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ABSTRACT 

Predicting traffic flow accurately and in real-time is critical in managing traffic and reducing congestion in urban areas. 

Traditional machine learning algorithms do not always perform well in accurately capturing and predicting the complex, 

nonlinear, and dynamic nature of real traffic observations and patterns. To improve this aspect of performance, this research 

offers an ensemble-based machine learning approach that consists of multiple base learners, which improves prediction 

accuracy and generalizability by combining machine learning models. The ensemble model includes the combined strength 

of a Multi-Layer Perceptron (MLP), a Support Vector Classifier (SVC), and a CNN-LSTM model that has the capability of 

addressing both spatial and temporal feature representation from video-based identification of traffic data. The context of the 

traffic flow prediction model is improved through the model's integration of real-time object detection of traffic frames, as 

well as incorporating the current weather conditions. Each base learner's predictions are optimally combined through a meta-

learner Logistic Regression. The model performance is assessed through multiple evaluation criteria, including Mean 

Squared Error (MSE), Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), and R-squared (R²). The 

experimental results demonstrated that the ensemble-based model surpassed traditional machine learning algorithms, such 

as Linear Regression, K-Nearest Neighbors, Random Forest, Decision Tree, and as well as Support Vector Regression. The 

ensemble model achieved upwards of 98% prediction accuracy, which was significantly better than any of the traditional 

machine learning algorithms tested for performance as well. The study demonstrates that ensemble-based learning techniques 

and multi-source feature integration can produce stable solutions for real-time traffic flow predictions to guide intelligent 

traffic systems development. 

 

Keywords: Traffic Congestion Prediction, Ensemble learning, Support Vector Classifier (SVC), Multi-Layer Perceptron 

(MLP), CNN-LSTM, Deep Learning 

1. INTRODUCTION 

Traffic congestion causes serious issues economically, socially, and environmentally in cities all around the globe. As such, 

traffic managers strive to manage traffic in a manner that facilitates a superior quality of service on the highways to ensure 

good mobility and less congestion. Historically, traffic managers have been limited to creating and implementing reactive 

traffic response plans to mitigate traffic congestion after it has already occurred on the roads, with little consideration for 

preventing it. However, with information and communication technologies as well as the Internet of Things enabling the 

development of Intelligent Transportation Systems (ITSs), it has become possible to start using the Traffic Forecasting (TF) 

methodologies for predicting traffic conditions on the roads [1]. Over the last few decades, TF has become a popular area of 

research in ITSs because it offers a strategic benefit in predicting and potentially mitigating traffic congestion. The main 

objective of TF is to forecast traffic measures (i.e., travel time, traffic flow) in the short term for the next few minutes to 

hours, utilizing historical traffic data. 

The gradual emergence of new and abundant traffic information from ITS sources is replacing TF from a traffic theory-based 

perspective to a data-based perspective. Within the data-based approaches are two primary categories, statistical and machine 

learning (ML). In the initial evolution of introducing data-based approaches to TF, there is a vast body of literature focusing 

on statistical approaches like ARIMA models, and they have been found deficient in addressing complex TF problems. For 

this reason, most of the ongoing body of literature is devoted to ML because of its better capabilities in dealing with high-

dimensional data and extracting nonlinear relationships 
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Various traditional machine learning approaches like Support Vector Machines, k-Nearest Neighbors, and Random Forest 

have been commonly deployed to forecast traffic flow. In structured and restricted situations, these models generated 

acceptable performance; however, they typically failed to account for the dynamic, complex, and non-linear nature of varying 

traffic data. Although these models might perform well with respect to forecast accuracy, their performance declines due to 

their inability to sufficiently model the spatial-temporal dependencies inherent to traffic patterns, especially in dense urban 

areas. Because of these characteristics, traditional machine learning predictions tend to diminish in performance when applied 

to longer-range or larger-scale real-world predictions. 

To address the challenges mentioned earlier, deep learning methods have emerged as a new, capable alternative to the 

limitations imposed by conventional modeling approaches. Architectures such as Recurrent Neural Networks and 

Convolutional Neural Networks have demonstrated significant improvements in handling temporal sequences and spatial 

dimensions, respectively. Long Short-Term Memory (LSTM) networks are great at capturing and learning long-term 

temporal dependencies, while CNNs have exhibited superior learning and identification of spatial structures in video data or 

imagery of traffic [33][34]. In general, there is still the challenge of being able to accurately cover many of the unique patterns 

that exist, particularly when data streams are varying or disrupted; thus, using a single deep learning model may not extract 

all the needed overall patterns of the data [2][35]. 

Considering the weaknesses of these methods, the research conducted in this study proposes a machine learning model that 

utilizes an ensemble strategy, which maintains the core strengths of many learning algorithms within a single framework. 

The proposed ensemble combines a CNN-LSTM network to model space-time features from processing frames of video, a 

Multi-layer Perceptron (MLP) to learn comparatively nonlinear interactions of variables, and a Support Vector Classifier 

(SVC) to strengthen the classification of state changes in traffic application domains. A meta-learner based on Logistic 

Regression takes the predictions generated by all of the base learner models through ensemble predictions[3][5]. The model 

also included the account of object detection to include vanishing or lost data from video, and real-time weather conditions 

to enhance contextual understanding and improve prediction accuracy. 

Problem Statement  

Even with advancements in deep learning to improve the accuracy of traffic forecasting, most approaches only use a single 

architecture framework and fail to fully address the dynamic, multi-dimensional nature of traffic patterns that may occur 

under real-world conditions [4]. This is further exacerbated in situations when the data is noisy, incomplete, or influenced 

by external factors (e.g., weather variation or an unforeseen incident). Hence, it is necessary to propose a strong ensemble 

method, composed of multiple learning algorithms, to successfully model spatial-temporal dependencies and facilitate 

accurate prediction in near real-time. 

𝑋 = {𝑥1, 𝑥2, … … . , 𝑥𝑡}  The multivariate time series input data comprising historical traffic features (i.e., flow, speed, 

occupancy, weather conditions) and  

𝑌 = {𝑦𝑡+1, 𝑦𝑡+2, … . . 𝑦𝑡+𝑛}  be the predicted traffic flow for the next 𝑛 n time steps. 

Our objective is to learn a mapping function: 

𝑌̂ = 𝑓𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒(𝑋) 

Where 𝑓𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒  is the proposed emsemble model combining base learners 𝑓1, 𝑓2, … , 𝑓𝑘 and a meta-learner 𝑓𝑚𝑒𝑡𝑎 that 

optionally fuses their outputs  

𝑓𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒(𝑋) = 𝑓𝑚𝑒𝑡𝑎(𝑓1(𝑋), 𝑓2(𝑋), … . , 𝑓𝑘(𝑋))  

This study seeks to build an ensemble-based deep learning framework for predicting traffic flow in real-time, with an 

ensemble-based approach that incorporates multiple complementary models to effectively account for the complex and 

dynamic structure of traffic [8]. The method underlying the ensemble-based framework exploits Convolutional Neural 

Networks (CNN) and Long Short-Term Memory (LSTM) neural networks to model spatial and temporal dependencies in 

traffic. The framework uses a Multi-Layer Perceptron (MLP) to capture complex non-linear relationships, while a Support 

Vector Classifier (SVC) detects and classifies transitions in traffic states [9]. To deal with the possible problems of 

incomplete or missing video data, the ensemble framework uses object detection methods to ensure the reliability of the data 

sources [6][7]. 

 The framework also includes real-time weather data to provide more situational information to better understand the traffic 

context and make predictions in adverse weather conditions. The ensemble model is evaluated using standard regression 

metrics: Root Mean Squared Error (RMSE), Mean Squared Error (MSE), and the coefficient of determination (R²), along 

with the individual models and other ensemble methods [11]. 

The rest of this paper is organized as follows. Section 2 is the related work that covers traffic congestion prediction using 

machine learning. Section 3 concerns the methodology, which includes data collection, preprocessing, and ensemble model 

design. Section 4 combines results, analysis, and discussion. Lastly, Section 5 concludes the paper and suggests directions 
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for future research, followed by references in section 6. 

2. RELATED WORK 

Bogaerts et al. suggested a hybrid system integrating Graph Convolutional Networks (GCN) and Long Short-Term Memory 

(LSTM) networks to forecast traffic conditions using vehicle trajectory data. Combining GCN and LSTM enables the model 

to learn spatial dependencies using GCN and temporal patterns using LSTM, allowing the model to make general predictions 

for traffic flow for short and long durations. The model was validated with trajectory datasets from actual traffic conditions, 

showing promising results to account for the non-linear and dynamic aspects of traffic flow. However, among the limitations 

illustrated within the work was the reliance on high-resolution trajectory data, and accessing such data may be unrealistic in 

real-time scenarios. Additionally, the study primarily investigated spatial-temporal modeling without delving into ensemble 

methods, which could allow for learning and amalgamating the different strengths of models [12]. The gap in the research 

lends itself to advancing ensemble-based models as a fusion of spatial-temporal learning and using multiple classifiers to 

improve generalizability and robustness across a broad set of traffic conditions. This paper utilizes the notion of integrating 

learning mechanisms (spatial and temporal) at its essence, while aiming to negate the limitations illustrated and design an 

ensemble-based system for less reliance on trajectory data, and more flexibility in real-time aspects, such as video or weather-

based inputs. 

This research further builds on and extends this previous work by developing a multimodal stacking ensemble model utilizing 

both structured data and unstructured video inputs. Cini et al. used only numerical time-series data; I will also use video-

based object detection with YOLOv8 for structured features such as vehicle type, count, and bounding box measurements 

from short video clips. The structured visual features are combined with physical weather data (e.g., temperature, humidity, 

and weather conditions) to facilitate additional context for the model. The multimodal inputs in this research are re-evaluated 

through an ensemble of CNN-LSTM, MLP, and SVC models leveraging logistic regression as a meta-learner. By fusing the 

visual assessments of the scenes with structured, sensor-like inputs, I address the gaps presented by (Cini and Aydin) and 

create a multimodal, adaptive approach to predicting traffic congestion in various real-world settings [1]. 

Tsalikidis and colleagues developed a multimodal framework for urban traffic congestion forecasts based on a combination 

of heterogeneous sensor data with weather information. The model uses temporal and contextual information to improve 

accuracy with traffic forecasts across the different urban zones. The research successfully demonstrates that environmental 

variables, especially weather variables, can improve traffic forecasting pipelines. However, the framework, while 

comprehensive, mainly uses structured sensors and does not adapt well to unstructured data formats prevalent during the 

traffic forecasting process, such as real-time traffic video. In addition, the framework does not evaluate the potential of 

ensemble learning methods that could leverage the outputs of multiple base learners in the model together, thereby potentially 

improving the accuracy of the predictions as well. This work tackles these limitations by producing an ensemble-based 

machine learning framework that not only utilizes weather attributes but also leverages visual information from traffic 

surveillance videos. The approach also enhances real-time utility and functionality across various urban infrastructures. 

Zhang and Kabuka proposed a GRU-based deep learning framework to predict traffic flow while accounting for several 

weather conditions, such as precipitation, temperature, and wind speed. Their findings show that adding weather data 

improves prediction performance and sweetens error counts, especially for urban freeway datasets [20]. This study was 

among the first to study traffic flow with multimodal weather effects using Gated Recurrent Units (GRUs). Still, the study 

limited itself entirely to time series data and did not consider spatial patterns or heterogeneous types of data (i.e., visual data 

obtained from surveillance systems). Further, the model used a deep learning model and so did not exploit the full capability 

of the individual components. This study augments their point of view regarding the effect of weather with a multimodal 

ensemble, thus enhancing both spatial-temporal representation and the robustness of prediction through the integration of 

video-based features from reactively detected objects and meteorological information. 

Li et al. developed a hybrid deep learning framework distilling convolutional neural networks (CNN) and long short-term 

memory networks (LSTM) to capture long-term traffic flow prediction through capturing spatial and temporal dependencies 

[30]. They showed that their model was capable of capturing complex patterns in traffic data for very long forecast horizons. 

The model showed performance potential, but was primarily limited to using only structured traffic data and does not leverage 

any external contextual inputs such as weather or visual data. Furthermore, the study did not consider any ensemble strategies 

that could improve generalizability in the model [10]. The current research addresses the above limitations by integrating 

heterogeneous features, such as video-based object detection features and weather data, into an ensemble-based architecture 

for online and robust traffic forecasting [13][14]. 

Liu et al. introduced YOLOv8-FDD, a real-time vehicle detection model that addressed a few shortcomings of YOLO v8, 

like missed detections and parameter complexity in traffic scenes. With the integration of modules such as Feature Sharing 

Detection Head, Dilation-wise Residual, and dynamic up sampling (Dy Sample), the authors were able to improve the overall 

detection accuracy while reducing false positives/negatives and being able to maintaining fast performance [18][19]. 

Nonetheless, the work reported by Liu et al. focused narrowly on detection tasks, without extending the models to predictions 

of traffic flow or congestion. Finally, the work in Liu et al. did not integrate YOLOv8-FDD with temporal learning models 
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or ensemble approaches [15]. This research builds off of their detection capabilities by using YOLO's demonstrated outputs 

from the models to use as input features in an ensemble learning pipeline for real-time traffic prediction [16][17]. 

Table 1: Comparison of Past Studies and the Proposed Technique 

Reference Year Objective Approach Stack 

Ensemble 

Learning 

Accuracy 

(%) 

Traffic 

Dataset 

Zhang et al.  2021 Traffic flow prediction CNN No 88.3 METR-LA 

Li et al.  2020 Congestion prediction GCN + GRU No 90.1 PeMSD7 

Kumar et al.  2022 Real-time traffic 

density estimation 

YOLO + LSTM No 87.5 Custom 

CCTV 

Dataset 

Sharma & 

Patel 

2023 Urban traffic 

congestion 

classification 

Random Forest No 84.2 Indian 

Traffic 

Dataset 

Wang et al.  2022 Multi-model traffic 

prediction 

XGBoost + 

ARIMA 

No 89.4 PeMS-BAY 

Reddy  2021 Traffic flow 

forecasting 

CNN-BiLSTM No 90.6 METR-LA 

Chen et al.  2024 Spatiotemporal traffic 

forecasting 

LightGBM + 

Temporal Graph 

Networks 

Yes 91.8 PeMSD4 

Proposed 

Approach 

2025 Traffic congestion 

prediction using deep 

ensemble 

CNN-LSTM + 

MLP + SVC → 

Logistic 

Regression 

Yes 93.2 Hebbal 

Flyover 

Dataset 

3. METHODOLOGY 

This study will use a methodology that will develop an ensemble-based machine learning framework to predict traffic flow 

in complex urban environments, which helps better understand and combat the limits and assumptions of traffic flow models 

that oversimplify the raw data of traffic trajectories and traffic delays. The way this study attempts to improve predictive 

model accuracy is by researching and gathering live video data at key intersections in Bengaluru, and the recorded video 

data consisted of various times of day (both daytime and nighttime coverage with various lighting conditions), so that the 

day-to-day trajectory maps of traffic could be determined. In addition, we also accessed weather data (using APIs) that 

corresponded to the timestamps of the recorded video data to factor in environmental considerations as an influencer of 

traffic behaviours and patterns. 

This processed the video data using YOLOv8, a real-time object detection method. YOLOv5 uses a CNN to map out different 

classes of vehicles, for instance, cars, buses, auto-rickshaws, or two-wheelers, and counts each vehicle class per frame in the 

video. The object counts were aggregated over specified intervals of time to construct a time series of the volume and density 

of traffic observed in intersections, and the video data was collected over a number of days and intersected with subsequent 

weather attributes like temperature, humidity, rainfall, and so on. 

The ensemble framework allowed for the development of three baseline machine learning models: a Multi-Layer Perceptron 

(MLP) model used to learn complex nonlinear relationships, a Support Vector Classifier (SVC) model used for classifying 

congestion levels, and a hybrid CNN-LSTM model used to extract spatial and temporal dependencies from the sequential 

traffic data. Each base model was trained independently, and their predictions were provided to a meta-learner, and the meta-

learner was implemented using Logistic Regression and set up in a "stacked" ensemble approach to combine the predictions.  

The model's effectiveness was evaluated based on conventional regression metrics, including Mean Squared Error (MSE), 

Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), and R-squared (R²), respectively [23]. The model was then 

compared to traditional machine learning models such as Linear Regression, Decision Tree, Random Forest, K-Nearest 

Neighbors, and Support Vector Regression. By incorporating real-time object detection through YOLOv8, learning through 
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temporal convolutional neural networks (CNN-LSTM), and feature-level ensembles for prediction, our proposed traffic flow 

forecasting system demonstrated strong performance, accuracy, and scalability for real-time and future traffic flow 

forecasting, with potential applications in an intelligent transportation system [21][22]. 

Dataset Description 

The dataset utilized in this study was gathered at major urban intersections in Bengaluru, India, for three consecutive days 

during Oct 3rd - Oct 5th. The objective was to record real-time traffic data during different scenarios and traffic times, which 

included both daytime and nighttime scenarios. CCTV cameras had been installed at chosen intersections to record the traffic 

behavior at each intersection, with special regard to the vehicles' movement across the several lanes of traffic. There are AR 

manuals for how to focus the camera on the entrances and exits to the intersection. Each day, approximately 15 GB of video 

data was recorded in .asf format, resulting in a significant dataset that captured the natural variability in traffic flow of the 

natural context of traffic. All necessary permissions for the video data collection were obtained from the Bengaluru Traffic 

Police, and full ethical and legal value for their permission [31][32]. 

The raw video was processed with the YOLOv8 object detection framework to detect and classify several kinds of vehicles, 

classified as cars, buses, trucks, auto-rickshaws, and 2-wheelers. YOLOv8 provides real-time speed and high detection 

accuracy, as bounding boxes and class labels were generated for each object detected in each frame of video. From the 

detection, the relevant features were extracted, which included vehicle count per frame, object class frequency, traffic density, 

and lane-wise movement. To add another layer of visual features beyond traffic, weather data was included to account for 

environmental conditions. Weather variables, i.e., temperature, humidity, precipitation, and visibility, were gathered from 

publicly accessible APIs and were time-synchronized with video data. This combination of sources ensured the prediction 

framework had contextual knowledge of traffic conditions and any weather fluctuations for better generalization and 

robustness. 

Once extracted, the dataset was cleaned by removing incomplete frames, duplicates, and any detections that were erroneous. 

The final dataset was organized as a feature matrix of numerical and categorical variables. It was then separated or split into 

training (70%), validation (15%), and testing (15%) data, remaining mindful that each set would have diverse data and 

maintain distributional and temporal aspects. Therefore, the united dataset represents a comprehensive and realistic sample 

of urban traffic data for developing and evaluating the proposed ensemble learning framework for real-time traffic flow 

prediction. 

Data Preprocessing 

After data extraction, the raw video data was processed at 5 frames per second (FPS) and outputted to maximize a balance 

between time resolution and accuracy in computational processing. The FPS-extracted raw video frames were then processed 

with the YOLOv8 object detection algorithm that anticipated classification and detection of various types of vehicles (i.e., 

cars, one-ton trucks (pickups), buses, auto-rickshaws, two-wheelers) [24][25]. That part of the process produced detection 

outputs (i.e., bounding boxes, classes, etc.) that became the elements for feature extraction. Then the label data was cleaned 

and quality-checked to enhance data quality and reliability.  All the label data errors were removed, such as from missing 

data caused to occlusions (missed detection due to occlusion), and inaccurate detections caused by obstructions. The 

duplicate labels and inconsistent date/time stamps were eliminated. The only data remaining were the outliers from vehicle 

counts and weather measurement parameters that were identified using statistical analyses (i.e., interquartile range filtering?) 

and were separated in appropriate parts of the analyses to limit noise. 

The results of the object detection were aggregated over static time intervals between 5 and 10 seconds, during which the 

demographic and all class/aggregated results for the 15 variables, including the total count of vehicles by class, average 

vehicle sizes, and approximate median traffic density, were calculated. The aggregated features were combined with weather 

and environmental data that had been brought in based on the timestamps. Before applying machine learning, feature 

engineering was used to prepare the data. All of the numerical features were Min-Max scaled to normalize the variances, so 

that none of the features had a larger impact on the model training. Any categorical variables, such as weather conditions, 

were converted into sparse one-hot encoded vectors. Any time-related features, such as hour of day, were encoded cyclically 

based on the nature of time. 

For the supervised learning, appropriate target variables were created that represented different levels of traffic congestion 

(e.g., Free Flow, Moderate, Heavy) by binning total vehicle counts into classes. This allowed for the classification problem 

to be addressed using the ensemble approach. Finally, the processed datasets were separated into training, validation, and 

test datasets using a 70:15:15 ratio. Stratified sampling was employed to ensure a representative distribution of the various 

categories of traffic conditions and weather conditions was maintained for robust/generalized model evaluation. 

Object Detection and Feature Extraction 

Object detection is critical for converting raw video data into meaningful features that reflect traffic dynamics. In this study, 

the YOLOv8 (You Only Look Once version 8) algorithm was utilized for real-time detection and classification of vehicles 

in every video frame [26]. YOLOv8 was selected because it has the best accuracy, speed, and performance with complex 
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urban traffic scenes and scenarios that vary in lighting and occlusion. YOLOv8 was applied to each frame taken from the 

video streams to provide bounding boxes, confidence scores, and class labels for detected objects. YOLOv8 was trained to 

recognize multiple vehicle types relevant to the traffic environment, including cars, buses, trucks, two-wheelers, and auto-

rickshaws. Detections with confidence scores lower than 0.5 were discarded to minimize false positives [27]. 

The spatial data collected from object detection was temporally combined in order to understand traffic flow characteristics. 

For each fixed time range (5 or 10 seconds), the total number of vehicles per category, average detected bounding box sizes, 

and the object density per frame were calculated. Additionally, bounding box changes from frame to frame also allowed 

vehicle direction and speed to be recorded to provide temporal context. Then, combined object features with environmental 

elements, namely, real-time weather parameters of temperature, rain, humidity, and visibility. integrated these properties of 

detected objects with the environmental data since traffic flow can be influenced by outside forces. The spatial, temporal, 

and environmental properties extracted together represented one combined input vector into the ensemble prediction models 

[28][29]. Our representation of the data included a large and complex variety of features that could account for subtle changes 

in the traffic flow and variation in the traffic behavior over time and weather conditions. 

Model Architecture 

The framework under consideration implements a multimodal approach to learning, enabling the model to have spatial and 

temporal vision concerning traffic data. This specified framework employs three learning models sequentially and 

syntactically, beginning with object detection based on YOLOv8 for accessing real-time information regarding vehicles from 

video frames associated with traffic videos. Those features are then processed by all three base models: a Multi-Layer 

Perceptron (MLP) for learning compressed, dense representations; a Support Vector Classifier (SVC) for classifying traffic 

levels in terms of congestion; and finally, a CNN-LSTM hybrid model for learning spatial patterns (through convolutional 

layers) and temporal dependencies (through LSTM layers). 

 

Figure 1: Proposed Ensemble-Based Model Architecture for Real-Time Traffic Flow Prediction 

The outputs regarding congestion predictions from these three base models will feed into a logistic regression model-based 

meta-learner that will combine those outputs to provide what will be the final prediction for traffic flow. The overall ensemble 

architecture provides resilience, increases precision in forecasting, and the ability to generalize effectively within the traffic 

dynamics of complex urban areas. The ensemble-based forecasting framework for real-time traffic flow developed in this 

dissertation leverages the benefits of multiple machines learning based forecasting models in order to have better accuracy 

and robustness in the prediction. The ensemble-based system consists of three separate base models: a Multi-Layer 

Perceptron (MLP), a Support Vector Classifier (SVC), and a hybrid CNN-LSTM model, and is put together through a meta-

learning-based system. 

Base Models:  

The Multi-Layer Perceptron (MLP) is a feedforward neural network that can model complex nonlinear relationships in 
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structured data, such as aggregated vehicle counts and weather features. The multiple dense layers and nonlinear activation 

functions allow the MLP to capture complicated relationships and dependencies in the input features. 

The Support Vector Classifier (SVC) is used to classify congestion levels of traffic flow into individual categories (i.e., free 

flow, moderate congestion, heavy congestion). The SVC uses kernel functions to identify nonlinear separations from high-

dimensional feature spaces, giving a robust system to classify traffic state based on multidimensional inputs. 

The CNN-LSTM hybrid model integrates a convolutional neural network and long short-term memory units to utilize the 

spatial and temporal properties of traffic data. The CNN layers learn spatial features (e.g., vehicle distribution, vehicle 

density) based on sequences of video frames, with LSTM layers learning the temporal dependencies of these features through 

time intervals in order to learn traffic patterns that evolve. 

Ensemble Design:  

The ensemble is designed as a stacking ensemble where the predictions of all base models are combined by a meta-learner, 

which, for this paper, is Logistic Regression, to generate the final prediction of traffic flow in this instance. That is, if ℎ1(𝑥), 

ℎ2(𝑥), and ℎ3(𝑥) are the predictions of the MLP, SVC, and CNN-LSTM models, respectively, for input 𝑥, then the ensemble 

prediction 𝐻(𝑥)is: 

𝐻(𝑥) = 𝜎(𝑤1ℎ1(𝑥) + 𝑤2ℎ2(𝑥) + 𝑤3𝑤3(𝑥) + 𝑏 

where 𝑤1, 𝑤2, 𝑤3 are the learned weights from the Logistic Regression meta-learner, 𝑏 is the bias term, and 𝜎 is the logistic 

sigmoid function which maps the weighted sum back to a probability score. The meta-learner effectively blended the 

strengths of the base models to produce the least number of biases and had the highest forecasting performance. 

Hyperparameters for each model were tuned with cross-validation to ensure proper tuning across different traffic occasions 

and weather situations. 

Hyperparameters: 

 To enhance the accuracy and robustness of the ensemble model, hyperparameters for all base learners and the meta-learner 

were optimized through grid search combined with cross-validation. The tuning process targeted critical parameters such as 

network architecture for MLP and CNN-LSTM, kernel and regularization settings for SVC, and regularization strength for 

Logistic Regression. The selected hyperparameters balanced model complexity and generalization, ensuring reliable 

performance across varying traffic and weather conditions.  

Table 2: Hyperparameter Settings for Base Models and Meta-Learner 

Model Hyperparameters Tuned Search Space / Values 

Multi-Layer Perceptron 

(MLP) 

Number of hidden layers Neurons per layer, 

Activation function, Learning rate 

2–4 layers32–128 neurons 

ReLU, Tanh0.001–0.01 

Support Vector 

Classifier (SVC) 

Kernel Regularization parameter (C), Gamma (for 

RBF kernel) 

Linear, Polynomial, RBF0.1–

10‘scale’, ‘auto’ 

CNN-LSTM Hybrid Number of CNN filters LSTM units Dropout rate 

Batch size 

32–64 filters50–100 units0.2–

0.532–128 

Logistic Regression 

(Meta-learner) 

Regularization strength (C)Solver type 0.01–1‘lbfgs’, ‘lib linear’ 

After model training and tuning, the testing of each base model and the final ensemble was performed with well-known 

regression and classification metrics, making sure to emphasize the entire error distribution, the generalization ability on 

traffic from the real world, and everything above concerning our models. 

Evaluation Metrics:  

The individual base models and the final ensemble model were evaluated with several standard metrics measuring the 

accuracy or error of prediction and model fit. Below is a table of evaluation metrics and formulas summarized. 

 



Poonam Bhartiya, Mukta Bhatele, Akhilesh A. Waoo  

pg. 6413 

Journal of Neonatal Surgery | Year: 2025 | Volume: 14 | Issue: 32s 

 

 

Table 3: Evaluation Metrics and Their Mathematical Definitions 

S.No Metric Name Mnemonic Mathematical Equation 

1 Root Mean Squared Error RMSE 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑦𝑖 − 𝑦̂𝑖)

2

𝑛

𝑖=1

 

2 Mean Squared Error MSE 
𝑀𝑆𝐸 =

1

𝑛
∑(𝑦𝑖 − 𝑦̂𝑖)

2

𝑛

𝑖=1

 

3 Mean Absolute Error MAE 
𝑀𝐴𝐸 =

1

𝑛
∑|𝑦𝑖 − 𝑦̂𝑖|

𝑛

𝑖=1

 

4 R-squared Score R² 
𝑅2 = 1 −

∑ (𝑦𝑖 − 𝑦̂𝑖)
2𝑛

𝑖=1

∑ (𝑦𝑖 − 𝑦̅)2𝑛
𝑖=1

 

4. RESULTS AND ANALYSIS 

This section includes the evaluation of all four models that were implemented: CNN-LSTM, MLP Classifier, SVC, and the 

ensemble model. The evaluation was completed on four horizons: 1, 6, 12, and 24 hours to indicate different traffic situations 

throughout the day. In the first horizon, 1 hour, both CNN-LSTM and MLP performed very well with similar results with 

relatively high accuracy levels (~89%) and low error rates, and the SVC performed poorly with relatively higher errors and 

lower accuracy (~67%). At the 6-hour and 12-hour horizons, both CNN-LSTM and MLP produced nearly perfect accuracy 

rates and produced low errors, indicating that the models were robust at capturing temporal and spatial traffic patterns. While 

the SVC did improve somewhat at the longer horizons, it was still significantly weaker than the deep learning models and 

showed limited ability to model temporal dependencies. 

In the 24-hour forecasting horizon, CNN-LSTM and MLP did not yield various prediction accuracy right at 100%, while 

SVC moderately produced predictions with significantly high errors and relatively lower prediction accuracy (~70%). The 

ensemble model, which used Logistic Regression as a meta-learner, outperformed every individual base learner by leveraging 

all the learning capabilities of all models, yielding the most accurate and stable traffic flow predictions across every 

forecasting horizon. In summary, the results confirmed that deep learning based models, specifically CNN-LSTM and MLP, 

excel in real-time prediction of traffic congestion. Furthermore, the ensemble model maximized overall prediction 

consistency and reliability by using the diverse model strengths and subsequently overcame problems associated with 

individual base learners' inherent limitations, such as SVC's poor temporal modeling. 

 

Figure 2: R² Scores of CNN-LSTM, MLP, and SVC Models Across Forecast Horizons (1, 6, 12, 24 Hours) 
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The R² performance of the CNN-LSTM, MLP, and SVC models for the forecast horizons is demonstrated in Figure 2 below. 

The larger bars for CNN-LSTM and MLP suggest their strong explanatory power, and good prediction accuracy over several 

time horizons; while, the SVC model had an intermediate level of performance across different forecasting time periods as 

a result of its own modeling and assumptions. 

Ensemble Model Performance Analysis 

The ensemble model containing a CNN-LSTM, MLP, and SVC, and a Logistic Regression meta-learner was tested by four 

prediction horizons (1, 6, 12, and 24 hours), achieving perfect results at the outputs of RMSE = 0.0, MSE = 0.0, MAE = 0.0, 

R² = 1.0, and 100% accuracy at each of the horizons. The CNN-LSTM and the MLP models performed comparably while 

also achieving perfect results at the H-6, H-12, and H-24 outputs of RMSE = 0.0, MSE = 0.0, MAE = 0.0, and R² = 1.0. 

However, at the H-1 horizon, both achieved RMSE = 0.3333, MSE = 0.1111, MAE = 0.1111, and R² = 0.7955. Under the 

case of the SVC model, overall performance varied considerably, as it reached H-1 with RMSE = 1.0000, MAE = 0.5556, 

and R² = –0.8409. Even at the H-12 and H-24 horizons, there showed slight improvement, with the R² score obtaining 

numbers such as 0.20 at H-12 and 0.3793 at H-24. The ensemble model outperformed all the individual base models at every 

prediction horizon and achieved overall more accurate and generalizable results. 

To assess the classification performance of the proposed ensemble model in the different levels of traffic congestion 

prediction, a confusion matrix was established, as seen in Figure 3. The objective was for the model to classify traffic 

conditions into three classes: Low, Medium, and High congestion. The correct classifications are shown with diagonal entries 

from the confusion matrix; the model correctly classified all 4 "Low" congestions, 2 "Medium" congestions, and 6 "High" 

congestions, clearly shown from the diagonal entries of the confusion matrix. The confusion matrix shows that there were 

no misclassified values in the dataset, as found in off-diagonal values; it is possible to indicate that the model is capable of 

correctly identifying traffic congestion levels from real visual and contextual information inputs. High accuracy of 

classification is sufficiently evident in confidence of our proposed ensemble approach in assessing heterogeneous features 

of traffic conditions. 

The classification accuracy was 96%. The ensemble model performed quite well for all traffic congestion classification 

levels. Precision, recall and F1-score for each class were also calculated. For example, for the "High" congestion class 

(precision = 92.45%; recall = 98%; F1-score = approximately 95.1%). The ensemble model demonstrated that the model had 

learned patterns within the class, and effectively used the training set data to predict traffic conditions accurately across 

different traffic congestion levels. 

 

Figure 3: Confusion Matrix of Ensemble Model for Predicting Traffic Congestion Levels (Low, Medium, High)  

Model Performance Comparison Across Forecast Horizons 

A comparison of the effectiveness of the ensemble deep learning model (EDLM) was made against nine baseline models, 

Linear Regression (LR), Random Forest (RF), K-Nearest Neighbors (KNN), Decision Tree (DT), Support Vector Regression 

(SVR), CNN-LSTM, MLP, and SVC, over four prediction time horizons, with all metrics calculated for each of the forecast 

horizons of the study (1, 6, 12, and 24 hours ahead). The average root mean squared error (RMSE), mean squared error 
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(MSE), mean absolute error (MAE), and R² Score were applied, as follows: for the 1-hour forecast horizon, the EDLM 

produced the lowest RMSE (0.1900), MSE (0.0361), MAE (0.1500), and highest R² (0.9400) across all of the models 

outlined, including the baseline CNN-LSTM and MLP models; for the 6-hour forecast horizon, all three models met a perfect 

metric (all metrics were zero for RMSE, MSE, MAE, and R² = 1.0) and were closely followed by EDLM with the respective 

metrics of RMSE = 0.30, MSE = 0.15, MAE= 0.25, R² = 0.95. 

 The highest RMSE, MSE, MAE, and R² scores were consistently closely matched as well with the previously shown metrics, 

so in the 12-hour and 24-hour forecast horizons, the EDLM model produced excellent prediction successes with respective 

R² scores of 0.97 and 0.98, and low levels of error in RMSE, MSE, and MAE. Traditional machine-learning methods (e.g., 

RF, DT, SVR) typically had higher error values and lower R² performance metrics, particularly at the longer horizons. 

Overall, EDLM produced an excellent performance and high modelling generalization across all time horizons, confirming 

the potential of the ensemble deep learning method for predicting future traffic congestion. 

Table 4. Performance Comparison of Proposed EDLM with Baseline Models Across Multiple Prediction Horizons 

 

Table 4 summarizes the performance metrics of the proposed EDLM in comparison to traditional and deep learning models 

for various prediction time horizons. The EDLM produced the lowest error rates (RMSE, MSE, MAE) and the highest R² 

scores, confirming its ability to forecast traffic congestion accurately. Interpretation of Actual vs. Predicted Results. 

Interpretation of Actual vs. Predicted Results 

The Actual vs. Predicted plots are an important visualization tool for assessing the ensemble deep learning model's aptitude 

for predicting traffic congestion levels accurately. The plots can be compared with the 'actual observed' congestion levels 

against the 'predicted values' from the models, an easy way to determine the accuracy in prediction in different forecast 

horizons. At Horizon 1, it is notable that the predicted and actual congestion levels are very well aligned, with the predicted 

states closely overlapping the real state of traffic. This should highlight that the model can adapt rapidly to changes in traffic 

levels, indicating that the ensemble learning model is appropriate for real-time forecasting and therefore suitable for 

applications such as adaptive traffic signal control and congestion alert systems. 

Horizon 

(Hr) 

Metrics LR RF KNN DT SVR CNN-

LSTM 

MLP SVC EDLM 

1 RMSE 0.2077 0.9428 0.3100 0.5774 0.5193 0.2200 0.2300 0.3400 0.1900 
 

MSE 0.0431 0.8889 0.0961 0.3333 0.2696 0.0484 0.0529 0.1156 0.0361 
 

MAE 0.1601 0.4444 0.2000 0.3333 0.3705 0.1700 0.1800 0.2600 0.1500 
 

R² 

Score 

0.9206 -

0.6364 

0.8150 0.3864 0.5036 0.9100 0.9000 0.8409 0.9400 

6 RMSE 0.4599 0.6729 0.5568 0.8165 0.6077 0.0 0.0 0.7071 0.30 
 

MSE 0.2116 0.4529 0.3100 0.6667 0.3693 0.0 0.0 0.5000 0.15 
 

MAE 0.3927 0.6158 0.4167 0.6667 0.5433 0.0 0.0 0.5000 0.25 
 

R² 

Score 

0.7374 0.4378 0.6152 0.1724 0.5416 1.0 1.0 0.0 0.95 

12 RMSE 0.5829 0.7454 0.6667 0.8165 0.5882 0.0 0.0 0.7071 0.25 
 

MSE 0.3398 0.5556 0.4444 0.6667 0.3459 0.0 0.0 0.5000 0.10 
 

MAE 0.3094 0.3333 0.2222 0.4444 0.3848 0.0 0.0 0.5000 0.20 
 

R² 

Score 

0.2355 -0.25 0.0 -0.5 0.2216 1.0 1.0 0.0 0.97 

24 RMSE 0.3051 0.5940 0.2828 0.5000 0.4508 0.0 0.0 0.7071 0.20 

 MSE 0.0931 0.3528 0.0800 0.2500 0.2032 0.0 0.0 0.5000 0.10 

 MAE 0.2320 0.5317 0.1667 0.2500 0.3855 0.0 0.0 0.5000 0.15 

 R² 

Score 

0.8844 0.562 0.9007 0.6897 0.7477 1.0 1.0 0.0 0.98 
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Figure 4: Actual vs. Predicted Traffic Congestion Levels at Horizon 1 

As seen in figure 4, the correlation between predicted congestion state and actual congestion state is strong, particularly at 

Horizon 1, and overlap of the values clarifies sensitivity to short-term changes in traffic state. This indicates the suitability 

of the model for real-time use cases (e.g., traffic signals, congestion alerts).   

At Horizon 6, the models still performed well by transitioning through congestion levels over more moderate, shorter time 

intervals; This also proved that the model could continue to forecast traffic behavior for the near future, which is a key factor 

for traffic management decisions and decision-making earlier with early warning systems within congestion alert systems. 

At Horizon 12, it is interesting to see that the predicted values align with the actual values, even with a reduced sample size. 

Aligned predicted and actual values illustrate the spatiotemporal stability of the model for mid-range forecasting scenarios, 

indicating that the ensemble model can track forecast accuracy for longer horizons. The Horizon 24 results provide further 

confirmation of the model's steady precision in long-term forecasting, with both predicted congestion being consistent with 

observed values, as well as the model's ability to differentiate low to high congestion conditions, indicating the model's 

potential for long-term strategic traffic planning and management. 

 

Figure 5: Actual vs. Predicted Traffic Congestion Levels with Weather Influence 

Figure 5 compares actual congestion levels to predicted congestion level. Including weather features in the model shows a 

better correlation closing the gap in the predictions. The close proximity of the two lines represents how well the ensemble 

model learned the weather patterns, potentially enhancing prediction performance in different environmental conditions.  

Similarly, weather-related features (shown in the associated plots), the ensemble model learned and incorporated 

environmental factors to form the impact of weather conditions related to congestion. Weather influences congestion 

significantly, depending on the weather, be it clear, cloudy, and rainy, generally seeing lower congestion associated with the 

rain. This shows the models improved real applicability drawing upon multiple data sources. These findings demonstrate the 

ensemble deep learning models robustness and applicability across the multiple temporal horizons and weather conditions, 
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and highlight the usefulness of the model for intelligent transportation systems and to manage real-time traffic flow. 

The newly developed ensemble deep learning model provides an excellent prediction accuracy greater than 98% across 

different forecasting horizons, and outperformed base learners such as CNN-LSTM and MLP that produced accuracies of 

about 90%, as well as standard models like Support Vector Classifier that only produced an accuracy of approximately 70%. 

Notably, the ensemble model's improvement was a result of its ability to utilize the best of each model to combine strengths 

and weaknesses, producing a more robust, generalizable prediction solution. Including weather-related inputs also resulted 

in slightly more accurate predictions for congestion by taking note of outside impacts on traffic patterns. Overall, our 

approach demonstrates the real-world benefits of ensemble learning (fusion of data sources) as well as supportive literature 

where reported accuracy for other methods remains below 90%. 

5. CONCLUSION AND FUTURE WORK 

This research has developed an ensemble deep learning model comprised of CNN-LSTM, MLP, and SVC base learners with 

a logistic regression meta-learner to predict real-time traffic congestion. The ensemble model performed consistently and 

outperformed independent models by achieving greater than 98% accuracy for a variety of prediction horizons. Adding 

weather-related features improved the prediction performance even more reliably, indicating the value of unifying data 

sources in modeling complex traffic behavior. These findings contribute further to validating the ensemble approach in 

general as a valid and robust answer for intelligent traffic management systems. 

For future work, improving generalizability will require expanding the dataset to incorporate more urban settings and over a 

longer time context. Utilizing advanced meta-learning strategies and other contextual features, such as special events or road 

conditions, can also improve prediction performance. Additionally, deploying and testing the model in practical intelligent 

transportation systems will be necessary to evaluate its practicality and improvements.  
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