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ABSTRACT 

Machine learning (ML) algorithms play a pivotal role in the key functional areas of autonomous vehicle (AV) navigation, 

including perception, localization, mapping, trajectory prediction, planning, and control. Despite the advancements in sensor 

technologies such as high-definition cameras, LiDAR, and radar—commonly used for mapping, obstacle detection, and 

localization—autonomous vehicles still face significant challenges in reliably navigating unfamiliar environments with 

unpredictable dynamics. These challenges stem from real-world factors such as weather variability, traffic congestion, 

pedestrian activity, and erratic behaviour of other drivers. Machine learning offers a promising solution to address these 

complexities. As one of the most rapidly evolving technologies, ML enables autonomous navigation systems to better 

interpret sensory data, adapt to dynamic surroundings, and make informed driving decisions. In addition to enhancing traffic 

safety and minimizing human error-related accidents, connected and autonomous vehicles (CAVs) can also fulfil a wide 

range of smart functions—from last-mile delivery services to urban surveillance in smart cities. To achieve these benefits, 

autonomous vehicles must be capable of independently reaching their destinations while cooperating with road infrastructure. 

Recent advancements in Cooperative Vehicle-Infrastructure Systems (CVIS) facilitate seamless communication between 

AVs and elements like traffic lights (TLs), promoting safer and more efficient transportation systems. CVIS allows for the 

integration of real-time information sharing between infrastructure and vehicles, thus supporting more accurate navigation 

and situational awareness. This study focuses on evaluating the practicality of two well-known reinforcement learning 

techniques—Proximal Policy Optimization (PPO) and Deep Q-Network (DQN)—within autonomous navigation systems. 

The assessment began with training the models in a low-fidelity driving simulator, followed by testing in a high-fidelity 

traffic simulation environment to replicate more realistic driving conditions. Multiple driving scenarios were considered to 

evaluate the robustness, adaptability, and performance of each algorithm. Results indicate that both PPO and DQN 

outperform traditional models, with PPO showing superior performance in maintaining consistent speed, navigating 

efficiently, and minimizing idle or ineffective movements. In autonomous driving, vehicles must constantly evaluate the 

state of surrounding objects, whether static or in motion, and adapt their behaviour accordingly. To support this, machine 

learning techniques such as convolutional neural networks (CNNs) optimized with Adaptive Moment Estimation (Adam), 

and neuro-fuzzy systems fine-tuned through Particle Swarm Optimization (PSO), are employed. These methods enable real-

time decision-making and smooth control, empowering AVs to respond swiftly and accurately based on learned patterns 

from extensive training data. 

 

Keywords: Autonomous vehicle, Machine Learning, Dynamic Vehicle Navigation, Traffic Signal Control, Mixed Autonomy 

Traffic Control, Reinforcement Learning, Multi-Agent System, Intelligent Transportation System, Proximal Policy 

Optimization, Deep Q-network, Convolutional neural network. 

1. INTRODUCTION 

Recent advancements in autonomous driving technologies and Vehicle-to-Everything (V2X) communication have created 

new opportunities for developing intelligent, cooperative transportation systems. These technologies enable real-time 

coordination between autonomous vehicles (AVs) and road infrastructure, laying the foundation for highly responsive and 

efficient traffic environments. Alongside traditional optimization methods, machine learning (ML) approaches have 

demonstrated considerable effectiveness in addressing various complex transportation challenges. Among these, deep 

reinforcement learning (DRL) has emerged as a particularly powerful tool. It has been widely applied to traffic signal 

optimization, consistently outperforming conventional rule-based or heuristic strategies by effectively reducing traffic 

congestion. Moreover, reinforcement learning (RL) models have shown significant promise in managing vehicle trajectory  
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planning, dynamic navigation, and adaptive driving behaviour—whether in fully autonomous fleets or in mixed traffic 

settings involving both human-driven and self-driving vehicles. Despite these successes, current literature appears to lack 

comprehensive studies that integrate the control of both AV navigation and traffic light systems within a single ML-based 

framework. Simultaneously managing these two interconnected components presents substantial challenges. First, there is a 

strong mutual dependency between AV manoeuvres and traffic signal states: real-time traffic light changes directly impact 

vehicle movement patterns, while the adaptive behaviour of autonomous vehicles in turn influences traffic light decision-

making. Second, each component typically pursues its own objective—autonomous vehicles aim to optimize their routes and 

avoid congestion, while traffic signal systems focus on minimizing overall traffic build up across intersections. These goals 

can often conflict, making it difficult to coordinate both effectively. [2014-17] 

Autonomous vehicles (AVs) are designed to perceive their environment and make driving decisions without direct human 

control. These self-driving systems utilize advanced sensors and algorithms to execute essential driving functions, marking 

a significant shift in transportation where intelligent machines, rather than humans, become the primary operators. AVs are 

poised to play a crucial role in the future of mobility, offering the potential to enhance safety, efficiency, and convenience 

on the roads. One of the more hazardous manoeuvres in driving—such as making a left turn (or a right turn in countries like 

India)—involves navigating through oncoming traffic, posing significant safety risks when performed manually. The 

difficulty is compounded for drivers of larger vehicles, as their field of vision is often limited due to structural blind spots 

and poor visibility of surrounding areas. At night, visibility becomes further restricted, as drivers can only rely on the range 

illuminated by their headlights, lacking the broader visual cues available during daylight hours. Moreover, contemporary 

traffic environments often involve aggressive or unpredictable driving behaviours. Drivers may exhibit excessive confidence, 

follow other vehicles too closely, ignore traffic regulations, or make erratic and unsafe manoeuvres—all of which contribute 

to increased roadway hazards and operational complexity for AV systems. [2018-20] 

For autonomous vehicles (AVs) to navigate effectively and safely, they must rapidly interpret dynamic environments, predict 

the behaviour of other road users, and make instantaneous decisions. Reinforcement learning (RL) has emerged as a powerful 

framework for developing intelligent and adaptable navigation strategies capable of handling the inherent complexity and 

uncertainty of real-world driving conditions. Among the various RL algorithms, Deep Q-Networks (DQN) and Proximal 

Policy Optimization (PPO) have demonstrated remarkable capabilities in real-time decision-making across multiple domains, 

including autonomous driving. DQN, a value-based RL method, estimates Q-values for each possible action, making it 

particularly effective in environments where decision options are discrete. Its strength lies in its ability to learn optimal 

actions in structured settings where a finite set of choices must be evaluated. In contrast, PPO belongs to the class of policy-

gradient algorithms and directly optimizes the policy over continuous action spaces. This allows it to be more versatile and 

effective in complex driving scenarios that require nuanced control, such as adjusting speed in real-time or manoeuvring 

along curving roads. The continuous control capabilities of PPO enable AVs to perform smooth, responsive driving 

manoeuvres tailored to evolving traffic conditions. Recognizing the unique advantages of both algorithms, this research 

proposes the integration of DQN's efficiency in discrete decision-making with PPO's strength in continuous control. By 

combining these two approaches, we aim to develop a hybrid navigation framework that is not only computationally efficient 

but also highly adaptive to a broad range of driving environments and challenges. [2020-21] 

Autonomous vehicle (AV) navigation stands as one of the most transformative applications of artificial intelligence (AI) and 

machine learning (ML) in modern transportation. It offers the potential to drastically enhance mobility, reduce human error, 

and significantly improve road safety. Central to the functionality of any AV system is the ability to navigate accurately 

while simultaneously detecting and avoiding obstacles in real time. Although recent advances in deep learning (DL) have 

yielded robust models capable of addressing many of the complexities involved in AV navigation, individual DL models 

often face challenges related to scalability, adaptability, and interpretability—especially in rapidly changing or unpredictable 

environments. To address these limitations, a hybrid deep learning-based framework has been developed that leverages the 

complementary strengths of multiple DL architectures to improve both robustness and navigational precision. This hybrid 

approach integrates convolutional neural networks (CNNs) and reinforcement learning (RL). CNNs are employed for visual 

perception tasks such as object recognition and semantic segmentation, utilizing data from onboard sensors like cameras and 

LiDAR. Their ability to extract and interpret visual features enables the vehicle to identify obstacles, road markings, and 

other relevant environmental cues. Reinforcement learning, on the other hand, is used to facilitate real-time decision-making 

and adaptive obstacle avoidance. It provides the AV with a learning-based mechanism to refine its navigation strategy based 

on environmental feedback, optimizing its behaviour over time. [2022] 

2. METHODOLOGY 

Autonomous Vehicle Navigation System Using Machine Learning 

Methods used to investigate machine learning (ML) approaches for navigation in autonomous vehicles (AVs). Perception, 

localization, mapping, trajectory prediction, planning and decision-making, and control are what make up the AV navigation 

system. By enabling real-time adaptability, precision, and response to changing contexts, machine learning algorithms 

improve these capabilities. 
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FIG-1 Autonomous Vehicle Navigation System Using Machine Learning 

 

2.1 Data Collection and Sensing 

In order to support perception, localization, and decision-making modules in the autonomous vehicle (AV) system, the Data 

Collection and Sensing stage collects crucial environmental data. 

1.Sensor Accuracy: Precision of data collected from each sensor. 

 

• Accuracy = correct detections \ total detections × 100% 

• Camera: 98% accuracy in capturing visual features (with 1920x1080 resolution). 

• LiDAR: ±0.05 meters precision in distance measurement. 

• Radar: ±0.2 meters for object detection range accuracy. 

2. Data Completeness: Percentage of frames with complete data from all sensors. 

• Complete frame rate = Frames with Complete Data \ total frames × 100 

• Complete Frame Rate: 95%  

• Dropped Frame Rate: 5%  
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3. Latency: Time delay from data capture to availability for processing. 

• Camera to Processing Delay: 30 m/s 

• LiDAR to Processing Delay: 40 m/s 

• Radar to Processing Delay: 25 m/s 

• Average latency = 30+40+25 \ 3 = 31.67 

• Overall System Latency: 45 m/s average, ensuring near-real-time data availability 

 

 

2.2 Perception 

In order to comprehend the driving environment, including object identification, depth determination, and scene 

segmentation into navigable and non-navigable sectors, autonomous cars' perception modules analyse sensor data. 

1. Object Detection: Correctly identifying objects such as pedestrians, vehicles, and obstacles. 

 

• Detection accuracy = correct detections \ total objects X 100% 

• Accuracy= 89% 
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• IOU = Area of overlap \ Area of union  

• Average IOU= 0.76  

2. Object Classification: Accurately classifying objects into categories (e.g., pedestrian, vehicle, cyclist). 

 

• Classification Accuracy: Correct Classification / Total Detected Objects × 100 

• Accuracy=92 

• Mean Average Precision (MAP): 85%  

3. Processing Time: Speed of the perception model for real-time applications. 

• Model Inference Time: 50 m/s per frame 

2.3 Localization and Mapping (SLAM) 

With the use of localization and mapping (SLAM), a robot or autonomous car may map its surroundings and simultaneously 

determine where it is on the map. For autonomous navigation, SLAM is crucial, particularly in uncharted territory. 

Key Metrics for Evaluation: 

1.Localization Accuracy: How accurately the robot determines its position in the environment 

 

• Root Mean Square Error (RMSE) = √
1

N
 ∑ (xi −  x̂i  )2N

i=1  
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• Before Optimization: RMSE (Root Mean Square Error) = 0.8 meters 

• After Optimization: RMSE = 0.3 meters  

2. Mapping Accuracy: How well the robot builds a map compared to the actual environment. 

• Before Optimization: Average map error = 1.2 meters 

• After Optimization: Average map error = 0.4 meters  

 

3. Processing Time: Time taken for the algorithm to process data and update its map. 

• Raw SLAM: 150 m/s per frame 

• Optimized SLAM: 100 m/s per frame 

2.4 Trajectory Prediction 

Involves forecasting the future positions of objects (such as pedestrians, vehicles, and cyclists) based on their current motion, 

which is essential for collision avoidance and path planning in autonomous systems. 

1.Prediction Accuracy=Correct Prediction / Total Prediction × 100% 

 

• 3-Second Horizon: 85% 

• 5-Second Prediction Horizon: 70% 
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2. RMSE (Root Mean Square Error) = √
1

N
 ∑ (pi − p̂i)2N

i=1  

 

• 3-Second Prediction Horizon: RMSE = 0.5 meters 

• 5-Second Prediction Horizon: RMSE = 1.2 meters 

3. Processing Time: Time taken to compute predictions per frame. 

• Model Inference Time: 40 ms / frame 

2.5 Path Planning and Decision-Making 

In autonomous systems involves generating safe and efficient paths for navigation based on predicted object trajectories, 

environmental conditions, and system goals.  

1.Success Rate= Success Routes / Total Routes × 100% 

 

• Success Rate: 92% 
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2. Path Optimality: Measures how close the chosen path is to the shortest or most efficient route. 

• Path Deviation=Actual Path Length – Optimal Path length / Optimal Path length × 100% 

• Average path Deviation = 1.3% 

• Energy Efficiency= Optimal Energy Use / Actual Energy Use × 100% 

• Energy Efficiency= 90% 

3. Computation Time: Time required to generate a path and make decisions per frame 

• Planning and Decision Time: 60 m/s per frame, supporting real-time adjustments. 

 

4. Collision Rate: Number of Collisions / Total Trials × 100 % 

• Collision Rate: 1.5% 

2.6 Control System 

In autonomous vehicles are responsible for executing the planned path by controlling the vehicle’s steering, acceleration, 

and braking to follow the desired trajectory accurately and smoothly. A robust control system ensures the vehicle can respond 

to dynamic changes in the environment and maintain stability. 
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1. Tracking Accuracy: 

• Lateral Deviation= mean (|x actual – x planned|) 

• Lateral Deviation = 0.2 meters 

• Longitudinal Deviation= mean (|y actual – y planned|) 

• Longitudinal Deviation = 0.3 meters 

2.  Response Time: 

• Response to Obstacle Detection: 100 m/s  

• Steering Response Time: 80 m/s  

3.  Stability: 

• Jerk (Rate of Change of Acceleration) = dA / dt 

• Jerk = 0.5 m/s³ 

• Yaw Rate Stability: 95%      

4.  Error Metrics: 

• Root Mean Square Error (RMSE)= RMSE= √
1

N
∑ (xactual,i − xplanned,i)2n

i=1  

•  Overall trajectory-following RMSE = 0.25 meters  

 

 

3. RESULT 

All sensors provide high frame completeness with low latency and no dropped frames. The system-level performance 

averages slightly lower due to integration overhead. 

Metric Camera Lidar Radar System Level 

Accuracy 98% ±0.05 m ±0.2 m           _ 

Complete Frame 

Rate 

   
95% 
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Dropped Frame 

Rate 
    

 

  
 

5% 

Latency 30 40 25 31.67ms 

This table summarizes the key performance metrics for the perception module in autonomous vehicles, emphasizing its 

efficiency and accuracy in identifying and classifying objects in the driving environment. 

 

Aspect Metric Value 

1. Object Detection Detection Accuracy 89%  

 Intersection Over Union (IOU) 0.76 

2. Object Classification Overall Classification Accuracy 92%  

 Mean Average Precision (MAP) 85%  

3. Processing Time  

Model Inference Time 
 

50  

This table highlights the improvements in localization and mapping accuracy and processing efficiency due to optimization 

in the SLAM algorithm, which is essential for effective autonomous navigation. 

 

Metric Before Optimization After Optimization Improvement 

Localization RMSE 0.8meters 0.3meters 62.5% 

Mapping Accuracy 1.2meters 0.4meters 66.7% 

Processing Time 150ms 100ms 33.3% 

This table summarizes the performance of the trajectory prediction module, emphasizing its effectiveness and efficiency 

across different prediction horizons for collision avoidance and path planning.  

 

Aspect Metric Value 

1. Prediction Accuracy 3-Second Prediction Horizon 85%  

 5-Second Prediction Horizon 70%  
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2. RMSE 3-Second Prediction Horizon 0.5 meters 

 5-Second Prediction Horizon 1.2 meters 

3. Processing Time Model Inference Time 40 milliseconds  

This table outlines the performance metrics for path planning and decision-making in autonomous systems, focusing on 

safety, efficiency, and real-time adaptability. 

 

Aspect Metric Value 

1. Success Rate Overall Success Rate 92%  

2. Path Optimality Average Path Deviation 1.3%  

 Energy Efficiency 90%  

3. Computation Time Planning and Decision Time 60 milliseconds  

4. Collision Rate Collision Rate 1.5%  

This table summarizes the key performance metrics for the Control System in autonomous vehicles, focusing on accuracy, 

responsiveness, stability, and error metrics essential for smooth  

and safe driving. 

 

Aspect Metric Value 

1. Tracking Accuracy Lateral Deviation 0.2 meters (average error) 

 Longitudinal Deviation 0.3 meters (average error) 

2. Response Time Response to Obstacle Detection 100 milliseconds 

 Steering Response Time 80 milliseconds 

3. Stability Jerk (Rate of Change of 

Acceleration) 

0.5 m/s³  

  

Yaw Rate Stability 
 

95%  

4. Error Metrics Root Mean Square Error (RMSE) 0.25 meters  

 

4. CONCLUSION 

Machine learning (ML) plays a pivotal role in enhancing and advancing the core functions of autonomous vehicle (AV) 
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navigation, including perception, localization, mapping, trajectory estimation, and intelligent decision-making. By 

leveraging ML models, self-driving cars can analyse vast amounts of sensor input, construct accurate representations of their 

surroundings, and maintain reliable positioning even in unfamiliar environments. A key advantage of ML is its capacity for 

adaptive, real-time responses, allowing AVs to handle dynamic road conditions, unexpected obstacles, and sudden changes 

in traffic patterns. This adaptability is critical for maintaining safety and operational efficiency. Furthermore, ML fosters 

continuous improvement: as the vehicle accumulates more data through diverse driving encounters, its algorithms evolve, 

resulting in smarter, more reliable behaviour and more sound judgments on the road. This constant refinement reduces 

accident risks and strengthens driving performance over time. Additionally, ML optimizes route planning by calculating the 

most suitable paths based on current traffic, road conditions, and unexpected detours. Within complex, ever-changing 

environments, ML-powered control systems ensure that the vehicle operates smoothly, remains stable, and prioritizes safety. 

Innovations in areas like deep learning and reinforcement learning have expanded these capabilities, enabling AVs not only 

to carry out tasks more effectively but also to learn from experience and make progressively better predictions and choices. 
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