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ABSTRACT 

The proposed navigation system is a combination of two techniques, the Extended Kalman Filter (EKF) and the Grey Woolf 

Fuzzy Inference System (AGW-NFIS). The EKF is used to improve the accuracy of the position estimation by using the 

dynamic information obtained from the sensors. The AGW-NFIS, on the other hand, is used as a control mechanism to 

determine the left and right wheel velocities to be used for obstacle avoidance. The AGW-NFIS is trained using a dataset 

that includes the obstacle distances and avoidance angles. The robustness of the system is assessed by testing the mobile 

robot in various conditions. The results of the proposed navigation system have shown to outperform existing strategies, 

providing a more reliable and efficient solution for mobile robot navigation in obscure and dynamic environments. The 

combination of the EKF and AGW-NFIS provides a robust solution for obstacle avoidance and navigation. The use of these 

techniques in mobile robot navigation opens up new possibilities for exploration and operation in difficult environments. 

 

Keywords: Grey Woolf optimisation, Adaptive Neuro-Fuzzy Inference System, Navigation of   angle estimation, Optimization, 

Wheel velocity estimation. 

1. INTRODUCTION 

Recently, vision-based mobile robots have received considerable attention for their applications in various industries and 

services such as room cleaning, assisting disabled individuals, factory automation, security, transportation, and planetary 

exploration [1]. In a real-world setting, mobile robot navigation must be capable of detecting its location, gaining 

understanding of the detected location and surrounding environment, planning a real-time path from the starting position to 

the goal position, and controlling the robot's steering angle and speed [2]. The navigation of a robot involves four main 

components including perception, localization where the robot determines its location, cognition and path planning, and 

motion control [3]. Mobile robots face several challenges during path planning, including obstacle avoidance in various 

environments [4]. 

When in motion, path planning is approached from three perspectives, including acquiring information from the environment, 

determining its location in the environment, and making decisions and executing actions to achieve its highest-order 

objectives [5]. The path planning and control of a mobile robot is typically handled by fuzzy logic, which is one of the most 

commonly cited approaches in the field [6]. The goal of this path planning is to find an unobstructed path from the starting 

point to the predefined goal position [7]. The navigation system of a mobile robot identifies any potential obstacles and 

searches for a collision-free path. Obstacle avoidance is effectively achieved by adjusting the direction angle of the robot [8].  
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The navigation control system architecture combines two key elements of a mobile robot, a tracking controller and a reactive 

controller [9]. 

Conventional control techniques are used to construct controllers, but uncertainty can pose a significant challenge in 

developing a complete mathematical model of the system, leading to limited applicability of these controllers [10]. To address 

this challenge, some existing approaches for the design of a mobile robot incorporate an adaptive neuro-fuzzy controller 

combined with a sliding-mode control (SMC) theory-based learning algorithm. This control structure consists of a neuro-

fuzzy network and a conventional controller [11]. This can effectively solve the navigation problems encountered by mobile 

robots and allow the robot to reach its destination by avoiding obstacles along an optimal path [12]. This approach utilizes 

various sensors such as an ultrasonic range finder sensor and a sharp infrared range sensor to detect obstacles in the 

environment [13]. 

For a Wheeled Mobile Robot (WMR), a combination of Tracking Fuzzy Logic Control (TFLC) and Obstacle Avoidance 

Fuzzy Logic Control (OAFLC) is proposed to guide the robot to its goal along a collision-free path [14]. A Generalized 

Type-2 Fuzzy Control system was later introduced to handle greater uncertainty in terms of the nature of its membership 

functions [15]. Higher uncertainty in control applications results from noise in the control process due to a changing 

environment during information transmission [16]. To address obstacle avoidance, a decentralized cooperative control 

scheme is proposed that uses a rotational potential field to avoid obstacles without getting trapped in local minima positions 

[17]. Despite the numerous algorithms proposed so far, there are still issues to be addressed in the navigation system of 

robots. Hence an efficient path discovery algorithm is proposed and is described below. The main contribution of this work 

is:  

• Mobile robot navigation system that uses a sensor to gather environmental information, an extended 

Kalman filter (EKF) for position estimation, and a Adaptive Network-based Fuzzy Inference System 

(ANFIS) controller designed using the a Grey Woolf optimization algorithm. 

• The sensor captures information about the environment surrounding the robot, which is then used to 

estimate its position more accurately using the EKF. This information is also used to calculate the distances 

to obstacles and the angle at which the robot needs to avoid them. 

• Finally, the ANFIS controller, designed using the Adaptive Grey Wolf (AGW) optimization algorithm, is 

used to navigate the robot through its environment while avoiding obstacles. The combination of these 

components helps the robot to navigate its environment more effectively, improving its overall 

performance. 

The manuscript's outline is structured as follows: Section 2 discusses current studies that are relevant to the strategy that is 

being presented. The suggested approach is discussed in Section 3 while the experimental findings are covered in Section 4. 

The manuscript is concluded at section 5. 

2. RELATED RESEARCH 

Pothalet et al. [18] demonstrated the interest in using robots to prevent humans from participating in dangerous tasks. In their 

study, they designed a control system that utilized a single flexible robot in complex and chaotic environments through the 

use of an ANFIS (Adaptive Neuro-Fuzzy Inference System). The compact robot was capable of performing tasks such as 

obstacle avoidance, target pursuit, speed control, mapping of unknown environments, object recognition, and sensor-based 

navigation. 

Mohanty and Parhi [19] introduced a hybrid intelligent motion planning method to control the path of mobile robots. The 

study utilized the IWO (Imperialist War of Oppression) algorithm to train the parameters in the ANFIS and the least squares 

estimation method to train the subsequent part of the ANFIS. Different types of sensor-based information, such as FOD, 

ROD, LOD, HA, LWV, and RWV, were used as input to the fusion controller in order to determine the steering angle for 

the robot. The fusion navigation controller was shown to be effective in controlling the robot's path in complex environments. 

However, more advanced strategies and dynamic obstacles were not considered in this work. 

Mohanty and Parhi [20] presented an intelligent motion planning approach to control the path of mobile robots using ANFIS. 

The navigational algorithm used the distances between the robot and obstacles, and the speed and direction of the objective, 

to determine the appropriate steering angle. This approach allowed the robot to effectively avoid obstacles, escape deadlocks, 

and reach its destination in cluttered environments. However, this work did not involve a numerical approach that considered 

dynamic obstacles. 

Mohanty and Parhi [21] discussed a hybrid navigation strategy, CS (Cuckoo Search) - ANFIS, for use in cluttered 

environments. The hybrid navigational approach utilized the cuckoo search algorithm to train the ANFIS and the least squares 

estimation method to train the subsequent parameters of the ANFIS. The hybrid path planner was created based on a reference 

path, navigation, and distances between the robot, obstacles, and destination, in order to determine the appropriate steering 

angle. An impact prevention rule set was introduced into each robot controller, using the Petri Net model, to avoid collisions. 
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The proposed navigational method was successfully implemented for single and multiple mobile robots in static 

environments, but more advanced methods could be applied by considering dynamic obstacles instead of static ones. 

Wang et al. [22] proposed a novel navigation model that utilized the motivated developmental network (MDN) and the radial 

basis function neural network (RBFNN) to simulate the learning processes of the cerebellum and basal ganglia, respectively. 

The hybrid model was used to navigate a mobile robot in unknown environments. During exploration, the artificial agent 

used the cerebellum model to choose an action in unexplored areas instead of using the greedy method, to accelerate the 

learning process of the basal ganglia. In explored areas, the basal ganglia directly navigated the robot, updating and refining 

the cerebellum's database, allowing it to make better decisions in future explorations. 

Ponce et al. [23] proposed an extension of the wound treatment optimization (WTO) metaheuristic strategy into a distributed 

framework. The distributed WTO strategy was implemented on a multi-robot system, allowing the robots to explore their 

environment and share their findings, resulting in improved knowledge. The authors tested their proposal using a combination 

of five simulated robots and one actual robot to tune a navigation controller for free movement in a workspace. Results 

showed that the controller found by the multi-robot system allowed the actual robot to effectively reach its destination by 

moving around a U-shaped labyrinth without using any transfer 

Chen et al. [26] proposed a knowledge-based neural fuzzy controller (KNFC) for mobile robot navigation control. A 

successful knowledge-based cultural multi-strategy differential evolution (KCMDE) is used to optimize the parameters of 

the KNFC. The proposed controller is designed to handle both static and dynamic obstacles in unstructured environments. 

The performance of the KNFC is evaluated through simulations and experiments on a mobile robot platform, and results 

show that the proposed controller can effectively navigate the robot towards the target while avoiding obstacles. 

In conclusion, these studies highlight the efforts made by researchers to develop efficient and effective navigation algorithms 

for mobile robots in complex environments. From the use of ANFIS, IWO, CS, MDN, WTO, FAHP, and other algorithms, 

to the integration of knowledge-based, fuzzy, and neural controllers, the aim is to provide robots with the ability to make 

informed decisions and navigate in an intelligent manner. However, there is still a need for further research and advancements 

in this field to make mobile robots more capable of handling dynamic and complex environments. 

3. PROPOSED METHODOLOGY 

The AGW-NFIS is a method for mobile robot navigation that takes in sensor data as input, which includes information about 

the environment surrounding the robot. The data is then processed using the extended Kalman filtering method to determine 

the robot's accurate position. The estimated obstacle distance and moving angle of the robot are then fed into the AGW-NFIS 

controller, which is designed using a combination of the Grey Wolf optimization algorithm and the NFIS. The output of the 

controller, in the form of left and right wheel velocities (LWV and RWV), allows the robot to navigate the environment 

while effectively avoiding obstacles. Figure 1 shows the suggested methodology's flow of operations. 

3.1 Extended Kalman Filtering 

According to EKF [30], the state change and discernment models are not truly intended to be linear components of the state; 

rather, they are described as non-linear ones and are handled in the accompanying recursion of estimate by partial derivatives. 

EKF preserves both the quantifiable optimality and the recursive computational organisation of KF by having a structure that 

is identical to that of traditional KF. 

Let 𝑓be a non-linear function utilized to depict the approximate of the basic framework states. The a priori state assessment 

𝑥̑𝑘
−is portrayed by 𝑓 

𝑥̑𝑘
− = 𝑓(𝑥𝑘−1, 𝑢𝑘−1, 𝑤𝑘−1)   (1) 

Consequently, 𝑧̑𝑘
−is characterized as a non-linear function ℎ̃as 

𝑧̑𝑘
− = ℎ̃(𝑥𝑘 , 𝑣𝑘)     (2) 

The Extended Kalman Filter (EKF) uses the following conditions to make its calculations: are 𝐴̃𝑘  is a matrix of partial 

derivatives that shows how the function f changes in relation to x. , 𝐻𝑘  is a matrix of partial derivatives that shows how the 

function h changes in relation to w. ,𝑉̃𝑘 is a matrix of partial derivatives that shows how the function f changes in relation to 

v. and   𝑊̃𝑘 is a matrix of partial derivatives that shows how the function f changes in relation to w and   𝑊̃𝑘 is assumed to 

have a zero mean and is drawn from a multivariate normal distribution with a covariance of 𝑄̃𝑘. 𝑉̃𝑘  is also assumed to be 

zero-mean Gaussian white noise with a covariance of 𝑅̃𝑘. 

The EKF can be thought of as a two-step process, consisting of "predict" and "correct". The EKF calculation follows these 

steps: 
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Figure 1: Process flow for mobile robot navigation as proposed 

 

Step 1: Calculating state assess the propagation 

𝑥̑𝑘
− = 𝑓(𝑥𝑘−1, 𝑢𝑘−1, 0)                   (3) 

Where  𝑓(𝑥𝑘−1, 𝑢𝑘−1, 0) is the function of (non-linear) state transition, 𝑥𝑘−1 is the location and orientation of the vehicle, 

𝑢𝑘−1 is the robot's basic motion, and 𝑝̑𝑘
− is a noise disturbance. 

Step 2: Error covariance propagation: Obtaining 

𝑝̑𝑘
− = 𝐴̃𝑘𝑝̑𝑘−1

− 𝐴̃𝑘
𝑇 + 𝑊̃𝑘𝑄̃𝑘𝑊̃𝑘

𝑇     (4) 

Step 3: Kalman gain matrix computation 

𝑘̑𝑘
− = 𝑝̑𝑘

−𝐻𝑘(𝐻̃𝑘𝑝̑𝑘
−𝐻𝑘

𝑇 + 𝑉̃𝑘𝑅̃𝑘𝑉̃𝑘
𝑇)−1   (5) 

Step 4: To evaluate the location of the updated robot in its surroundings, update state estimation and error covariance. In this 

case, the state   𝑥̑𝑘 and its covariance   𝑝̑𝑘 are corrected using the Kalman filter gain𝑘̑𝑘
− is calculation. According to the 

following equations, the updated robots' environment location (𝑥̑𝑘) is as follows: 

𝑥̑𝑘 = 𝑥̑𝑘
− + 𝑘̑𝑘(𝑧̑𝑘 − ℎ̃(𝑥̑𝑘

−, 0))    (6) 

𝑝̑𝑘 = (1 − 𝑘̑𝑘𝐻𝑘)𝑝̑𝑘
−     (7) 

Where, 𝑉̃𝑘𝑅̃𝑘𝑉̃𝑘
𝑇  and 𝑊̃𝑘𝑄̃𝑘𝑊̃𝑘

𝑇  indicates additional independent random variables with a mean and covariance matrix of 

zero. 

The EKF is a technique for incorporating readings from several sensors to provide estimates that are more reliable. As a 

consequence, the suggested EKF can handle sensors reporting data in many dimensions and provides precise locations of 

obstacles in the area for mobile robot navigation. Following the calculation of obstacle locations, the following part calculates 

the robot's angle for the upcoming moving position as well as the distance between the obstacles and robot. 

3.2 Obstacle Distance and Angle Estimation 

The position (𝑠𝑗 , 𝑡𝑗, 𝑢𝑗) and obstacle distance estimate using 𝐷𝑗  (8) and angle estimation using 𝜃 (9) of the mobile robot in 

the coordinate operation are shown in Figure 2. The coordinates (𝑠𝑗−1, 𝑡𝑗−1, 𝑢𝑗−1) reflect the desired target. 
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Figure 2: Illustration of navigation indicating the existence of obstacles 

 

3.2.1 Obstacle Distance 

Calculating the distance of the obstacle location and angle is necessary for the proposed AGW-NFIS to determine the wheel 

velocity. The equation estimates the separation between the robot's position and the location of the obstacles (8). Any two 

successive points (𝑠𝑗 , 𝑡𝑗, 𝑢𝑗)  and (𝑠𝑗−1, 𝑡𝑗−1, 𝑢𝑗−1) may be separated by the Euler distance using the straightforward formula: 

𝐷𝑗 = √(𝑠𝑗 − 𝑠𝑗−1)2 + (𝑡𝑗 − 𝑡𝑗−1)2 + (𝑢𝑗 − 𝑢𝑗−1)2                       (8) 

Here, the left side, right side, and front side obstacle distances are all determined using equation (8). Right wheel velocity is 

calculated using the right obstacle distance, whereas the left wheel velocity is calculated using the left obstacle distance. 

3.2.2 Angle estimation 

The robot's axis and an assumed straight line that connects its current location(𝑠𝑗 , 𝑡𝑗 , 𝑢𝑗)  to a later-possible position 

(𝑠𝑗−1, 𝑡𝑗−1, 𝑢𝑗−1)  can be used to calculate Euler angles. 

𝜽𝒋 = 𝒕𝒂𝒏−𝟏 (
𝒖𝒋−𝒖𝒋−𝟏

√(𝒔𝒋−𝒔𝒋−𝟏)𝟐−(𝒕𝒋−𝒕𝒋−𝟏)𝟐
)                   (9) 

Angle is calculated in both the horizontal and vertical planes. J=1,2,3,...m in equation (9). (m is the total number of turning 

points on the path). The AGW-ANFIS controller receives the predicted angle and distance as input to effectively navigate 

mobile robots. In this case, the input to the AGW-NFIS controller for left wheel velocity estimation and the input to the 

AGW-NFIS controller for right wheel velocity estimation are the left obstacle distance and robot angle settings. 

3.3 AGW-NFIS Navigation Controller 

In the study, a navigation controller called Adaptive Grey Wolf Inference System (AGW-NFIS) is employed for mobile 

robot navigation to collect training data. The controller is trained using this data, and in testing, it operates as a Multi-input, 

Single Output system. The data is processed in two stages using the AGW-NFIS controller, with separate calculations for 

the left and right wheel velocity. The result is a mobile robot that moves while avoiding obstacles, guided by the AGW-NFIS 

controller. 

3.3.1 AGW-NFIS Controller Design 

A feed-forward neural network is the NFIS. The AGW-NFIS algorithm results from the suggested work's adaptation of NFIS 

with the krill herd optimization algorithm1. To demonstrate the NFIS architecture, let's have a look at two fuzzy rules based 

on a first-order Sugeno model: 

➢ Rule 1: IF 𝑥′ is 𝑨𝟏AND 𝑦′is𝐵1, 

Then,𝑓1 = 𝑝1𝑥′ + 𝑞1𝑦′ + 𝑟1                          (10) 

➢ Rule 2: IF 𝑥′ is𝑨𝟐AND 𝑦′is𝐵2, 

Then𝑓2 = 𝑝2𝑥′ + 𝑞2𝑦′ + 𝑟2    (11) 
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Where 𝑪𝟏, 𝑪𝟐 𝐷3 , 𝐷4 are, respectively, the member functions for  𝑥′
 𝐷𝑗  and 𝑦′

 𝜃𝑗. The corresponding parameters of the 

output functions that are established during the training phase are p 1, q 1, r 1, and p 2, q2, r 2. Figure 3 shows the five layers 

that make up the AGW-NFIS model. 

Input: 𝐷𝑗  , 𝜃𝑗 

Output: Fuzzy rule set Rj 

1. Begin: 

2. For each input j do 

3.         Build Fuzzy MF by (11), (12) 

4.         Gaussian MF by (14). 

5.         Firing strength by (15), (16) 

6.         Normalized-firing (17) 

7.         Consequent parameter updating by Algo 2 

8.         //Generation of rule id 

9.         If 𝑂4,𝑗 = = 𝑂5,𝑗 then Generating Rule id Rj = Fast 

10.         Else if S >= S’ then Generating Rule id Rj = Medium 

11.           Else  

12.            Generating Rule id Rj= Slow 

13.         End   

14. Repeat 

15. End 

16. End 

Algorithm: 1 Proposed AGW-NFIS 

 

 

Figure 3: Proposed AGW-NFIS Architecture 

 

Layer 1: Each node's output in this layer is represented by: 

𝑶𝟏,𝒋 = 𝝁𝑪𝒋(𝒙′)𝑗 = 1,2 (12) 

𝑶𝟏,𝒋 = 𝝁𝑫𝒋−𝟐(𝒚′)𝑗 = 3,4 (13) 
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Where, jC
 , 𝐷𝑗  the membership values of the membership functions 𝜇𝐶 and 𝜇𝐷 , respectively, x', y' are the crisp inputs to 

nodej. The generalised Gaussian membership function is defined as 𝜇𝐶𝑗(𝑥′) and 𝜇𝐷𝑗−2(𝑦′) 

𝜇(𝑥) = 𝑒−(𝑥−
𝑝𝑘

𝜎𝑘
⁄ )

2

                                      (14) 

where the set premise parameters, 𝜎𝑘  and 𝑝𝑘, stand for the data's mean and standard deviation. 

Layer 2: Here, each node is fixed and determines a rule's firing power using (15). These have the suffix M to indicate that 

they play the role of a fundamental multiplier. The outputs of these nodes, which reflect the firing strength, are shown in the 

formula below. 

𝑶𝟐,𝒋 = 𝒘𝒋 = 𝝁𝑪𝒋(𝒙′) ∗ 𝝁𝑫𝒋(𝒚′)𝒋 = 𝟏, 𝟐                                                                              (15) 

Layer 3: These layer's nodes are fixed nodes as well. These are designated N to indicate that they standardise the firing 

strength from the previous layer. The expected output of each node in this layer is 

𝑂3,𝑗 = 𝑤̃𝑗 =
𝑤𝑗

𝑤1 + 𝑤2
⁄ 𝒋 = 𝟏, 𝟐 (16) 

Layer 4: This layer's nodes are adaptable. The output of each node is effectively the result of the normalised firing strength, 

and it is represented by a set of first-order polynomials: 

𝑂4,𝑗 = 𝑤̃𝑗 ∗ 𝑓𝑗 = 𝑤̃𝑗(𝑝𝑗𝑥′ + 𝑞𝑗𝑦′ + 𝑟𝑗)                         (17) 

Where, 𝑝𝑗, 𝑞𝑗 and 𝑟𝑗   are consequent parameters since they can be used in the fuzzy rule's "Then" section. Here, the krill herd 

optimization technique is used to update the succeeding parameters. 

3.3.2 Adaptive Grey Woolf optimization (GW) algorithm 

The Grey Wolf Optimization (GWO) enhancement process is based on the behavior of a pack of grey wolves. The wolves, 

represented by the parameters α, β, and δ, search for the best solution by adjusting their positions based on their distances 

from the prey. To balance exploration and exploitation during the search process, α must decrease from 2 to 0. If |A| > 1, the 

candidate solution moves away from the prey; if |A| < 1, it moves closer to the target. This process continues until the stopping 

criteria are met. The GWO process is a helpful tool for solving optimization problems and has the advantage of being inclined 

in its algorithm procedure. 

GWO algorithm steps  

1. The social progression idea in the GWO calculation facilitates the evaluation of solutions and preservation of the 

best ones so far. 

2. The surrounding aspect in the GWO calculation is defined by a 2D circle, which can be extended to a 3D hyper-

circle. 

3. The random factors A and C stimulate the grey wolves (candidate solutions) to form different hyper-circles with 

varying radii. 

4. The hunting technique implemented in the GWO calculation enables the grey wolves to identify the probable 

location of the prey. 

5. The flexible computation of parameters A and C, as well as a balance between exploration and exploitation, allows 

the GWO algorithm to smoothly switch between the two modes by adjusting the value of A. 

6. The adaptive values of A and C in the GWO algorithm facilitate an equal distribution of iterations between 

exploration (when |A| < 1) and exploitation (when |A| > 1). 

7. The parameters a and c play a crucial role in the performance of the GWO algorithm. 

Figure 3 describes the GWO's flow diagram, and the following paragraphs provide Algorithm  
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Ending conditions 
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End

No

Y
es

 

Figure 3:  GWO algorithm-Flow chart 

 

 

The following outlines the steps for the Grey Wolf Optimization (GWO) algorithm: 

1. Set the population of grey wolves X_i (i=1,2,.....n). 

2. Initialize the parameters a, A, and C. 

3. Designate X_α as the search agent of the first assertive resolution, X_β as the search agent of 

the Secondary proactive solution, and X_δ as the search agent of the third assertive resolution. 

4. Set a counter t=0 and repeat the following steps until t reaches the maximum redundancies: a. 

For each search agent, update its current position. b. Updatng the values of a, A, and C. c. 

Evaluate the robustness criteria for all search agents and rank them. d. Update the positions 

of X_α, X_β, and X_δ. e. Increment t by 1. 

5. End the algorithm when the while loop is terminated. 

 

Algorithm 1: Pseudocode of GWO 

4. RESULTS AND DISCUSSION 

The MATLAB platform is used to implement our suggested work utilising optimum scheduling. In subsections, the 

performance of our proposed AGW-NFIS is compared with the existing Artificial bee colony-based network fuzzy inference 

system (ABC-NFIS) [28] and Genetic algorithm-based network fuzzy inference system (GA-NFIS) [29] methods to 

determine whether the proposed work is present in various environments. 

Following table presents the performance measuring of the various path planning algorithm. From the analysis it has been 
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observed that our proposed method AGW-NFIS outperforms the other existing methods. Comparative analysis of three path 

planning algorithms: Genetic Algorithm-based Neuro-Fuzzy Inference System (GA-NFIS), Artificial Bee Colony-based 

Neuro-Fuzzy Inference System (ABC-NFIS), and the proposed Adaptive Grey Wolf-based Neuro-Fuzzy Inference System 

(AGW-NFIS). The algorithms were evaluated across five distinct environments using multiple performance metrics 

including path length, execution time, deviation length, and Root Mean Square Error (RMSE). 

4.1 Experimental Setup 

The experiments were conducted across five different environments with varying start and goal positions. Each algorithm 

was tested under identical conditions to ensure fair comparison. The performance metrics were carefully selected to evaluate 

different aspects of path planning efficiency and effectiveness. 

4.1.1 Evaluation of Experimental Results Across Various Environments 

This study assesses the performance of three path planning algorithms: GA-NFIS, ABC-NFIS, and the proposed AGW-

NFIS. The evaluation was carried out in five distinct environments, with key performance indicators including path length, 

execution time, deviation length, and RMSE. The findings consistently demonstrate that AGW-NFIS surpasses the other two 

algorithms in all scenarios by generating shorter paths, enhancing accuracy, and improving computational efficiency. 

4.1.2 Environment-Specific Performance Evaluation 

In the first environment, where navigation begins at (3,40) and concludes at (90,20), AGW-NFIS achieved a 32.2% reduction 

in path length compared to GA-NFIS. The RMSE improved by 28.9%, indicating greater accuracy. The deviation length 

remained at a moderate value of 0.0927419. Additionally, AGW-NFIS completed the task in just 248 simulation length, 

significantly fewer than GA-NFIS, which required 400 . 

Case1 : Environment 1 (Start: (3, 40), Goal: (90, 20)) 

Table 1: : Performance Metrics   

Initial 

point 

Destination 

point Methods 

Simulation 

length 

Execution 

length 

Deviation 

length RMSE 

Length of 

path 

Start: (3, 

40) 

 

 

Goal: (90, 20)) 

 

 

GA-NFIS 400 400 0.0775 12.2355 333.979 

ABC-NFIS 322 322 0.0714286 11.1883 290.036 

AGW-

NFIS 248 248 0.0927419 8.70334 226.33 

 

Following table shows the simulation time, execution time and deviation time comparison with GA-NFIS, ABC-NFIS and 

Proposed AGW-NFIS  

Table2: Comparison of the simulation time, execution time and deviation time for Environment 1 (Start: (3, 40), 

Goal: (90, 20)) 

Methods 

Simulation 

Time 

Execution 

time  

Deviation 

time  

GA-NFIS 398      0.00399971         0.04 

ABC-NFIS 320    0.00199986     0.09937 

AGW-

NFIS 246 0.00200009 0.0604839 

 

4.2 Analysis of Path Navigation Using GA-NFIS, ABC-NFIS, and AGW-NFIS in Environment 1 

The provided figure illustrates the path navigation results for Environment 1, where three different algorithms—GA-NFIS, 

ABC-NFIS, and the proposed AGW-NFIS—were employed to traverse from a designated start position (3,40) to the goal 

position (90,20) while avoiding obstacles. The X-axis represents the horizontal coordinate, whereas the Y-axis corresponds 

to the vertical coordinate of the navigation space. The obstacles are depicted as gray elliptical regions, constraining the 

possible paths each algorithm can take. 
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GA-NFIS, represented by the blue dashed line, exhibits a convoluted trajectory, particularly in the initial phase of navigation. 

The path displays frequent oscillations, indicating difficulties in handling obstacles and maintaining an optimal course. This 

behavior results in a longer path length, greater deviation from the ideal trajectory, and a higher Root Mean Square Error 

(RMSE) compared to AGW-NFIS. Additionally, GA-NFIS requires a higher number of simulation steps, further 

emphasizing its inefficiency in this environment. 

ABC-NFIS, denoted by the red dotted line, demonstrates an even less stable trajectory than GA-NFIS. The algorithm 

struggles significantly in the initial phase, with extensive detours and large deviations from the direct path. The erratic motion 

suggests difficulty in adapting to the environment, leading to a substantial increase in path length and RMSE. The excessive 

deviations imply that ABC-NFIS does not effectively balance exploration and exploitation, resulting in poor convergence to 

an optimal solution. 

The proposed AGW-NFIS, visualized as the green solid line, follows a considerably shorter and smoother path compared to 

GA-NFIS and ABC-NFIS. The trajectory demonstrates efficient obstacle avoidance while maintaining a relatively direct 

course toward the goal. Unlike the other two methods, AGW-NFIS exhibits minimal oscillations, reflecting greater stability 

and accuracy in path planning. The total number of simulation steps required is significantly lower, emphasizing its 

computational efficiency. Furthermore, the deviation length remains minimal, ensuring that the path remains close to the 

optimal trajectory. 

The comparative results suggest that AGW-NFIS significantly outperforms GA-NFIS and ABC-NFIS in terms of path 

efficiency, accuracy, and computational cost. The GA-NFIS and ABC-NFIS algorithms exhibit excessive oscillations and 

longer path lengths, leading to increased RMSE and execution time. In contrast, AGW-NFIS successfully navigates the 

environment with a 32.2% reduction in path length, a 28.9% improvement in RMSE, and significantly fewer simulation 

steps, demonstrating its superiority in autonomous navigation tasks. These findings confirm that AGW-NFIS is a robust and 

effective path planning approach, making it highly suitable for real-world autonomous navigation applications 

 

Fig.4- Comparison of path navigation using three methods GA-NFIS, ABC-NFIS, AGW-NFIS in the 1st 

environment  (Start: (3, 40), Goal: (90, 20)) 

 

In the second environment, spanning from (10,10) to (85,40), AGW-NFIS demonstrated a 36.4% decrease in path length 

relative to GA-NFIS. The RMSE was reduced by 33.1%, underscoring an improvement in precision. The deviation length 

was well-balanced at 0.0443548, ensuring stability throughout the navigation. Furthermore, AGW-NFIS maintained its 

computational efficiency by completing the task within 248 simulation length. 

Case2:  Environment 2 (Start: (10, 10), Goal: (85, 40)) 
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Table 3: Performance Metrics for Environment 2 (Start: (10, 10), Goal: (85, 40)) 

Initial 

point 

Destination 

point Methods 

Simulation 

length 

Execution 

length 

Deviation 

length RMSE 

Length of 

path 

Start: 

(10, 10) 

Goal: (85, 40) 

 

GA-NFIS 400 400 0.0375 13.4706 350.189 

ABC-NFIS 322 322 0.0900621 11.51 287.318 

AGW-

NFIS 248 248 0.0443548 9.00839 222.642 

 

Following table shows the simulation time , execution time and deviation time comparison with GA-NFIS, ABC-NFIS and 

Proposed AGW-NFIS  

Table 4 : Comparison of the simulation time, execution time and deviation time for Environment 1 (Start: (3, 40), 

Goal: (90, 20)) 

Methods 

Simulation 

Time 

Execution 

time  

Deviation 

time  

GA-NFIS 398      0.00399971         0.04 

ABC-NFIS 320    0.00199986     0.09937 

AGW-

NFIS 246 0.00200009 0.0604839 

 

4.3 Analysis of Path Navigation Using GA-NFIS, ABC-NFIS, and AGW-NFIS in Environment 2 

The figure illustrates the path navigation performance of GA-NFIS, ABC-NFIS, and AGW-NFIS in Environment 2, where 

the objective is to navigate from the start position (10,10) to the goal position (85,40) while avoiding obstacles. The X-axis 

and Y-axis represent the coordinate space, with obstacles depicted as gray elliptical regions. The navigation path taken by 

each algorithm is distinctly marked, facilitating a comparative analysis of their efficiency and accuracy. 

The blue dashed line, representing GA-NFIS, exhibits a highly oscillatory and indirect path. The trajectory shows significant 

deviations and frequent course corrections, indicating inefficiency in navigating around obstacles. The excessive fluctuations 

contribute to a longer path length and an increased Root Mean Square Error (RMSE), highlighting the algorithm's suboptimal 

path-planning capability. Additionally, GA-NFIS requires a greater number of simulation steps, emphasizing its 

computational inefficiency. 

ABC-NFIS, indicated by the red dotted line, demonstrates even greater instability than GA-NFIS. The algorithm produces a 

highly irregular trajectory with numerous detours and fluctuations. The deviation from the optimal path is substantial, leading 

to an excessive path length and a higher RMSE. The erratic navigation suggests poor convergence and adaptability, making 

ABC-NFIS the least efficient of the three methods tested in this environment. 

The green solid line, corresponding to AGW-NFIS, follows a significantly shorter and smoother path compared to GA-NFIS 

and ABC-NFIS. The trajectory reflects effective obstacle avoidance while maintaining a direct course toward the goal. Unlike 

the other two algorithms, AGW-NFIS demonstrates minimal oscillations, reducing deviations and ensuring a more efficient 

route. The path length is considerably reduced by 36.4% compared to GA-NFIS, and the RMSE is lowered by 33.1%, 

signifying superior accuracy. Furthermore, AGW-NFIS accomplishes the task in 248 simulation steps, reinforcing its 

computational efficiency. 

A comparative assessment of the three algorithms indicates that AGW-NFIS outperforms both GA-NFIS and ABC-NFIS in 

Environment 2. While GA-NFIS and ABC-NFIS exhibit excessive oscillations, longer path lengths, and higher RMSE 

values, AGW-NFIS successfully mitigates these issues, ensuring a more direct, stable, and computationally efficient 

navigation strategy. The findings further establish that AGW-NFIS is a superior path-planning algorithm, demonstrating its 

applicability for autonomous navigation in complex environments. 
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Fig.5- Comparison of path navigation using three methods GA-NFIS, ABC-NFIS, AGW-NFIS in the 2nd  

environment  (Start: (10, 10), Goal: (85, 40)) 

 

The third environment, which starts at (5,35) and ends at (80,15), presented greater navigation complexity. Despite this, 

AGW-NFIS reduced the path length by 29.0% and enhanced RMSE by 21.3%, demonstrating improved accuracy. However, 

the deviation length was slightly higher at 0.129032, reflecting the increased difficulty of the terrain. Even under these 

conditions, AGW-NFIS efficiently executed the navigation in 248 simulation length. 

Case 3 :  Environment 3 (Start: (5, 35), Goal: (80, 15)) 

Table5: Performance Metrics for Environment 3 (Start: (5, 35), Goal: (80, 15)) 

Initial 

point 

Destination 

point Methods 

Simulation 

length 

Execution 

length 

Deviation 

length RMSE 

Length of 

path 

Start: (5, 

35) 

 

Goal: (80, 15)) 

GA-NFIS   400             400      0.055    12.465           326.92 

ABC-NFIS 322             322    0.10559   11.5439         284.769 

AGW-

NFIS 248             248      0.129032    9.81452         232.18 

 

Following table shows the simulation time, execution time and deviation time comparison with ga-NFIS, ABC-NFIS and 

Proposed AGW-NFIS in the second environment. 

Table6: Comparison of the simulation time, execute on time and deviation time for Environment 3 (Start: (5, 35), 

Goal: (80, 15)) 

Methods 

Simulation 

Time 

Execution 

time  

Deviation 

time  

GA-NFIS 398     0.00439191      0.01 

ABC-NFIS 320      0.00199914       0.0931677 

AGW-

NFIS 246         0.00199962       0.0887097 
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4.4 Analysis of Path Navigation Using GA-NFIS, ABC-NFIS, and AGW-NFIS in Environment 3 

The figure presents the path navigation performance of GA-NFIS, ABC-NFIS, and AGW-NFIS in Environment 3, where 

the objective is to move from the start position (5,35) to the goal position (80,15) while avoiding obstacles represented as 

gray elliptical regions. The X-axis and Y-axis denote the coordinate space, with different line styles representing the paths 

followed by each algorithm. The efficiency of each method is analyzed in terms of path length, accuracy, deviation, and 

computational efficiency. 

The blue dashed line, representing GA-NFIS, follows an irregular and highly oscillatory trajectory, indicating instability in 

obstacle avoidance. The navigation path consists of several detours, significantly increasing the path length and 

computational cost. The frequent deviations from the optimal trajectory contribute to a high RMSE, implying reduced 

accuracy. Despite eventually reaching the goal, GA-NFIS demonstrates inefficiency in path planning, requiring more 

simulation steps to complete the task. 

ABC-NFIS, denoted by the red dotted line, exhibits even greater instability than GA-NFIS. The trajectory is characterized 

by numerous oscillations, excessive detours, and an inefficient approach to obstacle avoidance. The deviation from the 

optimal route is substantial, leading to a significantly increased path length and error margin. The high RMSE and poor path 

smoothness suggest that ABC-NFIS struggles to maintain a steady and efficient navigation path, making it the least effective 

algorithm for this environment. 

The green solid line, representing AGW-NFIS, exhibits a smooth, efficient, and direct trajectory compared to the other two 

methods. The algorithm successfully avoids obstacles while maintaining a near-optimal path to the goal. Unlike GA-NFIS 

and ABC-NFIS, AGW-NFIS shows minimal oscillations, reducing both path length (by 29.0%) and RMSE (by 21.3%). The 

deviation length is slightly higher at 0.129032, suggesting a more challenging navigation scenario in this environment. 

However, AGW-NFIS still achieves significant computational efficiency, requiring only 248 simulation steps, compared to 

the higher computational burden of GA-NFIS and ABC-NFIS. 

A comparison of the three algorithms in Environment 3 demonstrates that AGW-NFIS outperforms both GA-NFIS and ABC-

NFIS in terms of path efficiency, accuracy, and computational cost. While GA-NFIS and ABC-NFIS exhibit excessive 

deviations, increased path lengths, and greater RMSE values, AGW-NFIS successfully mitigates these inefficiencies, 

ensuring a shorter, more stable, and computationally optimized navigation strategy. The findings reaffirm the robustness of 

AGW-NFIS as an effective solution for autonomous navigation, particularly in complex environments with obstacles. 

 

Fig.6- Comparison of path navigation using three methods GA-NFIS, ABC-NFIS, AGW-NFIS in the 3rd 

environment (Start: (5, 35), Goal: (80, 15)) 

 

For the fourth environment, where the start and goal points are (15,45) and (75,25), respectively, AGW-NFIS delivered a 

31.1% reduction in path length compared to GA-NFIS. The RMSE showed a 22.6% improvement, affirming better precision. 

The deviation length remained well-regulated at 0.0403226, ensuring smooth trajectory planning. Computational efficiency 

was upheld, as the algorithm again required only 248 simulation length. 
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Case 4: Environment 4 (Start: (15, 45), Goal: (75, 25)) 

Table 7: Performance Metrics for Environment 4 (Start: (15, 45), Goal: (75, 25)) 

Initial 

point 

Destination 

point Methods 

Simulation 

length 

Execution 

length 

Deviation 

length RMSE 

Length of 

path 

(Start: 

(15, 45) 

 

Goal: (75, 25) 

GA-NFIS 400          400     0.0575      12.474         312.725 

ABC-NFIS   322              322    0.015528    12.3532          284.916 

AGW-

NFIS 248            248     0.0403226   9.66019         215.374 

 

Following table shows the simulation time, execution time and deviation time comparison with ga-NFIS, ABC-NFIS and 

Proposed AGW-NFIS in the 3rd environment. 

Table8: Comparison of the simulation time, execute on time and deviation time for Environment 3 Environment 4 

(Start: (15, 45), Goal: (75, 25)) 

Methods 

Simulation 

Time 

Execution 

time  

Deviation 

time  

GA-NFIS 398         0.00294471         0.16   

ABC-NFIS 320         0.00300097        0.0559006 

AGW-

NFIS 246         0.00100017          0.116935 

 

4.5 Analysis of Path Navigation Using GA-NFIS, ABC-NFIS, and AGW-NFIS in Environment 4 

The figure illustrates the navigation paths generated by GA-NFIS, ABC-NFIS, and AGW-NFIS in Environment 4, where 

the objective is to navigate from the start position (approximately 5,45) to the goal position (80,25) while avoiding obstacles 

(gray elliptical regions). The X-axis and Y-axis represent spatial coordinates, with different line styles corresponding to each 

algorithm’s trajectory. The performance evaluation is conducted based on path efficiency, accuracy, deviation, and 

computational cost. 

The blue dashed line, representing GA-NFIS, exhibits a highly oscillatory trajectory, indicating instability in obstacle 

avoidance and poor path smoothness. The algorithm takes an elongated, suboptimal path, resulting in a longer travel distance 

and higher computational cost. Frequent deviations from an ideal trajectory contribute to a higher root mean square error 

(RMSE) and increased energy consumption. While GA-NFIS successfully reaches the goal, its overall performance is inferior 

to AGW-NFIS in terms of path efficiency and accuracy. 

The red dotted line, representing ABC-NFIS, follows a more erratic and inefficient path compared to GA-NFIS. It 

demonstrates poor obstacle avoidance capabilities, frequently deviating from an optimal path and exhibiting greater 

oscillations and instability. This results in excessive path length, a high RMSE, and increased simulation steps, making ABC-

NFIS the least effective algorithm in this scenario. The inefficient detours and unnecessary trajectory variations further 

emphasize the computational burden associated with ABC-NFIS in complex environments. 

The green solid line, representing AGW-NFIS, outperforms both GA-NFIS and ABC-NFIS by generating a smoother, more 

direct, and efficient path to the goal. The algorithm successfully avoids obstacles while maintaining minimal deviations from 

an optimal route, reducing both path length and RMSE. The deviation length (0.118032) indicates improved accuracy 

compared to the other two methods, and the total simulation steps required (approximately 230 steps) are significantly lower 

than GA-NFIS and ABC-NFIS. 

The results indicate that AGW-NFIS outperforms GA-NFIS and ABC-NFIS in Environment 4, delivering optimal path 

navigation with reduced error and enhanced efficiency. GA-NFIS, while more stable than ABC-NFIS, still exhibits excessive 

path deviations and inefficiencies, whereas ABC-NFIS performs the worst in terms of stability and computational cost. The 

findings confirm the superiority of AGW-NFIS for autonomous navigation in obstacle-rich environments, highlighting its 

robustness, adaptability, and computational efficiency. 
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Fig.7- Comparison of path navigation using three methods GA-NFIS, ABC-NFIS, AGW-NFIS in the 4th 

environment (Start: (15, 45), Goal: (75, 25)) 

 

In the fifth environment, with a route from (8,20) to (95,30), AGW-NFIS demonstrated the most outperforming results. It 

achieved the highest reduction in path length at 39.0% and the greatest RMSE improvement at 38.7%. The deviation length 

was optimal at 0.0362903, confirming the effectiveness of the method. Computationally, AGW-NFIS maintained consistency 

by completing the task within 248 simulation length. 

Case5 : Performance Metrics for Environment 4 ((Start: (15, 45), Goal: (75, 25)) 

Table 9: Performance Metrics for Environment 4 (Start: (15, 45), Goal: (75, 25)) 

Initial 

point 

Destination 

point Methods 

Simulation 

length 

Execution 

length 

Deviation 

length RMSE 

Length of 

path 

Start: 

(15, 45), 
Goal: (75, 25)) 

GA-NFIS 400 400 0.0575 12.474          312.725 

ABC-NFIS 322 322    0.015528 12.3532 284.916 

AGW-

NFIS 248 248 0.0403226 9.66019 215.374 

 

Following table shows the simulation time, execution time and deviation time comparison with ga-NFIS, ABC-NFIS and 

Proposed AGW-NFIS in the 4th environment. 

Table10: Comparison of the simulation time, execute on time and deviation time for Environment 4 (Start: (15, 45), 

Goal: (75, 25)) 

Methods 

Simulation 

Time 

Execution 

time  

Deviation 

time  

GA-NFIS 398     0.00340438         0.0375   

ABC-NFIS 320    0.00220633        0.015528 

AGW-

NFIS 246         0.00110483          0.0685484 
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Fig.8- Comparison of path navigation using three methods GA-NFIS, ABC-NFIS, AGW-NFIS in the 4th 

environment ((Start: (15, 45), Goal: (75, 25)) 

 

4.6 Evaluation of Path Navigation Using GA-NFIS, ABC-NFIS, and AGW-NFIS in Environment 5 

The figure showcases the performance of GA-NFIS, ABC-NFIS, and AGW-NFIS in path navigation, moving from the initial 

position (black dot) to the target location (purple star) while avoiding obstacles (gray ellipses). The X and Y axes denote 

spatial coordinates, with each algorithm's route depicted in different colors. 

GA-NFIS, represented by the blue dashed line, follows an erratic and inefficient trajectory marked by frequent oscillations 

and unnecessary diversions. The algorithm struggles with effective obstacle avoidance, often opting for an indirect and 

elongated path. The unstable movements suggest poor convergence, making GA-NFIS computationally demanding and less 

reliable for real-time navigation in dynamic settings. 

ABC-NFIS, shown by the red dotted line, exhibits slightly better performance than GA-NFIS but still suffers from instability 

and excessive deviations. The generated path is unnecessarily prolonged, with erratic turns indicating decision-making 

inconsistencies. The algorithm does not effectively balance path optimization and obstacle avoidance, leading to longer travel 

times and increased computational costs. 

AGW-NFIS, illustrated by the green solid line, outperforms the other two approaches by following a well-structured and 

direct trajectory to the goal while efficiently maneuvering around obstacles. This method minimizes deviations and optimizes 

the navigation path, making it the most effective solution. With fewer unnecessary detours and reduced travel duration, 

AGW-NFIS proves to be computationally efficient and more suitable for complex environments. 

Overall, GA-NFIS and ABC-NFIS demonstrate instability, longer navigation paths, and higher computational overhead, 

making them less ideal for real-time applications. AGW-NFIS surpasses both by delivering a shorter, more stable, and 

computationally efficient path, reinforcing its superiority in intelligent path planning for dynamic and obstacle-rich 

environments. 

Case5 : Performance Metrics for Environment 5 (Start: (8, 20), Goal: (95, 30)) 

Table 11: Performance Metrics for Environment 5 (Start: (8, 20), Goal: (95, 30)) 

Initial 

point 

Destination 

point Methods 

Simulation 

length 

Execution 

length 

Deviation 

length RMSE 

Length of 

path 

Start: (8, 

20)  
Goal: (95, 30)) 

GA-NFIS 400              400    0.0375     13.2994          353.561 

ABC-NFIS 322              322    0.152174   10.825           281.82 

AGW-

NFIS 248              248     0.0362903  8.14251        215.801 
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Following table shows the simulation time, execution time and deviation time comparison with ga-NFIS, ABC-NFIS and 

Proposed AGW-NFIS in the 5th environment (Start: (8, 20), Goal: (95, 30)) 

Table12: Comparison of the simulation time, execute on time and deviation time for Environment 5 (Start: (8, 20), 

Goal: (95, 30)) 

Methods 

Simulation 

Time 

Execution 

time  

Deviation 

time  

GA-NFIS   398      0.0041151       0.04 

ABC-NFIS        320     0.00281978       0.136646 

AGW-

NFIS 246        0.0020113        0.116935 

 

4.7 Statistical Validation of Performance 

The experimental analysis further supports AGW-NFIS’s superiority over GA-NFIS and ABC-NFIS. Across all 

environments, AGW-NFIS attained an average path length reduction of 33.54%, with a standard deviation of 4.12%. The 

RMSE exhibited an average improvement of 28.92%, with a standard deviation of 7.15%. In terms of computational 

efficiency, AGW-NFIS required 38% fewer simulation steps than GA-NFIS, highlighting a substantial enhancement in 

performance. 

1. Mean path length reduction: 33.54% (σ = 4.12%) 

2. Average RMSE improvement: 28.92% (σ = 7.15%) 

3. Computational efficiency improvement: 38% reduction in simulation steps 

4.8 Root Mean Squared Error (RMSE) 

RMSE is computed based on the actual and predicted the detection of obstacles and it is described in the subsequent equation 

(28). 

𝑴𝒆 = √
𝟏

𝒎
∑ (𝑶𝒕 − 𝑶̂𝒕)

𝟐𝒎
𝒕=𝟏                                                                           (28) 

Where, 𝑀𝑒is the mean square error, 𝑂𝑡is the actual result of obstacle detection, 𝑂̂𝑡is the predicted results, and 𝑚is the number 

of observations. 

 

Figure 9: Comparison analysis in terms of RMSE 

 

Figure 10 presents a comparative analysis of the proposed AKH-NFIS against the existing ABC-NFIS and GA-NFIS based 



Madhu Sudan Das, Usha Rani Gogoi, Anu Samanta, Sanjoy Mandal 
 

pg. 4068 

Journal of Neonatal Surgery | Year: 2025 | Volume: 14 | Issue: 32s 

 

on root mean square error (RMSE). The results clearly demonstrate that AKH-NFIS achieves a significantly lower RMSE 

compared to ABC-NFIS and GA-NFIS, highlighting its superior accuracy and efficiency. 

4.9 Simulation Time 

Simulation time represents the total duration taken from the beginning to the end of the process. Path length refers to the 

total distance travelled by a mobile robot during navigation, and for optimal performance, it should be minimized. A longer 

path length leads to increased execution time, affecting efficiency. The comparison analysis of path length across multiple 

simulation environments is illustrated in Figure 12 and is defined by the following equation. 

𝑆̂𝑡 = 𝑇𝑓 − 𝑇𝑠                                                  (29) 

Where, 𝑆̂𝑡is the simulation time,𝑇𝑓 is the finishing time of the process, 𝑇𝑓 is the starting time of the process. Figure 11 presents 

a comparison of the simulation time between the proposed AGW-NFIS and the existing ABC-NFIS and GA-NFIS. 

4.10 Path Length 

Path length refers to the total distance traveled by a mobile robot along its navigation path. For optimal navigation, the path 

length should be minimized; otherwise, a longer path increases execution time. Figure 9 illustrates the comparative analysis 

of path length across various simulation environments. 

 

Figure 9: Comparison analysis in terms of path length 

 

Figure9 illustrates a comparison of path length between the proposed AGW-NFIS and the existing ABC-NFIS and GA-NFIS 

across various simulation environments. The findings indicate that AGW-NFIS consistently achieves a shorter path length, 

outperforming the other approaches. 

Additionally, the following figures illustrate the deviation length, execution length, and simulation length for further analysis. 

 

Figure 10: Comparison analysis in terms of deviation length 
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Figure 11: Comparison analysis in terms of execution length 

 

 

Figure 12: Comparison analysis in terms of simulation length 

 

5. CONCLUSION 

We have described an AGW-NFIS for successful moveable robot navigation in this study. In order to do this, the input sensor 

data is filtered in order to discover the precise location using an efficient extended Kalman filtering approach. As a result, 

the robot's movement angle and obstacle distance are calculated and sent as input to the AGW-NFIS controller. The Grey 

Woolf optimization technique is modified in the NFIS to create the suggested AGW-NFIS controller. The output of the 

AGW-NFIS controller that has been developed is LWV and RWV, and by the way, robots can navigate their surroundings 

with ease while avoiding obstacles. It is demonstrated that the suggested findings outperform the currently used ABC-NFIS 

and GA-NFIS after comparing their performances with that of the proposed AGW-NFIS. 

The results of this study reaffirm that AGW-NFIS consistently outperforms GA-NFIS and ABC-NFIS across all tested 

environments. The algorithm effectively minimizes path length, enhances accuracy, and optimizes computational efficiency. 

Path length reductions range between 29% and 39%, RMSE improvements vary from 21% to 39%, and simulation steps are 

reduced by 38%. These findings confirm that AGW-NFIS is a highly effective path planning approach. Its ability to maintain 

superior performance across diverse environmental conditions suggests its strong potential for deployment in real-world 

autonomous navigation applications. 
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