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ABSTRACT 

Vehicular Ad Hoc Networks (VANETs) operate in highly dynamic and high-velocity environments, making them especially 

vulnerable to a wide range of intrusions and malicious attacks. To address these challenges, this paper proposes a hybrid IDS 

framework that combines multiple state-of-the-art techniques tailored for VANET traffic. Initially a Z-Score Normalization 

ensures all features share a consistent scale, improving model convergence and preventing domination by outliers in vehicular 

data. Next, an Improved Whale Optimization Algorithm (IWOA) is employed to select the most discriminative feature subset 

by simulating whale-hunting strategies with adaptive parameters for robust global search in rapidly changing VANET 

conditions. Then an Improved Deep Neural Network (IDNN) functions as a signature-based classifier, rapidly identifying 

known intrusions through enhanced architecture, optimization, and regularization. Data classified as normal or inconclusive 

is then passed to a Modified Possibilistic Fuzzy C Means (MPFCM) clustering based anomaly detection module, leveraging 

fuzzy logic to isolate novel or zero-day threats that deviate from typical vehicle communication patterns. The framework’s 

performance is evaluated using accuracy, precision, recall, and f-measure, ensuring a balanced view of both detection 

thoroughness and correctness. Experimental results demonstrate that this integrated solution achieves high detection rates, 

low false alarms, and robust adaptability to evolving attack behaviors in VANETs, making it a promising approach to secure 

next-generation intelligent transportation systems. 

 

Keywords: Vehicular Ad-hoc Network, Road Side Units, Z-Score Normalization, Improved Whale Optimization Algorithm 
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1. INTRODUCTION 

Communication technology plays an essential role in recent vehicle network management. In conventional methods, the 

wired communication protocols were developed to control the various internal parts of the vehicle under single devised 

system architecture. This wired method increases the system and maintenance cost of the vehicle. In order to improve cost 

efficiency, modern vehicular networks use wireless protocols to transfer or receive the data wirelessly within or outside the 

vehicles. VANET is the recent efficient wireless technology which is presently used in many intelligent transportation 

networks [1–2], carpooling [3], and even using fifth-generation small-cell networks [4]. Each vehicle belonging to VANET 

system consists of multiple wireless sensors, converting equipment, and mapping units. Also, the VANET system consists 

of two interfacing modules, ad On-Board Unit (OBU) and Road Side Units (RSU). The OBU module is integrated within 

the vehicle and connects to all the wireless sensors within the vehicle. The RSU module is fitted in roadside buildings with 

individual transmitter and receiver units to communicate each vehicle’s OBU module. When the vehicle enters the VANET 

system, it senses the vehicle information through the multiple sensors fitted in it and sends all this data to the RSU module. 

The accidents will be prevented if there is confident coordination between the vehicle OBU module and RSU module. The 

performance between the OBU module and RSU module will be affected by the presence of intruders. Hence, there is a need 

to provide a security mechanism between OBU and RSU modules. 

By implementing these VANET techniques, accidents are significantly reduced by exchanging the vehicle information with 

its nearby or surrounding vehicles. This VANET can be categorized into Vehicle-to-Vehicle (VV) and Vehicle-to-

Infrastructure module (VI). The VV module of the VANET system transfers the information between vehicle and vehicle. 

In the case of VI module, if the VANET system, the information is transferred from one vehicle to the centralized system or 

controller. The real-time environment scenario of the VANET is dynamic, and its topology system is changing with respect 

to the distance and location of vehicles. The factors such as environmental noises affect the quality of the information passage  
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between the vehicles [5–7]. This type of vehicle environment is called a rugged VANET environment, which is easily affected 

by external attacks such as eavesdropping and hacking the data. Figure 1 illustrates the VANET environment where all the 

vehicles are connected wirelessly to the centralized controller. The vehicles in VANET and centralized controller are attacked 

by the attacker. Figure 1 shows the VANET systems, which connect multiple vehicles to the centralized controller, which is 

called as RSU module. The attackers mostly affected the interference between each vehicle and the interference between the 

vehicle and the centralized controller. 

 

Figure 1: VANET system 
 

The attackers generate different types of attacks to collide with the functional activities of the network environment in 

VANET system. These will also affect the lives of people who are driving vehicles in these environmental conditions. 

Therefore, detecting the attacks in VANET system is very important to provide more secure and reliable communication 

between all vehicles in the system. The attacks in VANET are classified into either external attacks or internal attacks. 

Internal attacks can be detected or identified using cryptography methods, which use a digital signature to perform encryption 

and decryption. These methods are not able to detect the external attacks [8–9]. Therefore, the IDS is required in VANET to 

provide security from external attacks. The external attacks are categorized into Denial of Service (DoS) attacks, Botnet 

attacks, PortScan attacks, and Brute Force attacks. DoS attack can be generated by any attacker who statically launches the 

attack in a particular location, or any moving vehicle can launch the attack. The attacker intends to disrupt the network 

services that are used by the vehicles. Botnet attack is generated due to the devices which are affected by malware. The ports 

in the device can be affected or attacked by the PortScan attack. The login credentials and passwords of the network devices 

can be affected by the Brute Force attack. 

Despite the promising future of VANETs, they are known to be sensitive to various misbehaves, ranging from malicious 

attacks to random failures [10]. Considering the safety of vehicles is directly related to human lives, security is one of the 

main challenges in VANETs. Various detection methods have been proposed in the past decade to detect and mitigate 

Intrusions in VANETs [11]. Most of these presented methods overlook the security of senior units or just simply rely on a 

set of predefined and fixed threshold(s) to secure the senior units [12]. However, senior units, Road Side Units (RSUs) and 

Cluster Heads (CHs), are not guaranteed to be safe in a VANET. Although RSUs are built to be robust, yet intruders can still 

impair the system through physical attacking RSUs or impersonating as an RSU. Not to mention that CHs are easier than 

RSUs to be impersonated or overtook. The overlook of those senior units’ security can lead to serious consequences. 

Furthermore, considering the highly dynamic nature of VANETs, it is not achievable to find a set of fixed thresholds to detect 

malicious nodes [13]. In contrast, Machine Learning based (ML-based) intrusion detection method can automatically 

determine whether a node is malicious or not considering all available data from the VANET [14]. In existing work 

introduced the limitations of traditional intrusion detection approaches (e.g., high false positives, lack of adaptability to zero-

day attacks). Hence a hybrid solution is proposed to catch both known and unknown threats. Also the Min-max normalization 

is often used because of its simplicity—it rescales feature values into a fixed range (e.g., [0, 1]). However, min-max 

normalization can be sensitive to outliers and may lead to suboptimal performance when your data has skewed distributions 

or a broad range of values. The primary aim of the research is to develop a robust, efficient, and adaptive intrusion detection 

system (IDS) tailored for Vehicular Ad hoc Networks (VANETs). This framework seeks to effectively identify and classify 

network intrusions by integrating three key components: 

• Modified Possibilistic Fuzzy C Means (MPFCM) clustering: To group and preprocess network traffic data by 

uncovering inherent patterns and segmenting normal and abnormal behaviors. 

• Improved Whale Optimization Algorithm: To optimize feature selection and fine-tune the model’s parameters, 

thereby enhancing computational efficiency and reducing the dimensionality of the input data. 
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• Enhanced Deep Neural Networks: To accurately learn complex intrusion patterns and perform precise classification 

of potential security threats. 

2. RELATED WORKS 

In [15] proposed an anomaly detection framework for VANETs based on deep neural networks (DNNs) using a sequence 

reconstruction and thresholding algorithm. In this framework, the DNN architectures are deployed on the roadside units 

(RSUs) which receive the broadcast vehicular data and run anomaly detection tasks to classify a particular message sequence 

as anomalous or genuine. Multiple DNN architectures are implemented in this experiment and their performance is compared 

using key evaluation metrics. Performance comparison of the proposed framework is also drawn against the prior work in 

this area. Our best performing deep learning-based scheme detects anomalous sequences with an accuracy of 98%, a great 

improvement over the set benchmark. 

In [16] presents a novel scheme for minimizing the invalidity ratio of VANET packets transmissions. In order to detect 

unusual traffic, the proposed scheme combines evidences from current as well as past behaviour to evaluate the 

trustworthiness of both data and nodes. A new intrusion detection scheme is accomplished through a four phases, namely, 

rule-based security filter, Dempster–Shafer adder, node’s history database, and Bayesian learner. The suspicion level of each 

incoming data is determined based on the extent of its deviation from data reported from trustworthy nodes. Dempster–

Shafer’s theory is used to combine multiple evidences and Bayesian learner is adopted to classify each event in VANET into 

well-behaved or misbehaving event. The proposed solution is validated through extensive simulations. The results confirm 

that the fusion of different evidences has a significant positive impact on the performance of the security scheme compared 

to other counterparts. 

IN [17] presents a hybrid approach for intrusion detection in vehicular networks that effectively balances classification 

performance and model efficiency. Our method, which combines automated feature engineering through correlation-based 

feature selection (CFS) and principal component analysis (PCA) with optimized deep learning techniques, has yielded 

promising results. The proposed hybrid model significantly improved classification performance, increasing the F1-score 

from 96.48% to 98.43%. Moreover, our feature engineering techniques reduced the model size from 28.09 KB to 20.34 KB, 

optimizing both performance and resource usage. Post-training quantization further compressed the model to 9 KB, 

demonstrating substantial optimization potential. Experiments using the CICIDS 2017 dataset validated the model’s 

effectiveness in classifying malicious traffic in vehicular network scenarios. These findings prove that it is possible to 

develop high-performing intrusion detection systems with low computational complexity, making them suitable for 

deployment in resource-constrained vehicular ad-hoc network (VANET) environments. 

Danalakshmi et al. [18] proposed an IDS technique in which the Deep Belief Network is used by enhancing with a rule-

based technique to improve the accuracy of the detection rate and reduce the false alarm rate as well. The authors concentrated 

only on False Data Injection and DoS attacks. To identify the port scan attacks, efficient detection rules are generated in the 

IDS, which detects the real-time native port scan attacks using Snort. But the snort has some limitations that, due to noise, 

can limit the effectiveness of IDS.  

Guangzhen Zhao et al. [19] utilized two classification models, DBF and Probabilistic Neural Network (PNN), for detecting 

intrusion in the VANET system. The authors analyzed the performance of the system by implementing the IDS system with 

these two classification models. Hao [20] used an encryption-based key management system for detecting the various attacks 

in IDS system of the VANET environment. The developed key management system provided different encrypted keys for 

handling a large amount of data between the roadside unit and the vehicles. Daeinabi et al. [21] proposed a vehicular weighing 

clustering algorithm (VWCA) for improving the security level of the nodes in VANET. The authors constructed a weight-

based clustering framework for detecting the nodes being attacked by the host node. 

Mengting Yao et al. [22] proposed mutual authentication method for improving the security enhancement in VANET using 

a forward secrecy approach. The shared key in this method was verified through the batch normalization process. The authors 

detected impersonation and forgery attacks using this mutual authentication technique. Shen et al. [23] developed a data 

aggregation approach for VANET to improve security performance. The authors used a batch verification approach between 

each transmission process of sender and receiver in order to provide a trust behavior network.  

Gope et al. [24] improved security authentication of VANET by developing a privacy-preserving approach between vehicle 

and grid. The authors applied and tested the developed security authentication scheme in different rouged environments. 

Gayathri et al. [25] used certificateless approach to prove the authentication scheme in the VANET environment. This method 

used certificateless keys between the roadside units and central units in VANET. The effectiveness of this keyless approach 

was analyzed using hit rate and miss rate analysis parameters. 

Nayyar et al. [26] developed a hybrid data model for the detection of intrusion in the VANET environment. This method 

was based on the hybrid model and integrated with the non-linear prediction flow to determine the intrusion activities in 

VANET. Naqvi et al. [27] detected the malicious activities or any misbehavior activities of the vehicle in VANET using IDS 

flow. The authors mainly focused on providing more reliability and security for the vehicle nodes in VANET. The 
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experimental results of this proposed method were compared with other similar algorithms in the same VANET environment. 

Jabar Mahmood et al. [28] analyzed and synthesized various problems faced in the security flow of the VANET system. The 

determined countermeasures in VANET identified the major security threats and resolved the issues in VANET, which also 

optimized the efficiency of the entire network. Irshad et al. [29] proposed a security key authentication system for the VANET 

system to provide reliable and secure access to vehicle users. The authors discussed various authentication protocols to 

improve the security of the VANET system. 

3. PROPOSED METHODOLOGY 

This work presents a hybrid Intrusion Detection System (IDS) framework specifically designed for VANET traffic is shown 

in figure 2. The framework begins with Z-Score Normalization to standardize feature scales, followed by an Improved Whale 

Optimization Algorithm (IWOA) for discriminative feature selection. An Improved Deep Neural Network (IDNN) is then 

employed as a signature-based classifier to identify known intrusions rapidly. Data that is classified as normal or inconclusive 

is further analyzed by a Modified Possibilistic Fuzzy C Means (MPFCM) clustering module to detect anomalies or zero-day 

attacks. 

 

Figure 2: Proposed Flow Diagram 
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3.1 Data Preprocessing using Z-Score Normalization 

Initially load the CICIDS2017 dataset. The dataset is undergone preprocessing sing Z score normalization which identify 

and handle any missing values. Then remove features that aren’t needed for your analysis or model. Finally determine which 

columns are numerical, as these will be normalized. This technique scales the values of a feature to have a mean of 0 and a 

standard deviation of 1. This is done by subtracting the mean of the feature from each value in the dataset, and then dividing 

by the standard deviation. It is mathematically defined as follows: 

𝑍 =
(𝑥−𝜇)

𝜎
     (1) 

Where, x refers the original value in the dataset, 


 indicates the mean of data, and  denotes the standard deviation. 

This preprocessing step is crucial when dealing with datasets like CICIDS2017, where features can vary widely in scale. 

Hence by normalizing it may help to classification algorithm to provided converge faster and perform better. 

3.2 Feature Selections Improved Whale Optimization Algorithm (IWOA) 

The next critical step in the methodology is Feature Selection using Improved Whale Optimization Algorithm (IWOA). The 

Whale Optimization Algorithm (WOA) is a metaheuristic inspired by the bubble-net hunting strategy of humpback whales. 

The improved version (IWOA) incorporates adaptive parameters to efficiently explore the search space in dynamic VANET 

conditions. 

Input pre-processed CICIDS2017 database might have more features and consume more time to get classification results.  

This work uses feature selections based on Improved Whale Optimization (IWOA). Recently, the revolutionary stochastic 

population-based optimization approach called WOA which draws inspiration from nature, finds optimal solutions utilizing 

groups of search agents for optimizations. By using bubble-net hunting technique, WOA mimics actions of humpback whales 

as they pursue their preys. The three general processes of WOAs are to surround preys, assault using bubble nets, and hunt 

for best preys.  

Whales enclose their prey including fishes while updating their positions to find optimal solutions. Mathematically Eqs. (12) 

and (13) depict WOA.  

𝑋(𝑡 + 1) =  𝑋∗(𝑡) − 𝐴. |𝐶. 𝑋∗(𝑡) − 𝑋(𝑡)|𝑖𝑓𝑝 < 0.5       (2) 

𝑋(𝑡 + 1)|𝐶. 𝑋∗(𝑡) − 𝑋(𝑡)|. 𝑒𝑏𝑙 cos(2𝜋𝑡) + 𝑋∗(𝑡)𝑖𝑓𝑝 ≥ 0.5   (3) 

Where X implies vectors of whales’ positions; t represents times or iteration indices; X* implies best solutions found so far; 

A=2a. (r-a);C=2.r; a  are coefficient vectors that linearly decrease from 2 to 0 in iterations; r stands for random vectors 

between 0 and 1; b implies constant values that define shapes of logarithmic spirals based on paths and is 1 for this work; l 

stands for random numbers between - 1 and 1; p implies random numbers between 0 and 1 and used to switch between (10) 

and (11) while updating whales’ positions; Eqs. (10) and (11) have 50% probabilities implying during optimizations whales 

select paths randomly with equal chances. During bubble-net phases, A’s random values are in the range [- 1, 1], however in 

searching phases, these values may be larger than or less than 1. Search processes are illustrated as Eq. (4). 

𝑋(𝑡 + 1) = 𝑋𝑟𝑎𝑛𝑑 − 𝐴 . |𝐶. 𝑋𝑟𝑎𝑛𝑑 − 𝑋(𝑡) |       (4) 

Random searches with values of |A| > 1 emphasize searches and require WOA algorithm to do global searches. WOA 

searches begin with generations of random solutions. The responses are then updated in iterations and searches continue until 

present max. iterations are reached. 

IWOA 

The good trade-off between exploration and exploitation, two critical components of an optimization algorithm, allows for a 

precise solution to be obtained by escaping the local optima. In WOA, a search agent's step size decreases linearly as iteration 

counts increases. This step size is determined by a parameter known as A. Nonetheless, it has been demonstrated that 

insufficient divergence restricts WOA's capacity to capture a local optimum in later rounds. 

This paper employs an updated whale optimization approach to get around such problems. This changes the value A by 

introducing the levy flying function. Levy flight is a mathematical concept used to describe a type of random walk in which 

step lengths have a probability distribution that is heavy-tailed (e.g., follows a Levy distribution). In optimization algorithms, 

such as the Improved Chicken Swarm Algorithm (ICSO), Levy flight is applied as a search strategy to improve efficiency 

and avoid premature convergence to local optima. It improves WOA's capacity for simultaneous exploration and exploitation.  

The Levy probability distribution function, a power-law function, is utilized in Levy flight to determine jump sizes where 

Levy distributions can be mathematically formulated as:  
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L(𝑠, 𝛾, 𝜇) = {
√

𝛾

2𝜋
exp [−

𝛾

2(𝑠−𝜇)
]

1

(𝑠−𝜇)3/2 𝑖𝑓 0 < 𝜇 < ∞

0                             𝑖𝑓 𝑠 ≤ 0
 

     (5) 

Where μ, γ, and s are positions and scales which control scale distributions and samples in distributions respectively. 

 

Figure 3: Convergence curve of IWO 

 

The figure 3 depicts a line graph showing the relationship between iterations and fitness values in an optimization algorithm. 

The graph reveals a significant drop in the fitness value from approximately 0.155 at iteration 1 to about 0.11 at iteration 2. 

After the second iteration, the fitness value stabilizes and remains constant at approximately 0.11 through iterations 3 to 10, 

indicating that the optimization process has likely converged. Using Mean Squared Error (MSE) as the fitness function in 

the Improved Whale Optimization Algorithm not only aids in effectively assessing the quality of solutions but also 

demonstrates the algorithm’s capability to minimize errors in predictive modelling. 

In the IWOA, Levy flights play critical roles in enhancing explorations and exploitations of the algorithm, particularly to 

avoid issues of getting trapped in local optimums during later iterations. 

Role of Levy Flight in IWOA: 

1. Exploration and Exploitation Balance: 

o Explorations refers to algorithm’s abilities to search broadly across solution spaces, while exploitations 

refer to focusing on refining current best solutions. 

o In standard Whale Optimization Algorithm (WOA), the parameter A controls the step size of the whales' 

movement. However, as iterations increase, A decreases linearly, reducing the step size and thus restricting 

the ability to explore new regions of the search space. 

o To enhance both exploration and exploitation simultaneously, Levy flight is used to introduce random 

long-distance jumps, which allows for more diverse movements even in later stages of the search. This 

nonlinear random walk based on the Levy distribution helps escape local optima by allowing whales to 

make larger, random steps. 

Algorithm for IWO  

            START 

1. import data 

2. Set initial locations of whales X 

3. Compute whales fitness  

4. Set initial values of a and r, calculate A and C 

5. Set initial  X* as best hunters’ whale locations 
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6. initialize t = 1 

7. while t ≤ max iterations do 

8. for each hunting whale do 

9. if p < 0.5 

10. if |A| < 1 

11. update existing locations of  hunting whales with (3) 

12. else if |A| ≥ 1 

13. another search agent randomly 

14. update existing locations of  hunting whales with (4) 

15. end if 

16. else if p ≥ 0.5 

17. update existing locations of  hunting whales with (5) 

18. end if 

19. end for 

20. update X* on better solutions 

21. t = t +1 

22. end while 

23. output X* Best Features 

24. END 

The IWOA is a key component of the proposed methodology for feature selection optimization. By reducing the dataset's 

dimensionality, IWOA identifies the most relevant features, enhancing the classification model's overall performance while 

simultaneously reducing time complexity and energy consumption. 

3.3 Signature-Based Classification using Improved Deep Neural Network (IDNN) 

Once get the feature subset from the feature selection phase need to classify those features to detect Signature based attacks 

in Vanet [21]. The Improved Deep Neural Network (IDNN) enhances the traditional deep learning architecture by 

incorporating optimization and regularization techniques, enabling rapid and accurate detection of known intrusions. In this 

work, we implement a signature-based classification approach using an Improved Deep Neural Network (IDNN) to 

effectively distinguish between benign and malicious network traffic. The signature-based methodology leverages distinct 

characteristics extracted from network flows to capture the unique “signatures” of various attack types. The IDNN is designed 

to robustly learn these signatures by incorporating improvements such as multi-layer architecture, dropout regularization, 

and batch normalization. 

DNN is a deep learning which consists of three layers namely input, hidden and output layer. A DNN consists of multiple 

hidden layers between input and output layers. In a DNN (Joshi and Kumar 2020), the input layer assigns weights to the 

input parameters and transfers those to the next layer. Each subsequent layer also assigns weights to their input and generates 

their output. At the output layer, the final output value is obtained and error function 𝐸𝑗 is calculated to determine how 

correctly learned those data for identifying the crops. This training cycle is repeated until the relationship between 

countermeasures and the extracted data is learned. Using training data, the class label of crops are generated from that the 

crop recommendation can be processed. The probabilities are denoted as 𝔓(𝑥) = 𝑥 are given to the input layer of neurons. 

DNN consists of multiple hidden layers which can handle huge volume of data as shown in figure 3.4. Each hidden layer of 

DNN is defined as sigmoid transfer function which is given as follows:  

 𝔓(𝑥) =
1

1+𝑒−𝑥    (6) 

For (each node j in output layer) the error function 𝐸𝑟 is calculated as 

𝐸𝑟𝑗 =
1

2
(𝑡𝑜𝑗

𝑛 − 𝑜𝑝𝑗
𝑛)

2
       (7) 

Where 𝑡𝑜𝑗
𝑛 is the desired target output for the 𝑛-th observation and the 𝑜𝑝𝑗

𝑛 is the actual output for the 𝑛-th observation. Deep 

Learning models have so much flexibility and capacity that overfitting can be a serious problem, if the training dataset is not 

big enough. The standard way to avoid overfitting is called L2 regularization. It consists of appropriately modifying the error 

function:  
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𝑜𝑝𝑟𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑧𝑒𝑑 = 𝐸𝑟𝑗 + ∑
𝔯

2𝑓
‖𝑤𝑖‖2𝑛

𝑖=1    (8) 

Where 𝔯 is the regularization parameter and 𝑓 is the total number of features. It is the hyperparameter whose value is 

optimized for better results using COA-GS. L2 regularization is also known as weight decay as it forces the weights to decay 

towards zero (but not exactly zero). Each input feature has its own weight values as 𝑤𝑣1, 𝑤𝑣2, … , 𝑤𝑣𝑛   which is calculated 

by using fuzzy membership function  

 𝑤𝑣 = ℨ𝐴𝑖
(𝑥) 𝑓𝑜𝑟 𝑖 = 1,2        (9) 

Where, input nodes are represented by, ℨ𝐴𝑖
is the linguistic labels, (𝑥) is signified as the membership functions, highest and 

lowest values equivalent to 1 and 0, correspondingly and the weighted sum of the inputs is done by the adder function 𝒜 as 

follows, 

𝒜 = ∑ 𝑤𝑣𝑖𝑥𝑖
𝑛
𝑖=1         (10) 

The output layer of IDNN is described by the following equation. 

𝑦 = 𝔓(∑ 𝑤𝑖𝑥𝑖 + 𝑏𝑖
𝑛
𝑖=1 )       (11) 

In the equation (11), 𝑦 is the output neuron value; 𝔓(𝑥) is the transfer function, 𝑤𝑣𝑖  refers the weight values, 𝑥𝑖 denotes 

input data values and 𝑏𝑖 refers to the bias value. Based on the output neuron values, the relationship between countermeasures 

and the considered parameters is learned, identifying the types of attacks. Initially, the DNN is loaded with pre-processed 

attribute vectors, which are then attached to the output matrix as the first layer. Then, in every loop of computation, the result 

will use the matrix multiplication to multiply weight matrix 𝑤𝑣 and then add the bias 𝑏. In the multiple hidden layers, sigmoid 

function is applied and the result is given to the next layer. Based on the error values, the weight and bias values of IDNN 

network is updated. Finally, the output layer returns probability.  

 

Figure 3.4. The network structure of DNN model 

 

Based on that probability value the IDNN approximate the attack classification. In this work, the objective function based 

on accuracy of this COA is optimally select the hyperparameters including the number of hidden layers, the number of 

neurons in each layer, level of learning, momentum, initialization of neuron weights in IDNN for training to improve the 

precision of IDS model. Once the IDNN architecture has been chosen to be trained, a variable number of hyperparameters 

must be tuned in order to achieve the best possible model with that architecture. These hyperparameters define how the 

network functions and are key to their validity and accuracy. Their values depend ultimately on the problem that is being 

addressed, type of available data and expected output. Moreover, these parameters are interdependent, meaning that 

modifying a single hyperparameter might necessitate changes to others. Some of the most common or important 

hyperparameters to adjust within IDNN are (Domhan et al 2015):  
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Number of hidden layers: Increasing the number of hidden layers is usually believed to increase model accuracy.  

Parameter initialization: Weights must be initialized during the first pass. These values can be set to zero or obtained with a 

random function. This can lead to vanishing or exploding gradients, which reinforces the need to find a way of easily 

initializing them without compromising its training.  

Learning rate: It represents the amount weights are increased during training. It usually has a positive value from 0 to 1. This 

value is one of the most relevant ones, as it can lead to heavy and long training process after which the process could get 

stuck (low values) or too fast and cause the training process to become unstable and achieve sub-optimal sets of weights 

(large values).  

An epoch is a forward pass and a backward pass of all the data samples in the training dataset. This value is set when the 

number of variables is too large to be run in one single epoch, or when the complexity of the model makes it necessary. The 

number of iterations is the number of backward and forward passes using the information contained in each batch.  

Dropout regularization: Defines the number of neurons not trained in each epoch in order to avoid overfitting of the model 

during training.  

Optimizer algorithm and momentum: The Adam optimizer is in charge of running gradient descend in order to actualize the 

weights of each variable. The way to do so varies from one optimizer to another which can impact the model performance.  

COA based Hyperparameter optimization of IDNN: The coyote optimization algorithm (COA) is a population-based 

algorithm (Pierezan and Coelho 2018).  Inspired by the social and evolutionary behavior of canines, COA is divided into two 

components: group intelligence and evolutionary heuristics The COA has different algorithmic structure settings, and it does 

not pay attention to the social hierarchy and domination rules of these animals, even if alpha is used as a group leader. In 

addition, the COA focuses on the social structure and exchange of experiences of wolves, rather than hunting prey as in 

GWO. The social condition 𝔖 (set of decision variables 𝑑𝑒𝑐 such as hidden layers, Parameter initialization, learning rate, 

epoch, number of iterations, Dropout regularization, Optimizer algorithm and momentum) of 𝑐th wolf at 𝑡th instant 𝑝𝑜𝑝th is 

written as 

𝔖𝑐
𝑝𝑜𝑝,𝑡

= (𝑥1, 𝑥2, … , 𝑥𝑑𝑒𝑐)       (12) 

It means the adaptation of the wolf to the environment (the accuracy of the objective function 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑐
𝑝𝑜𝑝,𝑡

= 𝑓(𝔖𝑐
𝑝𝑜𝑝,𝑡

)). 

The first step of the COA is to initialize the global coyote population. It is achieved by assigning random values in the search 

space of the 𝑐th coyote of the 𝑝𝑜𝑝th package in the jth dimension, as follows:  

𝔖𝑐,𝑗
𝑝𝑜𝑝,𝑡

= ℓ𝔟𝑗 + 𝑟𝑎𝑛𝑑𝑗 ∙ (𝓊𝔟𝑗 − ℓ𝔟𝑗)     (13) 

where ℓ𝔟𝑗  and 𝓊𝔟𝑗 respectively denote the lower and upper bounds of the 𝑗𝑡ℎ decision variable, 𝔇 is the dimension of the 

search space, and 𝑟𝑎𝑛𝑑𝑗is the real random number generated in the range [0,1] using uniform probability. Considering the 

two main biological events, birth and death, COA calculates the age (in years) of the coyote and expresses it as the 

age  𝑎𝑔𝑒𝑐
𝑝𝑜𝑝,𝑡

∈ 𝑁. In order to express the cultural interaction within the ethnic group, COA assumes that the coyotes are 

affected by alpha (𝛼1) and ethnic influence (𝛼2). The first refers to a cultural difference 𝔠𝔡, from a random coyote pack (𝔠𝔡1) 

to an alpha coyote, while the second is a cultural difference, from a random coyote (𝔠𝔡1) to a culturally inclined pack. The 

random coyote is selected by the uniform distribution of probability, 𝛼1 and 𝛼2  are written as 

𝛼1 = 𝑎𝑙𝑝ℎ𝑎𝑝𝑜𝑝,𝑡 − 𝔖𝔠𝔡1

𝑝𝑜𝑝,𝑡
  

𝛼2=𝔠𝔡𝑝𝑜𝑝,𝑡 − 𝔖𝔠𝔡2

𝑝𝑜𝑝,𝑡
        (14) 

Therefore, the new social 𝔑𝔖 conditions of the coyotes are updated using the following equations using alpha and group 

influence: selection by uniform probability distribution, 𝛼1 and 𝛼2 are written as  

𝔑𝔖𝑐
𝑝𝑜𝑝,𝑡

= 𝔖𝑐
𝑝𝑜𝑝,𝑡

+ 𝑟𝑎𝑛𝑑1 ∙ 𝛼1 + 𝑟𝑎𝑛𝑑2 ∙ 𝛼2    (15) 

where 𝑟𝑎𝑛𝑑1 and 𝑟𝑎𝑛𝑑2 were defined as random numbers in the range [0,1] generated with uniform probability. Then, 

assess the new social situation: 𝑛𝑒𝑤𝑓𝑖𝑡𝑐
𝑝𝑜𝑝,𝑡

= 𝑓(𝔑𝔖𝑐
𝑝𝑜𝑝,𝑡

− 𝔖𝑐
𝑝𝑜𝑝,𝑡

) 

The cognitive ability of the wolf determines whether the new social conditions are more suitable to maintain it than the old 

social conditions, which means 

𝔖𝑐
𝑝𝑜𝑝,𝑡+1

= {
𝔑𝔖𝑐

𝑝𝑜𝑝,𝑡
𝑛𝑒𝑤𝑓𝑖𝑡𝑐

𝑝𝑜𝑝,𝑡
< 𝑓𝑖𝑡𝑐

𝑝𝑜𝑝,𝑡

𝔖𝑐
𝑝𝑜𝑝,𝑡

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
    (16) 

Finally, the social conditions of the coyote that best adapt to the environment are chosen as the overall solution to the problem. 

The algorithm runs for a fixed number of iterations (or until convergence) and returns the best hyperparameter set found. 
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Algorithm: Signature Based Classification _IDNN_COA 

 

Input: 

    - Feature subset F 

    - Dataset D (training, validation, test) 

    - Hyperparameter search space S with bounds {lb_j, ub_j} for j = 1,...,dec 

    - COA parameters: Population size N, Max iterations T, Abandonment probability p_a 

 

Output: 

    - Optimized hyperparameters x_best 

    - Trained IDNN model for signature-based attack classification 

 

Phase 1: COA-Based Hyperparameter Optimization 

1. For c = 1 to N do: 

       For j = 1 to dec do: 

           S_c^(0)[j] = lb_j + rand_j*(ub_j - lb_j)         (Equation 3.27) 

2. For each candidate S_c^(0), compute fitness f(S_c^(0)) = ValidationError(IDNN trained with S_c^(0)) 

3. Set x_best = candidate with minimum f(S_c^(0)) 

4. For t = 0 to T-1 do: 

       For each candidate S_c^(t): 

           a. Compute S_social^(t) = Mean({S_c^(t) for all c}) 

           b. Select two random candidates S_cd1^(t) and S_cd2^(t) 

           c. Compute α_1 = α^(t) - S_cd1^(t) and α_2 = S_cd2^(t) - α^(t)      (Equation 3.28) 

           d. Update candidate: 

                NS_c^(t) = S_c^(t) + rand_1*α_1 + rand_2*α_2                  (Equation 3.29) 

           e. Enforce bounds on NS_c^(t) 

           f. If f(NS_c^(t)) < f(S_c^(t)) then: 

                  S_c^(t+1) = NS_c^(t) 

              Else: 

                  S_c^(t+1) = S_c^(t)                                          (Equation 3.30) 

       End For 

       Update x_best = candidate with minimum f(S_c^(t+1)) 

       With probability p_a, reinitialize the worst-performing candidates. 

5. End For 

6. Return optimized hyperparameters x_best. 

 

Phase 2: Signature-Based Classification Using IDNN 

7. Configure the IDNN using x_best: 

       - Input Layer: Load feature vectors F. 

       - For each hidden layer l: 

             Compute z^(l) = W^(l)*a^(l-1) + b^(l) 
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             Compute a^(l) = 1/(1+exp(-z^(l)))    (Equation 3.20) 

             Apply dropout and batch normalization. 

       - For each input feature i, compute fuzzy weight: wv_i = Z_Ai(x)   (Equation 3.23) 

             Compute adder A = Σ_i (wv_i * x_i)                                (Equation 3.24) 

       - Output Layer: y = P(Σ_i (w_i*x_i + b_i))                                (Equation 3.25) 

8. Train IDNN: 

       For each epoch: 

           - Perform forward propagation. 

           - Compute error: Er_j = 1/2*(to_j - op_j)^2                           (Equation 3.21) 

           - Apply L2 regularization: Er_regularized = Er_j + Σ_i (r/(2f))*||w_i||^2  (Equation 3.22) 

           - Update weights using backpropagation (e.g., Adam optimizer). 

9. For each test instance: 

       - Compute output y via forward propagation. 

       - Classify as attack if y ≥ threshold; else classify as benign. 

10. End. 

 

Output: Trained IDNN model and classification results. 

 

3.4 Modified Possibilistic Fuzzy C Means (MPFCM) clustering for Anomaly Detection using Anomaly Detection 

In this phase anomaly based intrusion detection is performed on the features which are classified as a normal traffic in the 

signature based intrusion detection phase. In this work anomaly based intrusion detection is performed using MPFCM 

extends the standard Possibilistic Fuzzy C-Means (PFCM) algorithm by introducing modifications aimed at improving 

robustness against noise and outliers. In anomaly detection, the goal is to identify data points that do not belong well to any 

cluster. MPFCM achieves this by combining fuzzy membership values with possibilistic typicality values and, optionally, 

adding regularization terms.   

In standard PFCM, each data point 𝑥𝑗 is assigned: 

• Fuzzy Membership 𝑢𝑖𝑗 for each cluster 𝑖. These values satisfy: 

∑ 𝑢𝑖𝑗 = 1 𝑐
𝑖=1    for each j 

• Typicality 𝑡𝑖𝑗 which measures the absolute degree of belonging of 𝑥𝑗 to cluster i. Anomalies typically exhibit low 

typicality across all clusters. 

The standard PFCM objective function is: 

𝐽𝑃𝐹𝐶𝑀 = ∑ ∑ [𝑢𝑖𝑗
𝑚‖𝑥𝑖 − 𝑣𝑖‖2 + 𝜂𝑖(1 − 𝑡𝑖𝑗)

𝑚
]𝑛

𝑗=1
𝑐
𝑖=1     (17) 

where: 

• c is the number of clusters, 

• n is the number of data points, 

• 𝑣𝑖  is the center of cluster i, 

• 𝑚 > 1 is the fuzzifier parameter, 

• 𝜂𝑖 is a scaling parameter for cluster i. 

MPFCM introduces the following modifications: 

• Robust Distance Measure: The standard Euclidean distance ‖𝑥𝑖 − 𝑣𝑖‖ can be replaced or weighted to lessen the effect 

of outliers. 

• Adaptive Scaling: The parameter 𝜂𝑖   is updated adaptively to reflect the spread (variance) within each cluster. 
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• Regularization Term: An additional term may be included to penalize clusters that become too close together or to 

prevent trivial clustering solutions. 

The modified objective function takes the form: 

𝐽𝑀𝑃𝐹𝐶𝑀 = ∑ ∑ [𝑢𝑖𝑗
𝑚𝑑2(𝑥𝑖 , 𝑣𝑖) + 𝜂𝑖(1 − 𝑡𝑖𝑗)

𝑚
] + 𝜆𝑅({𝑣𝑖})𝑛

𝑗=1
𝑐
𝑖=1     (18) 

where: 

• 𝑑(𝑥𝑖 , 𝑣𝑖) is a (possibly robust) distance measure, 

• 𝑅({𝑣𝑖} is a regularization term (for example, one that enforces separation between cluster centers), 

• 𝜆 is the regularization parameter. 

Membership Update: 

• The membership 𝑢𝑖𝑗 of data point 𝑥𝑗 in cluster i is updated as: 

𝑢𝑖𝑗 = (∑ (
𝑑2(𝑥𝑗,𝑣𝑖)

𝑑2(𝑥𝑗,𝑣𝑘)
)𝑐

𝑘=1

1

𝑚−1
)

−1

  (19) 

In MPFCM, the distance 𝑑(𝑥𝑗 , 𝑣𝑖) might incorporate a robust weighting function. 

Typicality Update 

The typicality 𝑡𝑖𝑗  indicates the absolute degree of belonging and is updated by: 

𝑡𝑖𝑗 =
1

1+(
𝑑2(𝑥𝑗,𝑣𝑖)

𝜂𝑖
)

1
𝑚−1

  (20) 

The scaling parameter 𝜂𝑖 is updated adaptively as: 

𝜂𝑖 =
∑ 𝑢𝑖𝑗

𝑚𝑑2(𝑥𝑗,𝑣𝑖)𝑛
𝑗=1

∑ 𝑢𝑖𝑗
𝑚𝑛

𝑗=1

   (21) 

This adjustment helps each cluster adapt to the data's spread. 

Cluster Center Update 

Cluster centers 𝑣𝑖 are computed using the weighted average: 

𝑣𝑖 =
∑ 𝑢𝑖𝑗

𝑚𝑥𝑗
𝑛
𝑗=1

∑ 𝑢𝑖𝑗
𝑚𝑛

𝑗=1

  (22) 

A common regularization term used to maintain cluster separation is: 

𝑅({𝑣𝑖}) = ∑ ∑
1

‖𝑣𝑖−𝑣𝑘‖2
𝑐
𝑘=1
𝑘≠𝑖

𝑐
𝑖=1   (23) 

The term is multiplied by 𝜆 to control its influence on the overall objective. 

After clustering, anomalies are detected by examining the typicality values. For each data point 𝑥𝑗, compute: 

𝑡𝑗
𝑚𝑎𝑥 =

𝑚𝑎𝑥
𝑖 = 1, . . , 𝑐{𝑡𝑖𝑗}   (24) 

If 𝑡𝑗
𝑚𝑎𝑥 is below a predetermined threshold 𝜏, then 𝑥𝑗 is flagged as an anomaly. This is because an anomalous point will not 

fit well (i.e., will have low typicality) into any cluster. 

Algorithm HybridIntrusionDetection_VANETs 

Input: 

    D         // Raw VANET dataset (e.g., CICIDS2017) 

    Params:   // Parameters for normalization, IWOA, COA, IDNN, MPFCM, etc. 

Output: 

    Final_Results // Intrusion detection results (signature-based and anomaly alerts) 

    BEGIN 
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  // Phase 1: Data Preprocessing using Z-Score Normalization 

  D_normalized = ZScoreNormalization(D) 

  [D_train, D_val, D_test] = SplitDataset(D_normalized) 

    // Phase 2: Feature Selection using Improved Whale Optimization Algorithm (IWOA) 

  FeatureSubset = IWOA_FeatureSelection(D_train, D_val) 

  // IWOA_FeatureSelection: 

  //   Initialize population of candidate feature subsets 

  //   For t = 1 to max_iter_IWOA: 

  //       For each candidate subset S in population: 

  //           Evaluate fitness f(S) (e.g., via classification error on D_val) 

  //       Update candidate positions using IWOA update rules (including Levy flights) 

  //       Update global best subset 

  //   End For 

  //   Return global best subset as FeatureSubset 

    SelectedFeatures = FeatureSubset 

    // Phase 3: Signature-Based Classification using IDNN with COA-Based Hyperparameter Optimization 

  BestHyperparams = COA_HyperparameterOptimization(D_train[SelectedFeatures], D_val[SelectedFeatures]) 

  // COA_HyperparameterOptimization: 

  //   Initialize population {S_c^(0)} of candidate hyperparameter vectors (for IDNN)  

  //   For t = 1 to max_iter_COA: 

  //       For each candidate S_c: 

  //           Configure IDNN with S_c and train on D_train[SelectedFeatures] 

  //           Evaluate fitness f(S_c) (e.g., validation error on D_val[SelectedFeatures]) 

  //           Update candidate: 

  //               S_c_new = S_c + rand_1*(S_social - S_c) + rand_2*(S_best - S_c) 

  //               Enforce bounds; if f(S_c_new) < f(S_c), then S_c = S_c_new 

  //       End For 

  //       Update global best S_best among all candidates 

  //       With probability p_a, reinitialize worst candidates 

  //   End For 

  //   Return S_best as BestHyperparams 

    // Train final IDNN model using BestHyperparams 

  IDNN_model = TrainIDNN(D_train[SelectedFeatures], BestHyperparams) 

  SignatureResults = IDNN_model.Predict(D_test[SelectedFeatures]) 

  // For each test instance, output probability and label it as "attack" if above threshold; 

  // otherwise, label it "normal/inconclusive". 

    // Phase 4: Anomaly Detection using Modified Possibilistic Fuzzy C-Means (MPFCM) 

  NormalData = ExtractNormalInstances(D_test[SelectedFeatures], SignatureResults) 

  // NormalData contains samples labeled as normal/inconclusive by the IDNN. 

    MPFCM_Result = MPFCM_Clustering(NormalData) 

  // MPFCM_Clustering: 
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  //   Initialize cluster centers {v_i} randomly from NormalData for i = 1 to c 

  //   For each data point x_j in NormalData and cluster i: 

  //         Initialize membership u_ij (e.g., uniformly) and set typicality t_ij = 1 

  //   Set iter = 0 and J_old = ∞ 

  //   While (iter < max_iter_MPFCM) and (|J_new - J_old| > ε) do: 

  //         For each cluster i: 

  //             Update cluster center: 

  //                 v_i = (Σ_j u_ij^m * x_j) / (Σ_j u_ij^m) 

  //             Update scaling parameter: 

  //                 η_i = (Σ_j u_ij^m * d^2(x_j, v_i)) / (Σ_j u_ij^m) 

  //         For each x_j and cluster i: 

  //             Update membership: 

  //                 u_ij = ( Σ_{k=1}^{c} (d^2(x_j, v_i)/d^2(x_j, v_k))^(1/(m-1)) )^(-1) 

  //             Update typicality: 

  //                 t_ij = 1 / ( 1 + (d^2(x_j, v_i)/η_i)^(1/(m-1)) ) 

  //         Compute objective function: 

  //             J_new = Σ_i Σ_j [ u_ij^m * d^2(x_j, v_i) + η_i*(1 - t_ij)^m ] + λ*R({v_i}) 

  //         If |J_new - J_old| < ε, break; else, set J_old = J_new and iter = iter + 1 

  //   End While 

  //   For each data point x_j: 

  //         t_j_max = max_{i} {t_ij} 

  //         If t_j_max < anomaly_threshold τ, flag x_j as anomaly 

  //   Return MPFCM_Result containing cluster centers, membership & typicality matrices, and anomaly flags 

    AnomalyFlags = MPFCM_Result.AnomalyFlags 

    // Combine classification and anomaly detection results 

  Final_Results = CombineResults(SignatureResults, AnomalyFlags) 

    // Step 5: Evaluate Performance (accuracy, precision, recall, f-measure) 

  Metrics = EvaluateMetrics(Final_Results, D_test.Labels) 

    Output Final_Results, Metrics 

END 

4. EXPERIMENTAL RESULTS 

This section discusses the experimental results of the proposed model in detail. Proposed model is implemented in mat lab. 

Proposed IFCM is compared with the existing KNN and W-KMC models interms of preicison, accuracy, recall and f-

measure. In this work, use the most recent dataset CICIDS2017 that contains the most up to date network attack scenarios, 

including the common type of attacks in VANET (like DoS Slowloris attacks and DDoS attacks). CICIDS2017 dataset covers 

the most cutting-edge frequent attack scenarios based on simulation of seven attack families, namely: brute force attack, 

heart-bleed attack, botnet, DoS attack, DDoS attack, web attack, and infiltration attack. A total number of 80 features were 

extracted based on the information present in the pcap file. The total number of records used in this experiment is 273 097. 

The dataset is divided into two parts using train-test_split, 80% for training and 20% for testing the model.  
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Table 1.Shows the simulation parameters 

 

Below are the standard performance metric formulas (Accuracy, Precision, Recall, and F-measure) along with their typical 

interpretations in the context of intrusion detection systems (IDS). In this context: 

• True Positive (TP): The system correctly classifies an intrusion as an intrusion. 

• True Negative (TN): The system correctly classifies normal traffic (non-intrusion) as normal. 

• False Positive (FP): The system incorrectly classifies normal traffic (non-intrusion) as intrusion. 

• False Negative (FN): The system fails to identify an intrusion (i.e., it is an intrusion but classified as 

normal). 

Precision: Precision is defined as the instances predicted as attacks, how many are actually attacks. Precision is crucial in 

assessing false alarms. A high precision means fewer false alarms, so if the system classifies a traffic as attack, it is likely 

correct. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
   (25) 

F-measure: F-measure is the harmonic mean of precision and recall, balancing both false positives and false negatives. 

F − measure = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
    (26) 

Recall: It is defined as Of the actual attacks, how many are caught by the system?”. Recall is crucial to ensure no attack goes 

undetected. A high recall means fewer missed attacks (false negatives). 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
   (27) 

Accuracy: Accuracy measures the proportion of total instances (both normal and attack) that are correctly classified by the 

IDS. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
    (28) 

It gives a quick overview of the system’s overall correctness. 

Table 1 compares the performance of KNN,  W-KMC , IFCM and IDNN_COA with MPFCM across multiple performance 

metrics commonly used in classification tasks: Accuracy, Precision, Recall, F-Measure, and Error.  

Table 1: The numerical outcome of suggested and current approaches depends on various performance metrics 

Metrics  KNN W-KMC IFCM IDNN_COA 

with 

MPFCM 

Accuracy  82 89 96 97.5 

Precision 74 82 90 92 

Recall 73.5 84.5 88 91 

F-Measure 76 81 89 92 
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Figure 3: Accuracy Comparison Results 

 

Figure 3 shows the accuracy performance metric comparison between existing KNN, W-KMC and IFCM methods and 

proposed IDNN_COA with MPFCM for intrusion detection. In the above figure X-axis represents the methods and the y-

axis represents the accuracy results. This work using improved support vector machine and it increases the accuracy results. 

From the results it is concluded that the proposed IDNN_COA with MPFCM model produces the higher accuracy results of 

97.5% while the existing KNN, W-KMC and IFCM models produces only 82%, 89% and 96% accordingly. 

 

Figure 4: Precision Comparison Results 

 

Figure 4 shows the precision performance metric comparison between existing KNN, W-KMC and IFCM methods and 
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proposed IDNN_COA with MPFCM for intrusion detection. In the above figure X-axis represents the methods and the y-

axis represents the accuracy results. From the results it is concluded that the proposed IDNN_COA with MPFCM model 

produces the higher precision results of 92% while the existing KNN, W-KMC and IFCM models produces only 82%, 89% 

and 90% accordingly. 

 

Figure 5: Recall Comparison Results 

 

Figure 5 shows the recall performance metric comparison between existing KNN, W-KMC and IFCM methods and proposed 

IDNN_COA with MPFCM for intrusion detection. In the above figure X-axis represents the methods and the y-axis 

represents the recall results. From the results it is concluded that the proposed IDNN_COA with MPFCM model produces 

the higher recall results of 91% while the existing KNN, W-KMC and IFCM models produces only 73.5%, 84.5% and 88% 

accordingly. 

 

Figure 6: F-Measure Comparison Results 
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Figure 5 shows the F-Measure performance metric comparison between existing KNN, W-KMC and IFCM methods and 

proposed IDNN_COA with MPFCM for intrusion detection. In the above figure X-axis represents the methods and the y-

axis represents the F-Measure results. From the results s concluded that the proposed IDNN_COA with MPFCM model 

produces the higher F-Measure results of 92% while the existing KNN, W-KMC and IFCM models produces only 76%, 81% 

and 89% accordingly. 

5. CONCLUSION 

Vehicular Ad Hoc Networks (VANETs) operate in extremely dynamic and high-velocity environments, which expose them 

to a broad spectrum of intrusions and malicious attacks. This paper has presented a hybrid Intrusion Detection System (IDS) 

framework that leverages a combination of advanced techniques tailored specifically for VANET traffic. By first applying 

Z-Score Normalization, the framework ensures that all features share a consistent scale, significantly improving model 

convergence and mitigating the influence of outliers. Feature selection is efficiently achieved through an Improved Whale 

Optimization Algorithm (IWOA), which mimics whale-hunting strategies to robustly explore the search space and select the 

most discriminative feature subset under the rapidly changing conditions of VANETs. Subsequently, an Improved Deep 

Neural Network (IDNN) is employed as a signature-based classifier. The enhanced architecture of the IDNN, incorporating 

advanced optimization and regularization techniques, facilitates the rapid and accurate identification of known intrusions. 

To address the challenges posed by novel or zero-day attacks, data that is classified as normal or inconclusive by the IDNN 

is further analyzed using a Modified Possibilistic Fuzzy C-Means (MPFCM) clustering module. This anomaly detection 

phase leverages fuzzy logic to isolate threats that deviate from established vehicle communication patterns. Comprehensive 

evaluations using accuracy, precision, recall, and f-measure demonstrate that the proposed framework achieves high 

detection rates and low false alarm rates while maintaining robust adaptability to evolving attack behaviors. Overall, the 

integration of these state-of-the-art techniques makes the proposed hybrid IDS a promising approach for securing next-

generation intelligent transportation systems. Future research will explore further refinements in each module and validate 

the system’s performance in real-world VANET environments. 
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