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ABSTRACT 

This study looks at how well By contrasting traditional machine learning (ML) approaches with deep learning (DL) 

techniques, excitation source information is used in the interpretation of emotional speech. The study extracts spectral and 

prosodic features from speech data, concentrating on excitation source characteristics as pitch contour, jitter, shimmer, and 

harmonic-to-noise ratio. We evaluate a number of DL designs, including Convolutional Neural Networks, Long Short-Term 

Memory networks, and hybrid models, as well as ML methods, including Support Vector Machines, Random Forest, and 

Gradient Boosting.—using standardized emotional voice datasets. With the hybrid CNN-LSTM model attaining the 

maximum accuracy of 92.7% in emotion classification tasks, experimental findings show that DL techniques outperform 

conventional ML approaches. Particularly for differentiating between comparable emotional states, the combination of 

excitation source characteristics greatly enhances classification performance. By developing a thorough framework for 

emotional speech analysis and offering a methodical comparison of modern categorization methods, this study adds to the 

area. 

 

Keywords: Emotional Speech Recognition, Excitation Source Information, Machine Learning, Deep Learning, Speech Signal 

Processing, Convolutional Neural Networks, LSTM, Feature Engineering 

1. INTRODUCTION 

Vocalization may express more than words. Grammar comprehension is needed. This is spoken by a person. The human 

voice can carry a lot of information for several reasons. The list below provides further information on two of the material's 

paths after discussion. Simple emotional cues promote conversation. The method cannot be implemented without them due 

to their function. Without them, the procedure is essential, therefore it happens. Problems emerge when the approach is 

followed without their cooperation. This thinking yields this. Applications that automatically discern vocal emotions are 

available to anyone interested in this topic. Researchers in this area may benefit from these tools. Never uninstall these apps. 

Programs can accomplish this concurrently. The following sections describe several current uses. Smart virtual assistants, 

HCI, contact center 

analytics, and mental health monitoring qualify. Other applications may be here. This category includes several programs. 

Few photos in this collection substantiate this claim. These applications are among the few suitable for this category. Most 

qualifying programs meet this. These are only a few applications in this discipline. Despite advances in electronic speech 

recognition, understanding sentiments remains difficult. Due to patient mood, auditory perception might change 

significantly. Despite speaker characteristics, these disparities are obvious. Several speakers may disagree. Speakers are 

present. This cycle is driven by this thought. Various events occur. This affects the event. It causes events. The outcome 

follows. This gets them. Traditional speech emotion recognition algorithms rely on spectral indicators like Mel-frequency 

cepstral coefficients (MFCCs) and prosodic components including fundamental frequency, energy, and speaking pace. All 

of these characteristics influence speech emotion detection. This happens often. Usually, events end this way. Themes will 

win out. MFCC describes visible spectrum spectral properties. This function may be clear. Other spectral properties may be 

involved. Spectrum includes FCCs. Many call them "MFCCs." The spectrum shows this. Observer saw them. Spectrum-

visible MFCCs exist. We have "MFCCs." This trait is everywhere. Viewers can detect them. Speech-related sensations may 

be classified by glottal activation. This happens often. Numerous research prove this. I studied for this homework at home  
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recently. Glottis features indicate excitement or agitation. Glottis produces saliva. This study was likely done in the same 

place. Research was scheduled to begin now. The little vocal fold movement associated with different emotions is recorded 

to preserve these variations. Vocal folds generate voice. Since vocal fold action persists while recording. As said, these 

stimulation source qualities allow this. All of these traits caused this. Vocal folds' mood-producing powers allow them to 

generate different emotions. Voice folds provide these and other sensations. Their capacity to generate sentiments allows 

them to control this capability. This study examines if excitation source features may express emotions via speech. Desired 

objective. To better comprehend deep learning and classical machine learning, their performance will be compared. This 

helps choose between learning methods. This study compares the two education methods. This section compares the two 

education methods. Research will establish whether neural networks can accomplish predicted tasks. Study results will be 

more accurate. In this research, such traits and real estate applications are examined. In addition, this research evaluates the 

features connected with the above events and scenarios. This inquiry searches for traits related to previous events and 

conditions. Deep learning algorithms may eventually record all excitation source properties across emotional states. I hope 

this happens. We like this project. Recognize its possibility. We're excited to complete this task. We know it's feasible. We're 

determined to finish this and meet the high requirements. 

This condition may explain your results since these algorithms can build hierarchical representations. Thanks for 

acknowledging my response to your inquiry. I appreciate your kindness. Events occur as they do. Events happen because of 

this. 

2. LITERATURE REVIEW 

The past twenty years, significant progress has been made in finding ways of communication that could express feelings. 

Several channels of communication allowed development.[1] This occasion has produced several accomplishments. Progress 

has ceased. That is accurate. Producing this update has required much work.[2] Dellaert and coworkers performed the first 

experiment in 1996. They wanted to find four distinct feelings. Experiments were conducted to gauge participants' emotions. 

In 1996, the whole experiment was finished. It happened all year long.[3] It was meant to serve its principal purpose 

considering these qualities. These characteristics affected the design of this experiment, which was supposed to demonstrate 

them.[4] The study revealed that the optimal means of reaching the goals of the research were statistical pattern recognition 

techniques paired with prosodic characteristics. The outcome was as stated above. [5]This action was done to meet the 

objectives of the investigation. Their efforts let them attain a level of precision that allowed them to get the results they 

sought around 65% of the time. Their work produced these results. [6]This picture can reflect the percentage of success. 

Petrushin's 2000 work built on earlier research. His study employed contact center data and spectral data. We included 

spectral data. He looked at many categorization systems and techniques for this study. Petrushin looked all over 2000 for 

this paper.[7] This was required to increase the earlier work to get the intended outcome. The aim called for this expansion. 

We just reached our goal after finishing this stage.[8] This effort sought to extend past work. The current project emphasized 

prior work. On the other hand, this campaign emphasized earlier action.[9] Pioneers in this field, Schuller et al. (2007) were 

the first to show the value of excitation data. Studies in this field gave this information. Studying excitation sources led to 

this conclusion. Their business methods were innovative. [10]They were the first to make this knowledge known to the public 

and the forerunners to draw attention to it. In their area of expertise, they developed creative techniques. They also developed 

fresh ideas. To show, these academics broadened this field of research the most.[11] They helped the cause a lot. After much 

work, they found that glottal traits provide more information beyond conventional auditory qualities.[13]This was their 

finding. They came to this understanding on the way. Their success was driven by this information. Their great focus on it 

caused this. Click this link to see the findings of their study backing the disputed theory. [14]Throughout the research period, 

several investigations confirmed the theory. These research helped to support these truths. The researchers raised the 

accuracy of emotional identification by 5–7%. Glottal flow features were combined to achieve this. Combining features 

made this advancement possible.[15] The settings were mixed, so this was possible. The parts were combined to create this 

enhancement. Most of this great success was done. This upgrade was effective because the parts cooperated to provide the 

intended outcome.[16] An crucial piece of work was done on this assignment site. This development was made possible by 

the combination of elements. Improvement from mix. The mix caused this improvement. This progress was brought about 

via combination. Combining the factors produced this outcome.[17] The following actions were done to get this result. 

Koolagudi and Rao looked examined how excitation source factors influence indigenous Indian language emotional 

identification in 2012. This question took place in 2012. After gathering these figures, researchers published them in 

Language & Communication. [20]It was studied in 2012. The method adopted in this study is comparable to that of the prior 

study. Practically every respect is shared by both strategies. Their many qualities make them similar. Every one of these 

methodological approaches is connected to the effectiveness of the other options.[25] The research indicated that these 

qualities enhanced the capacity to differentiate comparable emotional experiences. After looking over the matter, they 

decided thus.[26] Over their investigation, they came to this significant conclusion. They came to understand this later. Deep 

learning was used in this data and it was in charge of the great progress produced. The method was required to complete this 

task and it functioned. Trigeorgis et al. (2016) created a procedure-wide instructional approach. Their teamwork made this 

feasible; otherwise, it would not have been. Their collaboration made this feasible. Their teamwork made this possible.[30] 
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Their teamwork brought about this. Many individuals cooperating made this project effective. This approach may rapidly 

catch representations from raw audio input, hence lowering the need for parts produced as a consequence. The method gathers 

representations from raw audio input. This is due to the possibility of this approach accumulating representations. This 

permits it to bring about this decline. This causes it to produce parts. That is the cause.[27] Many of the characteristics so no 

longer required are those anticipated to be put into use shortly. The present market does not need such qualities anymore. 

Their convolutional recurrent model was shown to be better than conventional approaches. This comparison shows it. To 

focus on emotionally significant spoken language communication, Neumann and Vu undertook yet another attention-based 

process research in 2017.[ This was done to highlight activities reliant on attention. This was done to underline the aspects 

of the scenario that had been addressed before. A thorough study was done for 2017, which was 2017. This approach was 

used to enhance the study at the particular location and time. Their research enabled them to provide cutting-edge results. 

Their project was really successful. They could take advantage of this option. Creating benchmark datasets was the only 

method to effectively finish this task. This was the sole method for the task. Based on their results, Zhao et al. (2019) 

developed a learning framework including many activities. The aim of this strategy was knowledge acquisition. Study results 

formed the basis of this framework. The research enabled this progress. A key advantage is that this approach can 

simultaneously teach emotional detection and speech recognition. One of its best features is this.[21] Its main advantages 

include the reality that it has this. This framework was created from their thorough research and the information they 

gathered. Both tests' outcomes brought this about. Our approach aims for any objective by using the knowledge that these 

two occupations complement one another. There is only one instance given. This helps it to reach its objectives. This also 

lets us accomplish what we plan to, which is good. By demonstrating a superior degree of generality over a broad variety of 

applications, they reached a significant milestone.[22] They could do this and other tasks. Their approach ensured their 

success. Zhang et al. (2020) looked at whether this approach helps provide a genuine example. The research sought to find 

out if moving learning skills from large-scale speech recognition models to emotion detection activities is successful. The 

research was done to find out if this approach is effective. The researchers also wanted to know if this approach would meet 

their objectives. This study sought to find out if this benefits the subject under debate so suitable action may be taken. The 

study looked at its material to assess its applicability to the problem. The researchers hoped to see if a more precise approach 

would enable them to reach their goals. Their notable advancement with a little quantity of labeled data led them to believe 

that transfer learning was effective. They decided the approach was successful. This led them to believe the approach was 

effective. [25]The fact that the approach was effective helped them to see this. Their first justification for coming to this 

decision was this one. The knowledge that the plan had been successful was the impetus for their awakening.There is now a 

lack of thorough comparison of machine learning and deep learning techniques, particularly for excitation source qualities. 

This problem has a big impact on deep learning. One has to work to correct this progress problem. This has happened even 

with much effort in this field. The aforementioned event took place despite thorough research. This holds in many situations 

for stimulus characteristics. Though there has been much advancement in this field, the state remains unchanged. The 

circumstances have not altered. It is the present condition that has remained constant across time. Every characteristic of the 

stimulus source corresponds to this occurrence. Linking these two objects is acceptable. Though several research on machine 

learning and deep learning exist, no thorough comparison using a single framework exists. Notwithstanding great research, 

this has happened. [27]This is due to the lack of a shared set of standards. Though both paradigms have been thoroughly 

studied, the findings of the study pointed to this conclusion. Although significant study has been done to examine either 

paradigm, this result has caused the conclusion arrived at. Though many research have looked at either of the two paradigms 

under examination, this specific finding has pointed to the conclusion reached. That yet, as deep learning systems get more 

complicated, there is still much research on how to include excitation source data into them. This paper investigates and 

compares modern deep learning techniques with conventional machine learning. Emotional speech is found in this study 

employing knowledge of excitement origins. The operation will be monitored continuously to reach the goal. This data will 

enable the study to find speech-based emotions.[28] This assessment will be shown to fulfill the purpose of the study and to 

satisfy all criteria. This evaluation will seek to fulfill the goal mentioned before at this time. When this evaluation is finished, 

the audience will get a thorough understanding of both kinds of algorithms. It is recommended that one assess. The test will 

look for solutions. This study will look for solutions to earlier issues. We want to provide original approaches to highlight 

technical and architectural design enhancements. This exercise seeks to improve the effectiveness of classification. This 

work seeks to increase categorization efficiency. Classification is constantly improved by this activity.[30] This is constant. 

The aim is to do this. One may reasonably believe that this behaviour further boosts system efficiency. A certain action 

accomplishes this aim, hence this conclusion is reachable. 

 

3. METHODOLOGY 

3.1 Data Acquisition and Preprocessing 
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This study combines the Interactive Emotional Dyadic Motion Capture (IEMOCAP) dataset with the Berlin Emotional 

Speech Database (EMO-DB). Emotional speech is included in both of these databases. Because they influence how 

individuals express their emotions via speaking, both of these datasets have attracted a considerable lot of attention on a 

global basis. All all, the EMO-DB database has 535 utterances. Ten professional performers provided these remarks. These 

phrases show seven distinct emotions in various degrees: anger, boredom, disdain, fear, happiness, grief, and a neutral style 

of expressing. Comprising over twelve hours' worth of video footage from 10 performers who acted both scripted and 

unscripted, IEMOCAP Video capture was used to collect information. Classed according to a set of categories— anger, 

happiness, sadness, neutrality, enthusiasm, frustration, fear, surprise, and disgust— these artists' performances reflect many 

emotions. The performances of these musicians are classified using these criteria. We use speaker-independent cross- 

validation to help us meet our goal of guaranteeing the dependability of the evaluation. One aspect of this approach is 

including data from a wide range of speakers into both the training set and the testing set using the same method. This allows 

us to assess the ability of the models to generalize to speakers not explicitly observed. 

3.2 Feature Extraction 

Extraction source features and spectral features are the two kinds of characteristics that we extract from the data that belongs 

to each of them. Spectral features are the more well-known of the two. These are some of the traits that are associated with 

the spectrum: 

Mel-frequency cepstral coefficients (MFCCs): 

Attempting to reach our goal of gaining a knowledge of the dynamic characteristics of the speech signal, we extract thirteen 

MFCCs together with their first-order derivatives (delta) and second-order derivatives (delta- delta). This lets us complete 

our original goal. This will help us to reach our goal of reaching this degree of understanding, which we have established for 

ourselves. This enables us to reach the objective we have established for ourselves. Therefore, as a result of this, we are able 

to get a more thorough understanding of the components that, when considered as a whole, generate the speech signal. To 

ensure that the dynamic characteristics of the speech signal are collected in a reasonable manner, it is absolutely necessary 

to perform the procedure that was briefly addressed before. This is why it is very vital to follow the process. MFCCs, the 

measuring units used, help to provide a depiction of the short-term power spectrum of sound frequency. Regarding uses, the 

one mentioned above is the one most usually used for these devices. These units of measurement have been created rather 

beneficial for the goal of achieving their main goal, which is to help one determine the frequency of sound. A nonlinear mel 

scale of frequency data is subjected to a linear cosine transform of a log power spectrum to create these MFCCs. This is done 

to get the frequency data. This is done to build the MFCCs correctly. Getting the data on the frequency requires this action. 

This task is done to produce the MFCCs in the most appropriate way. It is really vital to do this work when one seeks the 

required knowledge about the frequency. This activity is done with the aim of producing the MFCCs in the most appropriate 

way possible; it is then completed with that objective in mind. Completing this assignment will help to get the required 

knowledge about the frequency, which is of utmost importance. This data is really vital. The data linked to the frequency is 

then altered in the following phases immediately after the completion of the operation. The application of this modification 

will immediately follow the end of the process. Apart from this, the calculation considers the following, which is an additional 

part of the process included into the computation by the calculation: 

Spectral shape descriptors: 

Spectral centroid: Represents a calculation that determines the "center of mass" of the spectrum by taking the weighted 

mean of the frequencies that are present in the signal and assigning weights to the magnitudes of those frequencies.This 

feature correlates with the perceptual brightness of the sound and shows significant variation across emotional states. 

Spectral flux: Measures the frame-to-frame The spectral change is calculated by taking the squared difference between the 

normalized magnitudes of consecutive spectral distributions and computing the difference. This captures the rate of change 

in the voice spectrum, which tends to increase during high-arousal emotions. 

Spectral rolloff: Defined as the frequency below which 85% of the magnitude distribution of the spectrum is concentrated. 

This feature helps distinguish between voiced and unvoiced speech segments and shows distinct patterns across different 

emotional expressions. 
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• Formant analysis: 

We extract the first five formant frequencies (F1-F5) and their corresponding bandwidths using Linear Predictive Coding 

(LPC) analysis. Formants represent the resonant frequencies of the vocal tract and provide crucial information about vowel 

quality and articulation patterns that vary with emotional states. For example:F1 (related to vowel height) typically increases 

during anger and happiness F2 (related to vowel frontness/backness) shows greater variation during emotional speech 

compared to neutral speech Formant bandwidths tend to increase during high-arousal emotions due to increased vocal tension 

Feature extraction is performed using a 25ms window with a 10ms overlap. For each utterance, we compute both frame-level 

features and utterance-level statistical functionals (mean, standard deviation, skewness, kurtosis, extremes, regression 

coefficients). 

3.3 Feature Selection and Dimensionality Reduction 

To address the high dimensionality of the feature space (over 2,000 features when considering all frame-level and functional 

features), we employ a systematic feature selection approach to identify the most discriminative features for emotion 

classification. Our multi-step process evaluates several complementary methods: 

• Filter methods: These computationally efficient techniques evaluate features independently of any classifier: 

Information Gain (IG): We measure each feature's contribution in reducing entropy regarding emotion classes. For a feature 

F and emotion class E, we compute: 

$IG(E,F) = H(E) - H(E|F)$ where H(E) is the entropy of emotion distribution and H(E|F) is the conditional entropy. Features 

with IG values above 0.1 were retained, reducing our feature set by approximately 40%. 

Chi-squared (χ²) test: We evaluate the statistical dependence between each feature and the emotion categories by 

computing: chi^2 = \sum_{i=1}^{n} 

\sum_{j=1}^{m} \frac{(O_{ij} - E_{ij})^2}} represents expected frequencies. This method identified several excitation 

source features (NAQ, jitter, shimmer) among the top 15% most discriminative features. 

• Wrapper methods: These techniques evaluate feature subsets using the target classifier: 

Recursive Feature Elimination (RFE): Starting with all features, we iteratively remove the least important features based 

on model coefficients (for linear models) or feature importance scores (for tree-based models). We implemented RFE with 

SVM and Random Forest classifiers, using 5-fold cross-validation to determine the optimal feature subset size. This approach 

revealed that approximately 350 features (17% of the original set) were sufficient to achieve 97% of the full feature set 

performance. 

Sequential Forward Selection (SFS): We progressively incorporated features starting with an empty set, adding the feature 

that most improves classification performance at each step. This greedy approach, though computationally intensive, 

identified a minimal subset of 

120 features that achieved 95% of the maximum performance. 

• Embedded methods: These techniques incorporate feature selection within the model training process: 

L1 regularization (Lasso): We applied L1 penalty to linear models (Logistic Regression and linear SVM), which enforces 

sparsity in the coefficient vector. By solving: 

$\min_w \frac{1}{n} \sum_{i=1}^n L(y_i, f(x_i, w)) + 

\lambda |w|_1$ where L is the loss function and λ controls regularization strength, we identified 280 non- zero coefficients 

at the optimal λ determined through cross-validation. 

Tree-based feature importance: Using Gradient Boosting, we ranked features based on their cumulative reduction of the 

impurity criterion across all trees. This method confirmed the significance of excitation source features, particularly those 

related to glottal pulse shape and perturbation measures. Additionally, we implement dimensionality reduction techniques to 

transform the feature space while preserving discriminative information: 

• Principal Component Analysis (PCA): We apply PCA to project the high-dimensional feature space onto a lower-

dimensional subspace that maximizes variance. Through eigendecomposition of the feature covariance matrix: 

$\Sigma = \frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x})(x_i - \bar{x})^T$ we extract eigenvectors corresponding to 

the largest eigenvalues. Empirical evaluation showed that 120 principal components preserved over 95% of the 

total variance while significantly reducing computational complexity. Notably, the projection matrix analysis 

revealed that excitation source features contributed substantially to the first 30 principal components. 

• Linear Discriminant Analysis (LDA): Unlike PCA, LDA performs supervised dimensionality reduction by 

finding projections that maximize between-class separation while minimizing within-class scatter: $J(w) = 

\frac{w^T S_B w}{w^T S_W w}$ where S₍B₎ is the between- class scatter matrix and S₍W₎ is the within-class 
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scatter matrix. For our 7-class emotion classification problem, LDA reduced the feature dimension to C-1=6 

discriminant functions while maintaining 89% of the original classification accuracy. This approach was 

particularly effective for real-time emotion recognition applications where computational efficiency is critical. We 

further employed a hybrid approach combining filter methods for initial feature screening, followed by wrapper or 

embedded methods for refined selection. This multi-stage process identified a compact set of 

175 features (including 68 excitation source features) that achieved equivalent performance to the full feature set while 

reducing computational requirements by an order of magnitude during both training and inference. 

3.4 Classification Approaches 

We implement and comprehensively evaluate multiple classification paradigms for emotional speech recognition, 

systematically comparing state-of-the-art deep learning architectures with conventional machine learning methods. Our 

experimental design enables direct performance comparison under identical data splits and evaluation metrics. 

• Machine Learning Algorithms 

• Support   Vector   Machines   (SVM): We implement SVMs with various kernel functions 

to identify optimal decision boundaries in the high- dimensional feature space. 

Linear kernel: Effective for linearly separable emotion categories, with complexity parameter C optimized in the range 

[10⁻³, 10³] using grid search. 

Polynomial kernel: We test degrees d ∈ {2,3,4} to capture non-linear relationships between acoustic features, finding d=3 

provides the best balance between model complexity and generalization. 

Radial Basis Function (RBF) kernel: Implements a Gaussian similarity metric between samples with the width parameter 

γ optimized using cross-validation. This configuration performs particularly well for excitation source features, achieving 

83.2% accuracy on EMO- DB.For multi-class classification, we employ the one-vs- one approach which constructs k(k-1)/2 

binary classifiers for k emotion classes, with final prediction determined by maximum voting. 

Random Forest (RF): Our ensemble approach constructs 300 decision trees using bootstrap aggregation (bagging) with the 

following optimizations: Adjusted tree depth (max_depth=20) to balance model complexity with generalization capability. 

Feature randomization at each split (max_features=√n) to ensure tree diversity. Class weight balancing to address the inherent 

imbalance in emotional speech datasets. Out-of- bag (OOB) error estimation for hyperparameter tuning without requiring a 

separate validation set. The RF classifier demonstrates excellent performance on heterogeneous feature sets that combine 

spectral, prosodic, and excitation source information. 

Gradient Boosting Machines (GBM): We implement gradient boosting with decision trees as base learners, sequentially 

fitting new models to minimize the negative gradient of the loss function.Learning rate set to 0.05 with 500 estimators and 

early stopping based on validation performance. Subsampling at 0.8 to reduce variance and prevent overfitting. L2 

regularization added to leaf weights to improve generalization. Feature interaction constraints implemented to capture known 

relationships between excitation source parameters. The GBM approach provides detailed feature importance metrics, 

revealing that NAQ, shimmer, and jitter contribute most significantly   to   classification   performance. k-Nearest Neighbors 

(k-NN): We implement this non- parametric approach with several key refinements: Optimal k determined through cross-

validation, finding k=7 provides the best performance. Distance weighting applied, with contribution of neighbors weighted 

inversely proportional to their distance. Feature standardization to prevent features with larger scales from dominating 

distance calculations. Local neighborhood refinement using a distance threshold to eliminate outliers. Dynamic time warping 

(DTW) distance metric for comparing temporal feature trajectories. The k-NN classifier serves as a benchmark and performs 

surprisingly well for speaker-dependent scenarios. 

• Deep Learning Architectures 

• Convolutional Neural Networks (CNN): We design a specialized CNN architecture to 

capture local spectro-temporal patterns in speech spectrograms: 

Input: Mel-spectrograms with 128 frequency bands and variable time length. 

Feature extraction block: 4 convolutional layers with filter sizes {32, 64, 128, 256}, each followed by batch normalization, 

ReLU activation, and max-pooling. Kernel sizes of (3×3) for the first two layers and (2×2) for subsequent layers to capture 

multi-scale features. Global average pooling to handle variable-length inputs instead of flattening. Two fully connected layers 

(512 and 256 units) with dropout (p=0.5) for regularization. Softmax output layer for emotion classification with categorical 

cross-entropy loss. The CNN model achieves 86.3% accuracy on EMO-DB by effectively capturing spectro- temporal 

patterns characteristic of different emotional states. 

Long Short-Term Memory networks (LSTM): To model the sequential dependencies in emotional speech, we implement: 

Frame-level feature sequences as input (13 MFCCs + excitation source features).Two stacked LSTM layers with 256 and 

128 units respectively. Dropout (p=0.4) between layers and recurrent dropout (p=0.2) within LSTM cells. Gradient clipping 
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to prevent exploding gradients during backpropagation. Last time step output fed to a 128-unit dense layer with ReLU 

activation. The LSTM architecture effectively captures the temporal evolution of acoustic features, particularly F0 contours 

and excitation source dynamics, achieving 87.2% accuracy on EMO-DB. 

Bidirectional LSTM (BiLSTM): To capture context from both past and future frames, we extend the LSTM 

architecture:Two stacked bidirectional LSTM layers Forward and backward hidden states concatenated at each time 

step.Temporal pooling mechanism that combines max and average pooling of hidden states. Residual connections between 

stacked BiLSTM layers to facilitate gradient flow. The BiLSTM model achieves 89.4% accuracy on EMO-DB, 

demonstrating the advantage of bidirectional processing for emotion recognition. 

• Hybrid CNN-LSTM Architecture: 

Our proposed hybrid model combines the strengths of both CNNs and LSTMs: CNN front-end: 3 convolutional blocks 

extract local spectro-temporal patterns from mel- spectrograms. Feature map reshaping: The 3D feature maps (time × 

frequency × channels) are reshaped to sequential data (time × flattened_features). LSTM back- end: 2 BiLSTM layers with 

128 units process the CNN- extracted features sequentially. Attention mechanism: Self-attention layer computes weighted 

combinations of hidden states to focus on emotionally salient regions: 

$\alpha_t = \frac{\exp(v^T \tanh(W h_t + b))}{\sum_{t'} 

\exp(v^T \tanh(W h_{t'} + b))}$ $c = \sum_t \alpha_t h_t$ Multi-head attention with 8 attention heads to capture different 

aspects of emotional content. Hierarchical attention that operates at both frame and utterance levels. Output: 2 fully connected 

layers (256 and 128 units) with batch normalization and ReLU activation. This hybrid architecture achieves state-of-the-art 

performance (92.7% on EMO-DB), effectively combining CNN's ability to extract robust local features with LSTM's 

sequential modeling capability. Additionally, we implement two ensemble approaches to further improve performance: 

Stacked Generalization: We use predictions from multiple base models (SVM, RF, GBM, CNN, LSTM) as input features 

to a meta-classifier (Logistic Regression with L2 regularization). Model Fusion: We combine predictions 

from different models using weighted averaging, with weights optimized on a validation set.The ensemble approaches further 

improve classification accuracy by 1-2% compared to the best single model, demonstrating the complementary nature of 

different classification paradigms. 
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4. ALGORITHMS 

We implement and compare several machine learning and deep learning algorithms for emotional speech recognition. Each 

algorithm is mathematically formulated below: 

4.1 Support Vector Machine (SVM) 

SVM aims to find an optimal hyperplane that separates different  emotion  classes  with  maximum  margin: 

 

Subject to 

 

where $\mathbf{w}$ is the weight vector, $b$ is the bias term, $\xi_i$ are slack variables, $C$ is the regularization 

parameter, and $(\mathbf{x}_i, y_i)$ are feature-label pairs. 

For non-linear separation, we use the Radial Basis Function (RBF) kernel: 

 

4.2 Random Forest 

Random Forest combines multiple decision trees through bootstrap aggregation (bagging) and random feature selection: 

 

where $\hat{f}_b(\mathbf{x})$ is the prediction of the $b$-th tree and $B$ is the number of trees. 

For each tree, a random subset of features is selected at each split according to: 

 

where $p$ is the total number of features. 

4.3 Dense Neural Network (DNN) 

Our DNN architecture consists of multiple fully connected layers with ReLU activation and dropout for regularization: 

h(1)=ReLU(W(1)x+b(1)) h(l)=ReLU(W(l)h(l−1)+b(l)),l=2,…,L−1 

y^=softmax(W(L)h(L−1)+b(L)) 

where $\mathbf{W}^{(l)}$ and $\mathbf{b}^{(l)}$ are the weight matrix and bias vector for layer $l$, and 

$\mathbf{\hat{y}}$ is the predicted probability distribution over emotion classes. 

4.4 1D Convolutional Neural Network (CNN) 

Our CNN architecture processes the temporal sequence of MFCCs using 1D convolutions: 

h(1)=ReLU(W(1)\u2212x+b(1)) 

p(1)=MaxPool(h(1),k) h(l)=ReLU(W(l)∗p(l−1)+b(l)),l=2,…,L−1 

p(l)=MaxPool(h(l),k),l=2,…,L−1 

where $*$ denotes the convolution operation, $\mathbf{W}^{(l)}$  are  the  convolutional  filters, 

$\mathbf{b}^{(l)}$ are bias terms, and $k$ is the pooling size. 

4.5 Long Short-Term Memory (LSTM) 

Our LSTM architecture processes the temporal sequence of speech features:  

ft=σ(Wfxt+Ufht−1+bf) it=σ(Wixt+Uiht−1+bi) 

~t=tanh(Wcxt+Ucht−1+bc) ct=ft⊙ct−1+it⊙c~t ot=σ(Woxt+Uoht−1+bo) ht=ot⊙tanh(ct) 

where $\mathbf{f}_t$, $\mathbf{i}_t$, $\mathbf{o}_t$ are the forget, input, and output gates, $\mathbf{c}_t$ is the cell 

state, $\mathbf{h}_t$ is the hidden state, 

$\mathbf{W}$, $\mathbf{U}$, and $\mathbf{b}$ are weight matrices and bias vectors, and $\odot$ denotes element-wise 

multiplication. 

4.6 Hybrid CNN-LSTM 

Our hybrid model combines the feature extraction capabilities of CNNs with the sequence modeling capabilities of LSTMs: 

hCNN=CNN(X) hLSTM=LSTM(hCNN) 
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^=softmax(WhLSTM+b) 

This hybrid approach leverages the strengths of both architectures: CNNs extract local patterns from speech features, while 

LSTMs model the temporal dynamics of these patterns. 

5. PROPOSED FRAMEWORK 

The proposed framework for emotional speech analysis integrates excitation source information with advanced deep learning 

techniques in a comprehensive pipeline. The framework consists of four main components: signal preprocessing, feature 

engineering, model development, and evaluation. In the signal preprocessing stage, we apply techniques specifically 

designed to enhance the extraction of excitation source information. These include adaptive pre-emphasis filtering, 

voiced/unvoiced segmentation, and pitch-synchronous analysis. The pre-emphasis filter is defined as: 

$$y[n] = x[n] - \alpha x[n-1]$$ 

Where $\alpha$ is dynamically adjusted based on the spectral characteristics of each utterance to enhance the higher 

frequency components that carry important emotional cues.The feature engineering component implements a multi-level 

approach that captures excitation source information at different time scales. At the frame level, we compute glottal 

parameters using inverse filtering techniques. The glottal flow is estimated by removing the influence of vocal tract 

resonances from the speech signal: 

$$G(z) = \frac{S(z)}{V(z)}$$ Where $S(z)$ is the z-transform of the speech signal and $V(z)$ represents the vocal 

tract transfer function estimated via linear prediction analysis. From the glottal flow signal, we extract parameters such as 

the Open Quotient (OQ), Speed Quotient (SQ), and Normalized Amplitude Quotient (NAQ), which characterize different 

aspects of the glottal pulse shape. These parameters have been shown to correlate with emotional states and provide 

complementary information to traditional spectral features. At the utterance level, we compute statistical functionals and 

contour-based features that capture the temporal dynamics of the excitation parameters. These include polynomial 

coefficients of F0 contours, jitter and shimmer trajectories, and rate-of- change measures. The model development 

component implements the various Section 4 describes the algorithms for machine learning and deep learning., with specific 

adaptations for excitation source features. For instance, the CNN architecture incorporates 1D convolutions specially 

designed to capture patterns in fundamental frequency contours. The evaluation component implements a robust assessment 

methodology that includes cross-validation, statistical significance testing, and detailed performance analysis for different 

emotional categories and acoustic conditions. 

 

6. ARCHITECTURE 

Our suggested system's architecture uses excitation source information to efficiently interpret and categorise emotional 

speech.The system follows a modular design with specialized components for different aspects of the analysis pipeline.The 

input module handles various audio formats and sampling rates, ensuring compatibility with different recording conditions. 

The signal processing module implements the preprocessing techniques described in Section 3.1, with a focus on preserving 

the quality of excitation source information. 

The feature extraction module is structured as a hierarchical framework: 

1. Low-level descriptor extraction: Computes frame-level acoustic features 
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2. Excitation source analysis: Extracts glottal parameters and related features 

3. Functional computation: Applies statistical functionals to frame-level features 

4. Feature fusion: Combines different feature sets using early or late fusion strategies 

The classification module implements the Section 4 describes the algorithms for machine learning and deep learning. For 

the deep learning models, we employ a multi-stage training approach: 

1. Pre-training on large speech datasets to learn general speech representations 

2. Fine-tuning on emotional speech data with a focus on excitation source patterns 

3. Regularization techniques to prevent overfitting, including dropout and batch normalization 

The hybrid CNN-LSTM architecture, which achieved the best performance in our experiments, consists of the following 

layers: 

Input layer: Mel-spectrogram representation with 128 frequency bins and variable time length (typically 2-10 seconds 

depending on utterance duration). We compute mel-spectrograms using a 25ms Hamming window with 10ms overlap, 2048-

point FFT, and 128 mel filters spanning 0-8kHz. Each spectrogram is normalized using per-utterance mean and variance 

normalization to reduce speaker and recording condition variability. Input shape: (time_steps, 128, 1). 

Convolutional block 1: 64 filters of size 3×3 learn local spectro-temporal patterns at a fine resolution. Each filter activates 

in response to specific acoustic patterns such as formant transitions, pitch contours, or energy modulations. The block 

includes: 2D convolution with 'same' padding to preserve spatial dimensions Batch normalization to stabilize and accelerate 

training ReLU activation to introduce non-linearity: f(x) = max(0, x) Max pooling of size 2×2 with stride 2, reducing 

dimensions by half and providing translation invariance Spatial dropout (p=0.1) to prevent co-adaptation of feature maps 

Output shape: (time_steps/2, 64, 64) 

Convolutional block 2: 128 filters of size 3×3 build upon the features extracted by the first block, capturing more complex 

acoustic patterns spanning wider frequency and time ranges. This layer identifies more abstract representations such as 

phoneme-level structures and emotional cues. The block configuration is similar to block 1 but with double the filters: 2D 

convolution with 'same' padding Batch normalization ReLU activation Max pooling of size 2×2 with stride 2 Spatial dropout 

(p=0.15) Output shape: (time_steps/4, 32, 128) 

Convolutional block 3: 256 filters of size 3×3 extract high-level acoustic features that span significant portions of the 

spectrogram, capturing utterance-level emotional characteristics. This block includes: 2D convolution with 'same' padding 

Batch normalization ReLU activation Max pooling of size 2×2 with stride 2 Spatial dropout (p=0.2) Output shape: 

(time_steps/8, 16, 256) 

Reshape layer: Transforms the 3D feature maps (time_steps/8, 16, 256) into a 2D sequence (time_steps/8, 16*256) suitable 

for sequential processing by the LSTM layers. This operation preserves the temporal ordering while flattening the frequency 

and filter dimensions, allowing the LSTM to process each time step as  a feature  vector  of  length  4096. Bidirectional 

LSTM layer 1: 128 units in each direction (forward and backward) process the CNN-extracted features sequentially, 

capturing temporal dependencies and emotional dynamics across the utterance. This layer: Models long-term dependencies 

in both forward and backward time directions Concatenates forward and backward states, resulting in 256-dimensional 

outputs at each time step Applies recurrent dropout (p=0.2) for regularization within the LSTM cells Implements variational 

dropout (p=0.3) between time steps Uses gradient clipping ([-5, 5]) to prevent gradient explosion Output shape: 

(time_steps/8, 256) Bidirectional LSTM layer 2: 64 units in each direction further refine the temporal representations, 

capturing higher-order temporal dynamics. This layer: Processes the output sequence from BiLSTM layer 1 Creates more 

abstract temporal representations with total dimensionality of 128 at each time step Employs the same dropout and gradient 

clipping strategies as layer 1 Implements residual connections that add the input to the output to facilitate gradient flow 

Output shape: (time_steps/8, 128) 

Attention layer: The network may concentrate on emotionally significant areas thanks to a self-attention mechanism that 

gives priority weights to various time steps. The definition of the attention mechanism is: Query transformation: Q = 

tanh(W_q · H + b_q), where H is the BiLSTM output matrix Attention weights: α = softmax(v^T Q), where v is a learnable 

vector Context vector: c = Σ(α_th_t), a weighted sum of hidden states We implement multi-head attention with 8 attention 

heads to capture different aspects of emotional content Each attention head has 16 dimensions, resulting in a 128-dimensional 

context vector after concatenation The attention weights are visualized during inference to provide interpretability Output 

shape: (128) 

Dense layer: 128 units with ReLU activation integrate the information from the attention-weighted BiLSTM outputs, 

creating a compact emotional representation. This layer includes: Fully connected layer with weight matrix of shape (128, 

128) Batch normalization to stabilize activations ReLU activation function Dropout (p=0.4) for regularization

 Output shape: (128) Output layer: Softmax activation for multi-class classification produces a probability 
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distribution over the emotion categories. For k emotion classes, the softmax function is defined as: 

P(y = j | x) = e^(z_j) / Σ(e^(z_i)), where z are the logits 

The network is trained using categorical cross-entropy loss: L = -Σ(y_i · log(p_i))Label smoothing (ε=0.1) is applied to 

prevent overconfidence Output shape: (num_emotion_classes) The architecture also includes skip connections between 

convolutional blocks to facilitate gradient flow during training, implemented as element-wise addition of feature maps after 

dimension matching using 1×1 convolutions. These residual connections help address the vanishing gradient problem in 

deep networks and enable more effective training. During training, we employ a multi-stage approach: 

1. The CNN layers are pre-trained on a speech spectrogram classification task using a larger dataset 

2. The LSTM and attention layers are initialized with random weights 

3. The entire network is fine-tuned end-to-end using the Adam optimizer with an initial learning rate of 0.001 

4. Learning rate scheduling is applied with a reduction factor of 0.5 when validation loss plateaus 

5. Early stopping with a patience of 15 epochs is used to prevent overfitting 

This hybrid architecture effectively combines CNN's ability to extract robust local spectro-temporal features with LSTM's 

sequential modeling capability, achieving state-of-the-art performance of 92.7% on EMO-DB and 81.3% on IEMOCAP. 

7. WORKFLOW 

The workflow of our emotional speech analysis system follows a sequential process with feedback loops for optimization 

and validation: 

1. Data Collection and Annotation Acquisition of emotional speech datasets Verification of annotation quality 

Stratification to ensure balanced representation of emotions 

2. Signal Preprocessing 

o Segmentation and normalization 

o Voice activity detection 

o Pre-emphasis filtering 

o Voiced/unvoiced detection 

3. Feature Extraction 

Spectral feature computation (MFCCs, spectral moments) 

Excitation source analysis 

Fundamental frequency estimation using robust algorithms Glottal inverse filtering Computation of jitter, shimmer, and HNR 

Functional computation Feature standardization 

4. Feature Selection and Dimensionality Reduction 

o Evaluation of feature importance 

o Application of PCA or LDA 

o Creation of feature subsets for comparative analysis 

5. Model Training 

o Hyperparameter optimization using grid search or Bayesian optimization 

o Cross-validation with speaker independence 

o Early stopping based on validation performance 

o Model ensembling for improved robustness 

6. Evaluation 

o Computation of accuracy, precision, recall, and F1-score 

o Confusion matrix analysis 

o Statistical significance testing 

o Comparison between ML and DL approaches 
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7. Error Analysis and Optimization 

o Identification of problematic emotion categories 

o Analysis of feature contributions 

o Model refinement based on error patterns 

8. Deployment and Testing 

o Integration into real-time processing pipeline 

o Performance testing under various acoustic conditions 

o User feedback collection and system refinement 

The workflow incorporates continuous validation to ensure the reliability and generalizability of the results. Specifically, we 

employ a nested cross-validation approach where an outer loop evaluates model performance and an inner loop optimizes 

hyperparameters. 

 

8. IMPLEMENTATION 

We employ open-source signal processing, feature extraction, and machine learning for emotional speech analysis. All tests 

were done on a workstation with an Intel Xeon E5-2680 CPU, 64GB RAM, and 16GB NVIDIA 

Tesla V100 GPU. We used the Librosa library (0.8.0) for spectral feature computation and the Covarep toolbox for excitation 

source analysis for signal processing and feature extraction. Parallelized feature extraction required 

0.5 seconds each syllable to improve computational speed. GridSearchCV improved hyperparameters and scikit- learn 

(0.24.2) built machine learning algorithms. The optimal SVM classifier hyperparameters were C=10 and RBF kernel 

(γ=0.01). Random Forest was best with 300 trees and 20 depth. The deep learning models were created using TensorFlow 

(2.5.0) and Keras API. CNN and LSTM models were trained with 32 batches and 0.001 initial learning rate using the Adam 

optimizer. Learning rate scheduling with 0.5 reduction factor was employed when validation loss plateaued. The maximum 

training epochs were 100, including 15 for early stopping. After pre- training CNN layers on speech spectrogram 

classification, the hybrid CNN-LSTM model was fine-tuned for emotion recognition. It converged faster and performed 

better than end-to-end training. We weighted underrepresented emotion groups higher using a weighted loss function to 

resolve class imbalance in the datasets. Weights negatively correlated with training set class frequencies. We employed 

speaker-independent 5-fold cross- validation to avoid utilizing the same speaker's data in training and testing. McNemar's 

test with Bonferroni correction for multiple comparisons determined significance. Implementation code for data preparation, 

feature extraction, model training, and assessment is public. The repository contains Jupyter notebooks for experimental 

method and results visualization. 

9. RESULTS 

Our experiments comprehensively evaluate the performance of different machine learning and deep learning approaches for 

emotional speech recognition using excitation source information. The results are presented in terms of classification 

accuracy, confusion matrices, and feature importance analysis. 
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9.1 Classification Performance 

Table 1 presents the overall classification accuracy of different algorithms on the EMO-DB and IEMOCAP datasets: 

 

Table 2 compares our best-performing model (hybrid CNN-LSTM) with previously reported results on the EMO-DB and 

IEMOCAP datasets: 

The results clearly demonstrate the superior performance of deep learning approaches, with the hybrid CNN-LSTM model 

achieving the highest accuracy on both datasets. The performance gap between machine learning and deep learning 

approaches is more pronounced on the IEMOCAP dataset, which contains more diverse and naturalistic emotional 

expressions. 

9.2 Impact  of  Excitation  Source  Features The results indicate that excitation source features provide complementary 

information to spectral and prosodic features, with the combined feature set yielding the best performance. Notably, 

excitation source features alone outperform prosodic features, highlighting their discriminative power for emotion 

recognition. 

9.3 Emotion-Specific Performance Analysis of the confusion matrices reveals interesting patterns in the 

classification performance across different emotions. Figure 2 shows the per-emotion F1-scores for the hybrid CNN-

LSTM model: The results show that high-arousal emotions (anger) and low-arousal emotions (sadness) are 

recognized with higher accuracy compared to moderate-arousal emotions (happiness). This pattern is consistent 

across both datasets and aligns with findings from previous studies on emotional speech recognition. 

9.4 Feature Importance Analysis To understand the contribution of different excitation source parameters, we 

conducted feature importance analysis using the Random Forest algorithm. Figure 3 shows the relative importance 

of the top 10 features:The results highlight the importance of glottal pulse shape parameters (NAQ, QOQ) and 

perturbation measures (jitter, shimmer) for emotion discrimination. These features capture the micro-variations in 

vocal fold behavior that are strongly correlated with emotional states. 

9.5 Comparison with State-of-the-Art 

Method 
EMO

- DB 
IEMOC

AP 

Schuller et al. (2009), SVM 84.6% - 

Lee et al. (2015), HMM 83.2% 63.9% 

Trigeorgis et al. (2016), End-to-end 

CNN 
85.7% 71.3% 

Neumann and Vu (2017), CNN- 

LSTM+Attention 
90.1% 75.8% 

Algorithm EMO-

DB 

IEMOC

AP 

SVM (Linear) 79.4% 67.8% 

SVM (RBF) 83.2% 70.5% 

Random Forest 81.6% 68.9% 

Gradient Boosting 82.1% 70.1% 

CNN 86.3% 74.2% 

LSTM 87.2% 75.8% 

Bidirectional 

LSTM 

89.4% 77.6% 

Hybrid CNN-

LSTM 

92.7% 81.3% 
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Zhao et al. (2019), Multi-task 

Learning 
91.8% 80.2% 

Our approach (Hybrid CNN-LSTM) 92.7% 81.3% 

The comparison demonstrates that our approach achieves state-of-the-art performance on both datasets, with a clear 

improvement over previous methods. The integration of excitation source information with the hybrid CNN- LSTM 

architecture contributes to this enhanced performance. 

10. FUTURE WORK 

While this research has demonstrated the effectiveness of excitation source information for emotional speech analysis, 

several directions for future work can be identified:Cross-corpus generalization: Future research should investigate the 

transferability of models trained on one emotional speech dataset to other datasets with different recording conditions and 

emotion categories. Multi-modal fusion: Integrating excitation source information with visual and textual modalities could 

further enhance emotion recognition performance, particularly for ambiguous or subtle emotional expressions. Continuous 

emotion recognition: Extending the framework to continuous emotion recognition in the valence-arousal space would 

provide a more nuanced representation of emotional states compared to discrete categories. Personalization and adaptation: 

Developing adaptive models that can personalize to individual speakers' emotional expression patterns could address the 

challenge of inter-speaker variability Lightweight implementations: Optimizing the computational complexity of feature 

extraction and model inference would enable real-time emotional speech analysis on resource-constrained devices. 

Interpretable deep learning: Enhancing the interpretability of deep learning models through visualization techniques and 

attention mechanisms would provide insights into the learned representations of emotional speech. Cultural and linguistic 

factors: Investigating the impact of cultural and linguistic backgrounds on excitation source patterns in emotional speech 

would contribute to the development of more universal emotion recognition systems. Clinical applications: Exploring the 

application of excitation source analysis for detecting emotional disturbances in clinical populations, such as patients with 

depression, anxiety, or Parkinson's disease. 

11. CONCLUSION 

This research has presented a comprehensive framework for emotional speech analysis using excitation source information, 

comparing traditional machine learning algorithms with deep learning approaches. The experimental results demonstrate that 

deep learning models, particularly the hybrid CNN-LSTM architecture, outperform traditional machine learning methods in 

emotion classification tasks. The integration of excitation source features, which capture the micro-variations in vocal fold 

behavior associated with different emotional states, significantly enhances the classification performance. These features 

provide complementary information to conventional spectral and prosodic features, contributing to improved discrimination 

between similar emotional categories. The performance analysis across different emotions reveals that high-arousal emotions 

(anger) and low-arousal emotions (sadness) are recognized with higher accuracy compared to moderate- arousal emotions 

(happiness). This pattern is consistent across datasets and aligns with the physiology of emotional expression, where extreme 

emotional states produce more distinctive vocal patterns. The feature importance analysis highlights the significance of 

glottal pulse shape parameters and perturbation measures for emotion discrimination. These findings provide insights into 

the acoustic correlates of emotional states and can guide the development of more targeted feature extraction techniques.this 

research contributes to the field of emotional speech analysis by establishing the effectiveness of excitation source 

information and demonstrating the superior performance of deep learning approaches. The proposed framework provides a 

foundation for future research on multi-modal emotion recognition, personalized adaptive systems, and clinical applications. 
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