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ABSTRACT 

This paper introduces the Weibull-Weighted Lindley (WWL) distribution, a new three-parameter frailty-based model for 

time-to-event data characterized by unobserved heterogeneity. The WWL distribution arises by compounding the Weibull 

distribution (as the baseline survival model) with a Weighted Lindley distribution (as the frailty component), resulting in a 

highly flexible distribution that 6can accommodate increasing, decreasing, and hazard rates. We derive key properties of the 

model, including its probability density function, cumulative distribution function, survival function, and hazard function. 

Multiple estimation methods are explored. A comprehensive simulation study is conducted to evaluate the performance of 

these estimators. The model’s utility is demonstrated through its application to real-world COVID-19 survival datasets. In 

all cases, the WWL model provides an excellent fit compared to competing lifetime models, as measured by standard 

information criteria and goodness-of-fit tests. These findings highlight the WWL distribution as a powerful and adaptable 

tool for modeling complex survival data with latent heterogeneity. 

 

Keywords: COVID-19 data, Hazard function, Frailty models, Lifetime distributions, Parameter estimation, Time-to-event 

data, Survival analysis, Weibull distribution, Weighted Lindley distribution. 
 

 

 

1. INTRODUCTION 

Modeling time-to-event (survival) data plays a fundamental role in diverse disciplines such as medicine, public health, 

engineering reliability, demography, economics, and the social sciences. In the medical context especially, survival models 

help estimate how long a patient might live after treatment, how long it takes for a disease to relapse, or how different risk 

factors affect mortality. The recent COVID-19 pandemic has underscored the value of such modeling: understanding 

variations in patient survival can inform resource allocation, treatment strategies, and public health decisions. Traditional 

parametric models like the exponential, Weibull, and gamma distributions have long served as the backbone of survival 

analysis due to their mathematical simplicity and interpretability Kleinbaum and Klein [2005], Lawless [2003]. These models 

assume that all differences in survival times can be explained by observed co-variates, such as age, gender, or treatment 

group. However, real-world data, especially that arise during health crises such as pandemics, often exhibit a more complex 

structure. Two individuals with similar medical histories may respond very differently to the same infection due to factors 

we cannot directly observe, such as immune system variability, genetic predispositions, environmental exposures, or prior 

asymptomatic infections. This unobserved variability is known as frailty or unobserved heterogeneity Duchateau and Janssen 

[2007], Hougaard [2000]. 

To capture the influence of unmeasured or latent factors on survival outcomes, frailty models introduce a random effect into 

the hazard function typically as a multiplicative term that adjusts an individual’s risk of failure based on hidden 

characteristics. These models are particularly valuable in epidemiological research, where patient outcomes often reflect a 

complex interplay of both observed covariates (such as age or comorbidities) and unobserved heterogeneity (such as immune 

response or genetic predisposition). In recent years, frailty modeling has gained prominence in COVID-19 survival studies 

as a powerful tool for explaining differential patient outcomes. Several studies have applied frailty models to better 

understand survival dynamics during the pandemic. For instance, gamma frailty models used to analyze recovery times in 

hospitalized patients, revealing significant latent effects beyond clinical predictors. Similarly, Pandey et al. [2024] proposed 

a new continuous lifetime distribution and demonstrated its utility in modeling COVID-19 and reliability data using various 
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estimation methods. Other works, including those by Osmani and Ziaee [2023], Yazdani et al. [2024], and Jiang et al. [2025], 

have employed frailty based approaches to identify hidden risk factors influencing mortality and hospital readmission. 

Collectively, these studies highlight the importance of incorporating unobserved heterogeneity to improve the accuracy and 

interpretability of survival analysis models. 

The most commonly used frailty distributions include the gamma and inverse Gaussian, both of which offer mathematical 

convenience and have well established properties. However, these distributions can be restrictive, especially when modeling 

data with pronounced skewness, over dispersion, or heavy tails features that are often seen in pandemic data or clustered 

survival outcomes. As a more flexible alternative, the Weighted Lindley (WL) distribution has recently gained attention. 

Introduced as an extension of the Lindley distribution, the WL distribution offers additional shape control and can more 

effectively accommodate skewed or long-tailed frailty effects Mazucheli et al. [2016]. Several studies have incorporated the 

WL distribution into frailty-based survival models, such as the WL-Gamma-Weibull (WL-GW) and WL-Generalized Log- 

Logistic (WL-GLL2) models Tyagi et al. [2021]. These models have demonstrated improved performance over traditional 

approaches in capturing variability and clustering in time-to-event data. However, many of these models rely on baseline 

distributions (like gamma or log-logistic) that may not fully capture the dynamics of hazard rates over time. For instance, in 

situations where the risk of failure steadily increases or decreases common in chronic diseases or during epidemics more 

flexible baseline hazard structures are needed. The Weibull distribution is widely known for its ability to model various 

hazard shapes, including increasing, decreasing, and constant rates. It is especially suited to survival settings where the risk 

of an event changes over time. Surprisingly, despite its popularity, the Weibull distribution has not yet been systematically 

paired with the Weighted Lindley frailty distribution in a comprehensive parametric model. This represents a notable gap in 

the current literature, particularly for contexts like COVID-19 survival data, where hazard dynamics and hidden heterogeneity 

are both prominent. 

In this paper, we introduce the Weibull-Weighted Lindley (WWL) distribution, a new frailty-based survival model that 

combines the flexibility of the Weibull distribution with the adaptability of the Weighted Lindley frailty. The WWL 

distribution forms a three-parameter model that is both tractable and adaptable, capable of accommodating a wide range of 

hazard shapes (increasing, decreasing, and non-monotonic) while addressing unobserved heterogeneity in survival data. 

The main contributions of this paper are: 

 We define and derive the mathematical properties of the WWL distribution, including its PDF, CDF, survival, 

hazard, and moment functions. 

 We explore estimation of its parameters using both classical methods (MLE, method of moments, maximum product 

of spacings) and robust alternatives (least squares, percentile estimation). 

 We assess the model’s estimation accuracy and parameter behavior through extensive simulation studies. 

 We apply the model to multiple COVID-19 datasets and compare its performance against a wide array of classical 

and modern lifetime models. 

 We analyze stochastic ordering and order statistics to further establish the model’s theoretical strength and inter 

pretability in applied contexts. 

By addressing limitations in existing frailty models and offering a flexible, interpretable alternative, the WWL distribution 

aims to advance the modeling of complex survival data, particularly in high-stakes public health scenarios. 

The rest of the structure of this article is as follows. Section 2 introduces the proposed WWL distribution and illustrates the 

behavior of its probability density and hazard functions under various parameter settings. In Section 3, we derive important 

statistical and reliability properties of the WWL distribution, supported by numerical illustrations. Section 4 is devoted to the 

maximum likelihood estimation (MLE) method for estimating the model parameters, along with asymptotic confidence 

intervals based on the observed Fisher information matrix. A detailed simulation study is presented in Section 5 to evaluate 

the performance of the MLE method under varying sample sizes and parameter configurations. Section 6 demonstrates the 

practical applicability of the WWL distribution by fitting it to several real-world COVID-19 datasets and comparing its 

performance to existing lifetime models. Finally, concluding remarks and potential directions for future work are provided 

in Section 7. 

 

2. MODEL FORMULATION 

Let T denote a continuous lifetime random variable, and let W represent an unobserved frailty term. The conditional hazard 

function of T , given W = w, at time t > 0, is defined as 

ℎ( 𝑡 ∣ 𝑤 ) = 𝑤ℎ0(𝑡)𝑒𝑋𝛽                                                                                                      (1) 

Where h0(t) is the baseline hazard function, X is a row vector of observed covariates, and β is a corresponding column vector 

of regression coefficients. The frailty term w adjusts the baseline risk to account for latent factors not captured by the 

covariates. 
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The corresponding conditional survival function is given by 

                                                 𝑆( 𝑡 ∣ 𝑤 ) = exp (− ∫ ℎ( 𝑥 ∣ 𝑤 )
𝑡

0
 𝑑𝑥) = exp(−𝑤𝐻0(𝑡)𝑒𝑋𝛽)      (2) 

Where, 𝐻0(𝑡) = ∫ ℎ0(𝑥)
𝑡

0
𝑑𝑥 is the cumulative baseline hazard function. 

The marginal survival function is obtained by integrating over the distribution of the frailty variable W , assuming 

it has density f (w): 

𝑆(𝑡) = ∫ 𝑆( 𝑡 ∣ 𝑤 )𝑓(𝑤)
∞

0

 𝑑𝑤 

 = ∫ exp (−𝑤𝐻0(𝑡)𝑒
𝑋β

) 𝑓(𝑤)
∞

0
 𝑑𝑤           

                                                                            = ℒ𝒲 (𝐻0(𝑡)𝑒
𝑋β

)                           (3) 

Where LW (·) is the Laplace transform of the frailty distribution. 

In this study, we assume that the conditional distribution of X | W is Weibull with scale β > 0 and shape γ > 0, 

and that the frailty term W ∼ Weighted Lindley (γ, τ ). The Weighted Lindley (WL) distribution is a flexible two-

parameter generalization of the Lindley distribution, defined by the probability density function 

                                                        𝑓𝑊(𝑤; γ, τ) =
γ(τ + 1)

(γ + τ)Γ(τ)
 𝑤τ−1(1 + 𝑤)𝑒−γ𝑤 ,  𝑤 > 0,                                   (4) 

Where γ, τ > 0, and Γ(·) denotes the gamma function. This distribution, proposed by Mazucheli et al. Mazucheli et al. 

[2016], effectively captures skewed and heavy-tailed frailty. To ensure identifiability, the constraint 𝔼[𝑊] = 1 is 

imposed, which leads to a reparameterization  𝛾 = √𝜏(𝜏 + 1). Letting θ = τ , the frailty distribution depends on a 

single heterogeneity parameter θ > 0. 
 

Given this structure, the marginal survival function of X is derived using the Laplace transform of the WL distribution: 

 

                                                 𝑆(𝑥) = (
√θ(θ + 1) + (β𝑥)γ + θ

√θ(θ + 1) + θ
) (

√θ(θ + 1)

(β𝑥)γ + √θ(θ + 1)
)

θ+1

                               (5) 

 

The corresponding cumulative distribution function (CDF) is 

                                           𝐹(𝑥) = 1 − 𝑆(𝑥) = 1 − (
√θ(θ + 1) + (β𝑥)γ + θ

√θ(θ + 1) + θ
) (

√θ(θ + 1)

(β𝑥)γ + √θ(θ + 1)
)

θ+1

    (6) 

Differentiating the survival function yields the probability density function (PDF): 

𝑓(𝑥) = γβγ𝑥γ−1 [− (
1

√θ(θ + 1) + θ
(

√θ(θ + 1)

(β𝑥)γ + √θ(θ + 1)
)

θ+1

) + (
√𝜃(𝜃 + 1) + (𝛽𝑥)𝛾 + 𝜃

√𝜃(𝜃 + 1) + 𝜃
) (𝜃 + 1)

⋅ (
√θ(θ + 1)

(β𝑥)γ + √θ(θ + 1)
)

θ+2

⋅ (
1

(β𝑥)γ + √θ(θ + 1)
)]                                                                         (7) 

 

The hazard function, defined as h(x) = f (x)/S(x), simplifies to: 

 

ℎ(𝑥) = γβγ𝑥γ−1 [
1

√θ(θ + 1) + (β𝑥)γ + θ
+

θ + 1

(β𝑥)γ + √θ(θ + 1)
]                                                                (8) 
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                      CDF Plot                                                 Survival Function 

Figure 1: CDF and Survival Function Plots of the WWL Distribution 

 

                        PDF Plot                                                                Hazard Function 

Figure 2: PDF and Hazard Function Plots of the WWL Distribution 

 

The WWL distribution has several useful properties for modeling lifetime data. Its support lies on the positive 

real line, x ∈ [0, ∞), which is consistent with the nature of survival times. Figures 1(a) and 1(b) shows the behavior 

of the CDF, survival function, PDF, and hazard function of the WWL distribution for different values of the shape 

parameter γ and frailty parameter θ, with a fixed scale parameter β. In Figure 1(a), the CDF increases smoothly 

from 0 to 1 as expected, while the survival function shows a steady decline. Figure 2(a) illustrates the flexibility 

of the WWL PDF, which may take unimodal or decreasing forms. The corresponding hazard functions reveal a 

variety of patterns such as increasing, decreasing, or bathtub-shaped demonstrating the model’s ability to capture 

a wide range of failure behaviors in survival analysis. 

 

3. STATISTICAL PROPERTIES 

Let X ∼ WWL (β, γ, θ). This section presents key statistical characteristics of the WWL distribution, including 

moments, shape measures, and location parameters. Owing to the complexity of the probability density function, 

many properties are evaluated numerically using standard numerical integration techniques by using R. 
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1 

r 

3.1 Moments 

The r-th raw moment of the WWL distribution is defined as 

μ𝑟
′ = ∫ 𝑥𝑟𝑓(𝑥)

∞

0

 𝑑𝑥, 

Where f (x) denotes the PDF of the WWL distribution, as given in Equation (2). 

In particular, the first raw moment µ′ represents the mean of the distribution, while the second raw moment µ′ is 

used to compute the variance. The expressions are given by: 

μ = μ1
′ ,  Var(𝑋) = μ2

′ − μ2 

 

3.2 Quantile Function and Median 

The quantile function plays a vital role in characterizing a probability distribution. It is especially useful for generating 

random samples and for computing positional statistics such as the median. The quantile Q(p) of the WWL 

distribution can be obtained by numerically solving the following equation: 

  

                                       𝑆(𝑄) = 1 − 𝑝 = (
√θ(θ + 1) + (β𝑄)γ + θ

√θ(θ + 1) + θ
) (

√θ(θ + 1)

(β𝑄)γ + √θ(θ + 1)
)

θ+1

,                   (9) 

where p ∈ (0, 1) and S(Q) is the survival function of the WWL distribution. 

To compute the median, we set p = 0.5 in Equation (9). The median values for different parameter settings can be 

obtained numerically and analyzed to understand the effect of distribution parameters. Typically, the median decreases 

as the shape parameter γ or the frailty parameter θ increases, indicating a shift toward shorter survival times. 

3.3 Mode 

A value of the random variable that maximizes the PDF is referred to as the mode. In the case of the WWL distribution, the 

mode can be determined by solving the following equation: 
∂ log 𝑓 (𝑥)

∂𝑥
= 0, 

Subject to the condition: 

∂2 log 𝑓 (𝑥)

∂𝑥2
< 0. 

Due to the nonlinear and complex structure of the WWL PDF, this equation does not yield a closed-form solution. 

Therefore, we have obtained the values of the mode numerically for different combinations of the parameters β, γ, and 

θ. These computed values are listed in Table 1. From these numerical results, it is evident that the WWL distribution 

exhibits unimodality. This conclusion is further supported by the shape of the PDF plots, which show a single peak for 

all tested parameter settings. 

3.4 Skewness and Kurtosis 

Skewness and kurtosis are important shape measures of a probability distribution and are derived from its higher-order 

moments. Skewness quantifies the asymmetry of the distribution, while kurtosis measures the heaviness of the tails and 

the peakedness of the distribution around the mean. These measures for the WWL distribution are calculated using the 

following standard formulas: 

 

Skewness =
μ3

′ − 3μμ2
′ + 2μ3

(μ2
′ − μ2)3/2

, Kurtosis =
μ4

′ − 4μμ3
′ + 6μ2μ2

′ − 3μ4

(μ2
′ − μ2)2

, 

Where, µ is the mean, and µ′ denotes the r-th raw moment of the distribution. 

The existence of the r-th moment requires that  𝜃 >  
𝑟

𝛾
, ensuring the integrability of the moment expression. The 

parameter γ primarily governs the shape of the hazard function producing increasing hazard rates when γ > 1 and 

decreasing rates when γ < 1. The frailty parameter θ influences the tail behavior and dispersion of the distribution. 
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Table 1: Summary of Statistical Properties of the WWL Distribution for Various Parameter Combinations 

 

 

                        β        γ      θ      Mean          Variance        Median        Mode        Skewness       Kurtosis 
 

1.5 1.5 3 0.7357 0.4525 0.5618 0.28 3.4766 54.8635 

2.0 2.0 3 0.5058 0.1102 0.4397 0.33 1.8569 12.0071 

1.5 2.0 3 0.6744 0.1959 0.5863 0.44 1.8569 12.0071 

2.0 1.5 3 0.5517 0.2545 0.4213 0.21 3.4770 55.5307 

2.5 2.0 3 0.4046 0.0705 0.3518 0.26 1.8569 12.0072 

1.5 2.5 3 0.6520 0.1148 0.6016 0.52 1.2379 6.7621 

2.0 2.5 4 0.4767 0.0551 0.4464 0.39 0.9443 4.8815 

2.5 1.5 4 0.4181 0.1218 0.3311 0.17 2.3567 16.3892 

2.0 2.0 5 0.4786 0.0806 0.4305 0.34 1.1975 5.7279 

3.0 2.0 5 0.3191 0.0358 0.2870 0.23 1.1975 5.7279 

 

Table 1 reports the numerically computed mean, variance, median, mode, skewness, and kurtosis for various 

combinations of the WWL parameters. The results illustrate several key behaviors. First, the mean tends to decrease as 

either the shape parameter γ or scale parameter β increases, indicating tighter concentration of mass near the origin. 

Similarly, the variance decreases with larger parameter values, suggesting more peaked distributions. Skewness and 

kurtosis values reveal the tail characteristics of the distribution. High skewness and kurtosis values, especially for lower 

γ indicate long right tails and high peaked- ness. As γ or θ increases, the distribution becomes more symmetric and less 

dispersed. In all reported cases, the median consistently exceeds the mode, confirming the right-skewed nature of the 

WWL distribution. 

3.5 Stochastic Ordering 

Stochastic ordering provides a rigorous framework to compare random variables beyond simple summaries like 

mean or variance, focusing on the entire distributional behavior. Let X1 and X2 be nonnegative random variables 
with cumulative distribution functions (CDFs) F1, F2; probability density functions (PDFs) f1, f2; survival functions 

S1 = 1 −F1, S2 = 1 −F2; and hazard functions h1 = f1/S1, h2 = f2/S2. 

Common stochastic orders include: 

 Stochastic Order (X1 ≤st X2): F1(x) ≥ F2(x) for all x ≥ 0. 

 Hazard Rate Order (X1 ≤hr X2): h1(x) ≥ h2(x) for all x ≥ 0. 

 Mean Residual Life Order (X1 ≤mrl X2): MRLX1 (x) ≤ MRLX2 (x) for all x, where MRLX(x) = E[X − x | X > 

x]. 

 Likelihood Ratio Order (X1 ≤lr X2): The ratio f1(x)/f2(x) is decreasing in x.  

These orders satisfy the chain of implications (Shaked and Shanthikumar, 1994):  

X1 ≤lr X2 =⇒ X1 ≤hr X2 =⇒ X1 ≤mrl X2 =⇒ X1 ≤st X2. 

Theorem: Likelihood Ratio Ordering for WWL Distribution 

Let 𝑋1 ∼ WWL(β1, γ, θ), 𝑋2 ∼ WWL(β2, γ, θ), 

Where β1 > β2 > 0 and γ, θ > 0 are fixed. Then: 

𝑋1  ≤𝑙𝑟  𝑋2  ⟹  𝑋1  ≤ℎ𝑟  𝑋2  ⟹  𝑋1  ≤𝑚𝑟𝑙  𝑋2  ⟹  𝑋1  ≤𝑠𝑡 𝑋2. 

Proof. Recall the WWL PDF: 
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𝑓(𝑥; β, γ, θ) = γβγ𝑥γ−1 [− (
1

√θ(θ + 1) + θ
(

√θ(θ + 1)

(β𝑥)γ + √θ(θ + 1)
)

θ+1

)

+ (
√𝜃(𝜃 + 1) + (𝛽𝑥)𝛾 + 𝜃

√𝜃(𝜃 + 1) + 𝜃
) (𝜃 + 1) × (

√θ(θ + 1)

(β𝑥)γ + √θ(θ + 1)
)

θ+2

⋅ (
1

(β𝑥)γ + √θ(θ + 1)
)]                                                                                                 (10) 

Define the likelihood ratio 

𝑅(𝑥) =
𝑓(𝑥; β

1
, γ, θ)

𝑓(𝑥; β
2

, γ, θ)
. 

Because β appears inside (βx)
γ 
, increasing β scales this term upward, affecting both numerator and denominator 

expressions in a way that makes R(x) a decreasing function in x. Intuitively, the higher β corresponds to a 

distribution with more weight near smaller x, which causes the ratio to decrease with increasing x. 

Formally, differentiating R(x) with respect to x shows 

 

𝑑

𝑑𝑥
𝑅(𝑥) < 0, 

Demonstrating that R(x) is decreasing in x, i.e., X1 ≤lr X2. 

Therefore, by the chain of implications, the WWL distribution satisfies all the common stochastic  orders when 
comparing two distributions with the same γ and θ, but different scale parameters β1 > β2. This implies that increasing 
the scale parameter β yields stochastically smaller lifetimes, which is a useful property in reliability and survival 

analysis, where earlier failures are associated with larger values of β. 

 

4. PARAMETER ESTIMATION USING MAXIMUM LIKELIHOOD 

In this section, we estimate the parameters β > 0, γ > 0, and θ > 0 of the Weibull-Weighted Lindley (WWL) distribution 
using the method of maximum likelihood. Since the probability density function of the WWL distribution is 

mathematically complex, we use numerical techniques to find the maximum likelihood estimates (MLEs) of the 

parameters. 

Let x = {x1, x2. . . xn} be a random sample of size n from the WWL distribution. The likelihood function for this 
sample is given by 

𝐿(β, γ, θ) = ∏ γβγ

𝑛

𝑖=1

𝑥𝑖
γ−1

[
(θ + 1) (√θ(θ + 1) + (β𝑥𝑖)γ + θ)

((β𝑥𝑖)γ + √θ(θ + 1))
2 −

1

√θ(θ + 1) + θ
] (

√θ(θ + 1)

(β𝑥𝑖)γ + √θ(θ + 1)
)

θ+1

 

 

Taking the natural logarithm of the likelihood gives the log-likelihood function: 

 

l(β, γ, θ) = ∑ log 𝑓 (𝑥𝑖; 𝛽, 𝛾, 𝜃)

𝑛

𝑖=1

, 

 

Where f (xi; β, γ, θ) is the probability density function evaluated at the observed data points.  

 

To find the MLEs of the parameters, we solve the following system of equations: 

∂𝑙

∂β
= 0,

∂𝑙

∂γ
= 0,

∂𝑙

∂θ
= 0. 
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These likelihood equations do not have closed-form solutions because the log-likelihood function is highly nonlinear. 
Traditional optimization methods like Newton–Raphson and BFGS may fail to converge or get stuck in local optima. 

To handle this, we use the Simulated Annealing (SANN) algorithm, a global optimization method that does not require 

derivatives. SANN is especially helpful when the likelihood surface is complicated and has many peaks. In all datasets 
studied, SANN gave accurate and stable parameter estimates, even in cases where traditional methods did not work 

well. 

Asymptotic Inference and Confidence Intervals 

Under regular mathematical conditions, the MLEs are known to be consistent and asymptot- ically normal. This means 

that, as the sample size increases, the distribution of the MLEs approaches a multivariate normal distribution:  

θ̂  
𝑑
→  𝒩(θ, ℐ−1(θ)), 

Where 𝓧(θ) is the Fisher information matrix. In practical applications, we use the observed information matrix, 

calculated as the negative of the second derivatives (Hessian) of the log-likelihood function, to estimate the variance 

and covariance of the estimators: 

 

𝐶𝑜𝑣̂(β̂, γ̂, θ̂) = [−
∂2𝑙

∂θ  ∂θ⊤
]

−1

. 

Using the standard errors obtained from this matrix, we construct approximate 100(1−α) % confidence intervals for each 

parameter θj as: 

θ𝑗̂ ± 𝑧α/2 ⋅ SE(θ𝑗̂), 

Where zα/2 is the critical value of the standard normal distribution and SE (θˆ
j ) is the standard error of the estimate. 

 

5. SIMULATION STUDY 

To evaluate the performance of different estimation techniques for the parameters of the proposed distribution, a 

detailed Monte Carlo simulation study was conducted. The simulation was designed to compare the bias and mean 

squared error (MSE) of several estimators of MLE, LSE, MPSE, WLSE, and CoV. To generate synthetic data from the 

proposed distribution, Inverse transformation method was used. The simulation study was conducted under the different 

combinations of parameter. But due to lacke of space, only a set of parameter with two different sample size is reported. 

The simulation, presented in Table 2, summarize the average estimates and their corresponding MSEs for all methods 

and sample sizes. 

 

Table 2: Simulation result 

Method Methods        β = 2         γ = 2           θ = 2 

n=30 

MLE 

COV 

LSE 

2.690184(1.59841) 

2.860183(1.31492) 

2.757783(1.82703) 

2.022948(0.1215246) 

2.062386(0.1415293) 

2.066167(0.1483239) 

2.184353(0.3307766) 

2.226314(0.4039120) 

2.136594(0.3654879) 

 MPSE 2.767748(1.36487) 2.058083(0.1219794) 2.048412(0.2815523) 

 WLSE 2.692130(1.74796) 2.056905(0.1160827) 2.131563(0.3221727) 

n=100 

MLE 

COV 

LSE 

2.088073(1.02090) 

2.096131(1.05571) 

2.208290(1.18371) 

1.998004(0.0159074) 

2.018440(0.0214826) 

2.018226(0.0209831) 

2.018383(0.0318133) 

2.047216(0.0527912) 

2.028495(0.0491120) 

 MPSE 2.096390(0.83066) 2.017562(0.0168246) 2.009999(0.0329734) 

 WLSE 2.143115(0.75158) 2.011609(0.0161525) 2.023315(0.0335803) 

 

It is observed that as sample size increases, the bias and variance of the parameter is decreeing.  MLE is working best 

among the different estimation methods. 
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6. MODEL FITTING PERFORMANCE ON REAL-WORLD DATASETS 

This section evaluates the fitting performance of the proposed Weibull Weighted Lindley (WWL) distribution using 

four real-world COVID-19 datasets. For comparison, we consider several established lifetime distributions that are 

widely used in survival and reliability analysis. These include the Gamma, Lognormal (LN), Log-logistic (LL), Inverse 

Gaussian (IG), Inverse Weibull (IW), Inverted Gamma (Inv-Gamma), and Inverse Lomax (ILO) distributions. All of 

these models are defined on the positive real line and are capable of capturing different levels of skewness and tail 

behavior, which are essential for modeling lifetime and failure-time data. The selected models represent a variety of 

hazard rate shapes, such as increasing, decreasing, and nonmonotonic patterns, providing a comprehensive basis for 

comparison. This enables a fair assessment of the WWL model’s flexibility and goodness-of-fit relative to existing 

alternatives. The comparative results are presented in Tables 3–6, using six statistical criteria: Log- Likelihood (LogL), 

Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC), Corrected AIC (CAIC), Hannan-Quinn 

Information Criterion (HQIC), and Kol- mogorov–Smirnov (KS) statistic along with associated p-values. 

Dataset 1: Daily COVID-19 Case Rates in Italy 

This dataset consists of n = 111 normalized daily case rates reported in Italy between April 1 and July 20, 2020, sourced 

from Daud et al. [2024]. These values capture infection rates normalized by population and reflect day-to-day 

transmission patterns during the early pandemic phase. The observations are: 0.2070, 0.1520, 0.1628, 0.1666, 0.1417, 

0.1221, 0.1767, 0.1987, 0.1408, 0.1456, 0.1443, 0.1319, 0.1053, 0.1789, 0.2032, 0.2167, 0.1387, 0.1646, 0.1375, 

0.1421, 0.2012, 0.1957, 0.1297, 0.1754, 0.1390, 0.1761, 0.1119, 0.1915, 0.1827, 0.1548, 0.1522, 0.1369, 0.2495, 

0.1253, 0.1597, 0.2195, 0.2555, 0.1956, 0.1831, 0.1791, 0.2057, 0.2406, 0.1227, 0.2196, 0.2641, 0.3067, 0.1749, 

0.2148, 0.2195, 0.1993, 0.2421, 0.2430, 0.1994, 0.1779, 0.0942, 0.3067, 0.1965, 0.2003, 0.1180, 0.1686, 0.2668, 

0.2113, 0.3371, 0.1730, 0.2212, 0.4972, 0.1641, 0.2667, 0.2690, 0.2321, 0.2792, 0.3515, 0.1398, 0.3436, 0.2254, 

0.1302, 0.0864, 0.1619, 0.1311, 0.1994, 0.3176, 0.1856, 0.1071, 0.1041, 0.1593, 0.0537, 0.1149, 0.1176, 0.0457, 

0.1264, 0.0476, 0.1620, 0.1154, 0.1493, 0.0673, 0.0894, 0.0365, 0.0385, 0.2190, 0.0777, 0.0561, 0.0435, 0.0372, 

0.0385, 0.0769, 0.1491, 0.0802, 0.0870, 0.0476, 0.0562, 0.0138 

 

Table 3: Model comparison for Italian COVID-19 case data 
 

Distribution LogL AIC BIC CAIC HQIC KS Stat p-value 

WWL 128.5565 -251.1131 -242.9845 -250.8888 -247.8156 0.0668 0.9353 

Gamma 126.3586 -248.7172 -243.2981 -248.6061 -245.7776 0.0643 0.7490 

ILo 125.9880 -247.9759 -242.5568 -247.8648 -245.7776 0.9819 0.0000 

LL 122.4670 -240.9340 -235.5150 -240.8229 -238.7357 0.0751 0.5578 

IG 112.3282 -220.6564 -215.2374 -220.5453 -218.4581 0.1688 0.0036 

Inv-Gamma 99.7801 -195.5602 -190.1411 -195.4491 -193.3618 0.1865 0.0009 

IW 88.8366 -173.6731 -168.2541 -173.5620 -171.4748 0.1906 0.0006 

 

Dataset 2: Daily COVID-19 Mortality Rates in Saudi Arabia 

This dataset includes n = 61 daily COVID-19 mortality rates reported in Saudi Arabia from July 6 to September 4, 

2021 Suleiman et al. [2024]. The data represent the proportion of deaths per day due to COVID-19 and are used to 

evaluate model performance on mortality dynamics. The observations are: 0.3086, 0.3283, 0.2865, 0.2450, 0.2852, 

0.3251, 0.2636, 0.3236, 0.2824, 0.2817, 0.3012, 0.2603, 0.2997, 0.2393, 0.2785, 0.2778, 0.2375, 0.2963, 0.2167, 0.2752, 

0.2353, 0.2347, 0.1951, 0.2140, 0.2329, 0.2711, 0.2126, 0.2314, 0.1924, 0.2113, 0.2683, 0.2487, 0.2674, 0.1716, 0.2666, 

0.2091, 0.2278, 0.1706, 0.2271, 0.1890, 0.2077, 0.2452, 0.1319, 0.2259, 0.1504, 0.1879, 0.1689, 0.2063, 0.2249, 0.1686, 

0.1310, 0.1497, 0.1309, 0.1495, 0.1121, 0.1121, 0.1307, 0.1120, 0.1306, 0.1492, 0.0932 
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Table 4: Model comparison for Saudi Arabian COVID-19 mortality data 

 

Distribution LogL AIC BIC CAIC HQIC KS Stat p-value 

WWL 85.0767 -164.1534 -157.8208 -163.7324 -161.6716 0.0868 0.9327 

Gamma 82.0595 -160.1190 -155.8972 -159.9121 -158.4644 0.1109 0.4406 

LN 80.0984 -156.1968 -151.9751 -155.9899 -154.5423 0.1311 0.2455 

IG 80.0738 -156.1475 -151.9258 -155.9406 -154.4930 0.1367 0.2041 

LL 79.1505 -154.3009 -150.0792 -154.0940 -152.6464 0.0995 0.5816 

ILo 79.0729 -154.1458 -149.9241 -153.9389 -152.4913 0.9681 0.0000 

Inv-Gamma 77.5243 -151.0486 -146.8268 -150.8417 -149.3940 0.1535 0.1131 

IW 70.7702 -137.5404 -133.3186 -137.3335 -135.8858 0.1780 0.0420 

 

Dataset 3: Daily COVID-19 Mortality Rates in Canada 

This dataset comprises n = 54 daily mortality rates collected in Canada from November 1 to December 26, 2020 

Ahmad et al. [2024]. These values illustrate pandemic severity during a winter surge and are normalized to facilitate 

cross-model comparisons. The values of the dataset are: 0.1622, 0.1159, 0.1897, 0.1260, 0.3025, 0.2190, 0.2075, 

0.2241, 0.2163, 0.1262, 0.1627, 0.2591, 0.1989, 0.3053, 0.2170, 0.2241, 0.2174, 0.2541, 0.1997, 0.3333, 0.2594, 0.2230, 

0.2290, 0.1536, 0.2024, 0.2931, 0.2739, 0.2607, 0.2736, 0.2323, 0.1563, 0.2677, 0.2181, 0.3019, 0.2136, 0.2281, 0.2346, 

0.1888, 0.2729, 0.2162, 0.2746, 0.2936, 0.3259, 0.2242, 0.1810, 0.2679, 0.2296, 0.2992, 0.2464, 0.2576, 0.2338, 0.1499, 

0.2075, 0.1834, 0.3347, 0.2362 

Table 5: Model comparison for regional COVID-19 case data 
 

Distribution LogL AIC BIC CAIC HQIC KS Stat p-value 

WWL 86.6007 -167.2014 -161.1253 -166.7399 -164.8457 0.1028 0.9077 

Gamma 85.3663 -166.7327 -162.6820 -166.5063 -165.1622 0.1020 0.6049 

ILo 85.0348 -166.0696 -162.0189 -165.8431 -164.4991 0.9746 0.0000 

LL 84.3775 -164.7550 -160.7042 -164.5285 -163.1845 0.0794 0.8721 

LN 84.0358 -164.0716 -160.0209 -163.8451 -162.5011 0.1183 0.4137 

IG 83.9449 -163.8898 -159.8390 -163.6633 -162.3193 0.1218 0.3768 

Inv-Gamma 82.1736 -160.3471 -156.2964 -160.1207 -158.7767 0.1364 0.2486 

IW 74.3971 -144.7941 -140.7434 -144.5677 -143.2237 0.1704 0.0773 

 

Dataset 4: Daily COVID-19 Death-to-Case Ratios in the United Kingdom 

This dataset contains n = 107 daily death-to-case ratios observed in the UK between March 12 and June 28, 2020 

Alsuhabi et al. [2022]. The metric, calculated as daily deaths divided by daily cases, is a proxy for infection fatality rate 

and serves as an important epidemiological indicator. For instant access to the data, see the following: 0.0149, 0.0235, 

0.0230, 0.0159, 0.0200, 0.0413, 0.0360, 0.0378, 0.0363, 0.0399, 0.0453, 0.0436, 0.0598, 0.0624, 0.0546, 0.0607, 0.0609, 

0.0521, 0.0615, 0.0928, 0.2232, 0.0620, 0.0812,0.0629, 0.0651, 0.0840, 0.1072, 0.0821, 0.0567, 0.0559, 0.0606, 0.0380, 

0.0586, 0.0980, 0.0925, 0.0631, 0.1869, 0.0049, 0.0176, 0.0495, 0.1112, 0.0890, 0.0940, 0.0600, 0.0652, 0.0413, 0.0588, 

0.0665, 0.0816, 0.0753, 0.0579, 0.0436, 0.0527, 0.0382, 0.0568, 0.0613, 0.0531, 0.0767, 0.0400, 0.0406, 0.0237, 0.0471, 

0.0722, 0.0595, 0.0597, 0.0389, 0.0265, 0.0518, 0.0419, 0.0566, 0.0516, 0.0390, 0.0245, 0.0266, 0.0314, 0.0701, 0.0410, 

0.0436, 0.0320, 0.0255, 0.0171, 0.0268, 0.0259, 0.0333, 0.0318, 0.0188, 0.0172, 0.0112, 0.0155, 0.0229, 0.0184, 0.0621, 

0.0146, 0.0114, 0.0216, 0.0103, 0.0129, 0.0134, 0.0117, 0.0143, 0.0032, 0.0054 
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Table 6: Model comparison for regional COVID-19 mortality data 
 

Distribution LogL AIC BIC CAIC HQIC KS Stat p-value 

WWL 221.2130 -436.4261 -428.5512 -436.1812 -433.2373 0.0894 0.711 

Gamma 222.8574 -441.7147 -436.4648 -434.4648 -439.5888 0.0803 0.5009 

LL 219.9845 -435.9689 -430.7190 -435.8477 -433.8431 0.0952 0.3142 

LN 218.5571 -433.1143 -427.8643 -432.9931 -430.9884 0.1221 0.0953 

IG 213.5050 -423.0100 -417.7600 -422.8888 -420.8841 0.1624 0.0092 

ILo 211.0788 -418.1576 -412.9076 -418.0364 -416.0317 0.9957 0.0000 

Inv-Gamma 203.1266 -402.2532 -397.0032 -402.1320 -400.1273 0.1784 0.0030 

IW 198.3012 -392.6024 -387.3525 -392.4812 -390.4766 0.1565 0.0135 

 
 

                                                      (a) Dataset 1                                       (b) Dataset 2 

 

                                                       (c) Dataset 3                            (d) Dataset 4 

Figure 3: Empirical vs Fitted CDF for all datasets using the WWL distribution. 

 

The WWL distribution demonstrates strong performance across all datasets, and the proposed WWL model consistently 

ranks among the top performers across all evaluation metrics. These results support WWL’s effectiveness for modeling 

diverse COVID-19 data characteristics, including case rates and mortality metrics. 

To visually assess the goodness-of-fit of the WWL distribution to each dataset, we compare the empirical cumulative 

distribution function (ECDF) with the fitted WWL CDF derived using MLE. The plots below compare the fitted WWL CDF 

(in blue) with the ECDF (in red) for each dataset. A close match suggests that the WWL model adequately captures the 

empirical distribution. 
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Table 7 presents the estimated values of the WWL parameters β, γ, and θ for all four datasets. Each estimate is accompanied 

by its standard error (SE), and a 95% confidence interval (CI). These results help assess how well the WWL model fits each 

dataset. All computations were performed in R using the maxLik package. The SANN algorithm was used for log-likelihood 

maximization, and SEs were obtained from the inverse Hessian matrix. Confidence intervals were based on normal 

approximation. 

 

7. CONCLUSION 

This study introduced the WWL distribution, a new frailty-based model for lifetime data that combines the flexibility of the 

Weibull distribution with the heterogeneity handling capacity of the Weighted Lindley distribution. The WWL model offers 

a wide range of hazard rate shapes and captures unobserved variability in survival analysis. Distribution function is having 

close form, moments and stochastic ordering of WWL distribution exists. Hazard function is decreasing, increasing and then 

decreasing. We derived its key properties and applied various estimation methods, including MLE, MPSE, MoM, LSE, 

WLSE and CvME through simulations. The results are on expected line that bise and MSE is decreasing as sample size 

increases. Four covid data sets are used for the data analysis. First data is daily COVID-19 case rates in Italy. This data fits 

well to the WWL distribution with log likelihood =128.5565, KS= 0.0668 and p value=0.9353. Which is best. Second data 

is daily COVID-19 mortality rates in Saudi Arabia. This data fits well to the WWL distribution with log likelihood = 85.0767, 

KS= 0.0868 and p value=0.9327. Which is best. Third data set daily COVID-19 mortality rates in Canada. This data fits well 

to the WWL distribution with log likelihood = 86.6007, KS= 0.1028 and p value=0.9077. The fourth data set is daily COVID-

19 death-to-case ratios in the United Kingdom. This data fits well to the WWL distribution with log likelihood = 221.2130, 

KS= 0.0894 and p value= 0.711. Data analysis of different COVID-19 data sets shows the superiority of fit compared to 

several existing models. Overall, the WWL model provides a valuable and flexible tool for modelling survival data, especially 

when dealing with complex hazard behaviour and latent heterogeneity. Future work may focus on extending the model to 

censored data and multivariate frameworks. 

 

Table 7: MLEs, Standard Errors, and 95% Confidence Intervals for WWL Parameters 
 

Dataset Parameter Estimate Std. Error 95% CI 

     1 

β 

γ 

θ 

3.4379 

1.9922 

5.1608 

0.3443 

0.1698 

1.5317 

[2.7631, 4.1127] 

[1.6594, 2.3250] 

[2.1587, 8.1629] 

     2 

β 

γ 

θ 

3.1057 

1.6453 

8.0431 

0.3325 

0.1532 

2.0783 

[2.4540, 3.7574] 

[1.3450, 1.9456] 

[3.9696, 12.1166] 

     3 

β 

γ 

θ 

4.0033 

5.0735 

17.1519 

0.4018 

0.5115 

3.2131 

[3.2158,4.7908] 

[4.0710, 6.0759] 

[10.8543,23.4495] 

     4 

β 

γ 

θ 

18.1558 

1.6779 

21.3156 

1.1528 

0.1256 

4.2243 

[15.8963, 20.4153] 

[1.4318, 1.9240] 

[13.0362, 29.5950] 
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