, and corona product data together, we observe a few key trends and correlations. 

The line graph shows overall performance or trends over time which provides a broad view of how a particular variable or 

metric evolves. The middle graph, which compares different categories or regions, reveals how these variations influence 

the overall results. Corona product graph helps us understand the network-like structure of demand changes, the influence of 

specific time periods, and the interactions between various market factors. With these three main transformation graphs, it is 

a good opportunity to have a deeper insight on the edge signal domination number. 
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