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ABSTRACT 

The investigation of velocity profiles and heat transfer properties in a hydromagnetic Boussinesq-Stokes suspension (BSS) 

flow over an exponentially stretching impermeable sheet is presented in this paper. Partial differential equations are the 

fundamental formulas that control flow and heat transfer. A suitable local similarity transformation has been applied to 

convert the equations into nonlinear ordinary differential equations. The differential transform method (DTM) is used to 

obtain the series solutions of the transformed equations with guaranteed convergence. On velocity profiles and heat transfer, 

the influence of the Chandrasekhar number, couple stress parameter, Prandtl number, and Eckert number are examined. The 

conclusions are explained graphically. 
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1. INTRODUCTION 

There are numerous uses for boundary layer flow on a continually stretched sheet, wire drawing, including hot rolling, the 

manufacture of glass fibre, and the making of paper. Numerous papers have been published on different elements of flow 

characteristics in boundary layer flow across a stretching boundary in Newtonian fluids since Crane's groundbreaking 

theoretical work [1970]. The majority of these studies focus on boundary layer flows over stretching surfaces, where it is 

considered that the surface's velocity stretches in quadratic proportion to the distance from the static origin, as developed by 

Kumaran and Ramanaiah [1996], or in linear proportion, as developed by Crane [1970]. 

It is well known that the liquids around the stretching sheet help the sheet cool at a suitable rate, and that this has a significant 

impact on the properties of the finished product. Siddheshwar and Mahabaleshwar's paper [2005] provide a good explanation 

on this work. In practical terms, stretching cannot be expressed as an even or linear quadratic function of the axial coordinate 

except the procedure is carried out exactly. 

Regarding this, it is necessary to investigate the flow produced by exponential stretching in the axial coordinate. For the first 

instance, the mass and heat transfer in a boundary layer flow caused by an exponentially stretching continuous surface was 

investigated by Magyari and Keller (1999). The exponential stretching sheet problem with suction was examined by 

Elbashbeshy (2001).  

Numerous studies on the exponentially stretching sheet problem have surfaced, taking into account different [see Partha et 

al. (2005), Khan and Sanjayanand (2005), Al-Odat et al (2006), Sanjayanand and Khan (2006), Chen et al. (2006), Sajid and 

Hayat (2008), Rashidi and Keimanesh (2010), Ishak (2011), Haas and Oliveski (2011), Siddheshwar et al (2014)]. 

Most of the aforementioned works either employ a challenging homotopy analysis method or a first order solution. For the 

previously stated reasons, we were opted to investigate the stretching sheet problem including a BSS in 

magnetohydrodynamics. 

Driven by the studies mentioned above and potential uses, we plan to examine heat transfer and momentum in a BSS flow 

across an exponentially expanding sheet. To get a series solution, the DTM is applied.  

The solution for temperature is obtained for non-isothermal boundary conditions of two the kinds   (i) prescribed exponential 

order boundary heat flux (PEHF) and (ii) prescribed exponential order surface temperature (PEST). 

 



L Venkata Reddy, N P Chandrashekara, Roopa G 
 

pg. 932 

Journal of Neonatal Surgery | Year: 2025 | Volume: 14 | Issue: 14s 

 

2. NOMENCLATURE 

C couple stress parameter 

E         Eckert number   (
𝛼2𝑙2

𝐴𝐶𝑝
) 

Cp specific heat at constant pressure 

F  dimensionless stream function  

Pr        Prandtl number 

Es        scaled Eckert number  (
𝐸

𝐷
√

𝛼

𝑣
) 

H0       uniform magnetic field 

Q        Chandrasekhar number  

L        reference length   

Y        dimensionless vertical coordinate 

Re  Reynold’s number T 

T       temperature of liquid 

Tw         wall (sheet) temperature  

T∞         liquid temperature far away from the sheet  

U      dimensionless horizontal velocity  

u       dimensional horizontal velocity  

U0    characteristic velocity 

X      dimensionless horizontal coordinate 

v      dimensional vertical velocity 

θ      non-dimensional temperature  

V      dimensionless vertical velocity  

 

 

Figure 1: Schematic diagram of exponential stretching sheet. 

 

3. MATHEMATICAL FORMULATION 

We investigate the steady 2D flow over an exponentially stretching sheet of an electrically conducting, incompressible fluid 

of BSS. It is assumed that the boundary sheet is travelling axially at an exponentially fast rate (Figure 1). It is also assumed 

that the sheet is heater than the surrounding liquid, i.e.,Tw(x) > T∞. The governing boundary layer equations of continuity, 

heat transfer and momentum in a flow of BSS over an exponentially stretching sheet problem are as follow   
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𝜕𝑢

 𝜕𝑥
+

𝜕𝑣

𝜕𝑦
=   0 ,                                               (3.1) 

𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
=   𝜐

𝜕2𝑢

𝜕𝑦2 − (
𝜇𝑚

2  𝜎𝐻0
2

𝜌
) 𝑢 − 𝜐′

𝜕4𝑢

𝜕𝑦4            (3.2) 

𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
=

𝑘

𝜌𝐶𝑝

𝜕2𝑇

𝜕𝑦2 +
𝜇

𝜌𝐶𝑝
(

𝜕𝑢

𝜕𝑦
)

2

                 (3.3) 

where u and  v be the fluid velocity components in 𝑥 and 𝑦 directions respectively, 𝜇𝑚is the magnetic permeability, 𝜐 is the 

kinematics coefficient of viscosity, σ be the electrical conductivity, ρ is the density of the fluid, υ′ is couple stress viscosity, 

𝑘 be the fluid thermal conductivity and µ is the dynamic viscosity. 

We employ the below mentioned boundary conditions on temperature and velocity: 

u = Uw(x) = U0exp (
x

l
) ,

∂2u

∂y2
= 0, v = 0 

{

T = Tw = T∞ + (Tw − T∞)e
x

l  in     PEST

−k
∂T

∂y
= T1e

3x

2l                            in      PEHF

  at       y = 0, 

                                       u → 0,  
∂2u

∂y2 → 0,      T → T∞          as       y → ∞,          (3.4) 

      

Where Uw be the stretching velocity of the boundary and l be the reference length. 

The non−dimensionalization and transformation are used and are given below: 

(X , Y)  = (
x

l
,

y

l
) ,     (U , V)  =  (

u

√U0v
  ,

v

√U0v
)              (3. 5) 

Using the transformation (3.5), the equations (3.1) - (3.3) becomes to  

 

∂U

∂X
+

∂V

∂Y
= 0,                                                       (3.6) 

U
∂U

∂X
+ V

∂U

∂Y
 =  

∂2U

∂Y2 − QU − C
∂4U

∂Y4 ,                      (3.7) 

U
∂T

∂X
+ V

∂T

∂Y
 =

1

Pr

∂2T

∂Y2 +
vc

Cp
(

∂U

∂Y
)

2

,                      (3.8) 

where Q =
σ μm

2 H0
2

ρ
, C =

γ′

l2γ
 and Pr =

μ Cp

k
 .  

Using (3.5), the boundary conditions (3.4) reduce to 

U = √
U0

γ
eX,  

∂2U

∂Y2 = 0, V = 0 

{
𝑇 = 𝑇𝑤 = 𝑇∞ + (Tw − T∞)eX,   in    PEST

∂T

∂Y
=

T1l

k
e

3

2
X,                                     𝑖𝑛   𝑃𝐸𝐻𝐹

  at  𝑌 = 0 

                                                          U → 0,  
∂2U

∂Y2 → 0,     T → T∞             as Y → ∞.                                      (3.9) 

 

The stream function ψ(X , Y) that satisfies the continuity equation (3.6), given by 

U =
∂ψ

∂Y
,          V = −

∂ψ

∂X
         (3.10) 

into the equations (3.7) and (3.8), we get 

C
∂5ψ

∂Y5 −
∂3ψ

∂Y3 +
∂ψ

∂Y

∂2ψ

∂X ∂Y
−

∂ψ

∂X

∂2ψ

∂Y2 + Q
∂ψ

∂Y
= 0,          (3.11) 

                      

             
∂ψ

∂Y

∂T

∂X
−

∂ψ

∂X

∂T

∂Y
=

1

Pr

∂2T

∂Y2 +
μγ

pCpl2 (
∂2ψ

∂Y2 )
2

.                                                                                                 (3.12) 
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By means of the boundary conditions, ψ(X , Y) can be found from the equation (3.9) : 

∂ψ

∂Y
= √

U0

γ
eX,     

∂ψ

∂X
= 0,    

∂3ψ

∂Y3 = 0, 

{
𝑇 = 𝑇𝑤 = 𝑇∞ + (Tw − T∞)eX,    in    PEST
∂T

∂Y
=

T1l

k
e

3

2
X,                                   in    𝑃𝐸𝐻𝐹

   at   𝑌 = 0 

∂ψ

∂Y
→ 0,     

∂3ψ

∂Y3 → 0,     T → T∞      as     Y → ∞                                             (3.13) 

       

We present a similarity solution for the momentum equation (3.11) in the subsequent section. 

4. MOMENTUM EQUATION SOLUTION 

The following similarity transformation converts the partial differential equation (2.11), into an ordinary differential 

equation: 

𝜓( 𝑋 .  𝑌) = √2𝑅𝑒𝑓(𝜂) exp (
𝑋

2
) ,         (4.1) 

here η = [Y√
Re

2
exp (

X

2
)] be similarity variable.  

Substituting equation (4.1) into the equations (3.11) and (3.13), we got the nonlinear boundary value problem presented 

below: 

𝐶𝑓𝜂𝜂𝜂𝜂𝜂 − 𝑓𝜂𝜂𝜂 + 2 𝑓𝜂
2 − 𝑓𝑓𝜂𝜂 + 2𝑄𝑓𝜂 = 0,              (4.2) 

           𝑓 = 0  ,    𝑓𝜂 = 1,   𝑓𝜂𝜂𝜂 = 0       at    𝜂 = 0,     

𝑓𝜂 → 0,           𝑓𝜂𝜂𝜂 → 0    at        𝜂 = ∞,                                                                                                       (4.3) 

 

and additionally, to solve the fifth-order differential equation (4.2), we made the following assumptions: 

𝑓𝜂𝜂 = 𝛼  , 𝑓𝜂𝜂𝜂𝜂 = 𝛽   at     𝜂 = 0 ,          (4.4) 

where α and β are unknown initial values. So as to use the DTM to find the solution of the equation (4.2), z used as a new 

independent variable and is defined as 𝑧 = 1 − 𝑒−𝜂. 

The non - linear equation (4.2) now becomes 

𝐶𝑓′′′′′ − 10𝐶𝑓′′′′ − (1 − 25𝐶)𝑓′′′ − (15𝐶 − 3)𝑓′′ − (1 − 𝐶 − 2𝑄)𝑓′ − 𝐶(4𝑧 − 6𝑧2 + 4𝑧3 − 𝑧4)𝑓′′′′′ + 10𝐶(3𝑧 −
3𝑧2 + 4𝑧3)𝑓′′′′ + 𝑓𝑓′ + 𝑧𝑓𝑓′′ +  (1 − 25𝐶)(2𝑧 − 𝑧2)𝑓′′′ − (3 − 15𝐶)𝑧𝑓′′ − 𝑓𝑓′′ + 2(𝑓′)2 − 2𝑧(𝑓′)2 = 0 ,     
     (4.5) 

where prime represents the differentiation with respect to z. From equations (4.3) and (4.4), in terms of z, the boundary 

conditions for solving equation (4.5) are obtained as: 

    𝑓 = 0,    f ′ = 1, f ′′ = α + 1,   f ′′′ = 3α + 2, 

f ′′′′ = 6 + 11α + β         at      z = 0, 

And 

                                                                 f ′′′ = 0          f ′ = 0         at       z = 1.                                            (4.6) 

     

The differential transform of  f, Dk{f(z)} is given by the following equation: 

𝐹[𝑘]  =  𝐷𝑘{𝑓(𝑧)}  = [
1

𝑘!

𝑑𝑘𝑓(𝑧)

𝑑𝑧𝑘 ]
 𝑧=0

.        (4.7) 

Applying differential transform on the equation (4.5), we obtain the recurrence relation. 

On employing differential transform on boundary conditions (4.6) at 𝑧 = 0, we obtain 

𝐹[0] = 0,     𝐹[1] =  1, 𝐹[2] = (
𝛼 + 1

2
), 
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𝐹[3] =  (
𝛼

2
+

1

3
)  ,   𝐹[4] =  (

11𝛼

24
+

𝛽

24
+

1

4
).                                        (4.8) 

𝐹[5], 𝐹[6], 𝐹[7] ,... are estimated from the recurrence relation and boundary conditions by using Mathematica. Taking 

inverse differential transform on (4.7), we get a truncated series solution for 𝑓(𝑧) in the form: 

𝑓(𝑧) = ∑ 𝐹[𝑘]𝑧𝑘  ⇒ 𝑓(𝜂) = ∑ 𝐹[𝑘](1 − 𝑒−𝜂)𝑘∞
𝑘=0

∞
𝑘=0                          (4.9) 

Where α and β are obtained by means of unused conditions 𝑓′(1) = 0 and 𝑓′′′(1) = 0  in the equation (4.6) for fixed value 

of 𝑄 and 𝐶 (Table 1). The values of Q and C determine how well the aforementioned series converges. 

Table 1: α and β values for different values of Q and C. 

Q C α β 

 0.10 -0.9953 4.2800 

0.0 0.15 -0.9544 3.3200 

 0.20 -0.9254 2.7827 

 0.30 -0.8866 2.1696 

 0.10 -1.1441 6.2463 

0.5 0.15 -1.0817 4.8198 

 0.20 -1.0030 3.4597 

 0.30 -0.9763 3.0718 

 0.10 -1.2733 8.1112 

1.0 0.15 -1.1944 6.2368 

 0.20 -1.1371 5.1600 

 0.30 -1.0584 3.9354 

 0.10 -1.4877 11.6072 

2.0 0.15 -1.3848 8.8913 

 0.20 -1.3093 7.3352 

 0.30 -1.2035 5.5649 

 

5. HEAT TRANSFER ANALYSIS 

So as to solve the equation (3.12), we took non−isothermal boundary conditions, that PEST and PEHF. 

5.1. PEST  

The non-dimensional temperature 𝜃(𝜂) is given as: 

𝜃(𝜂)  =  
𝑇−𝑇∞

𝑇𝑤−𝑇∞
                                           (5.1) 

Where T −T∞ = θ(η)eX   and  Tw −T∞ = eX. 

Using the equation (5.1) in the equation (3.12), we got the non-linear ordinary differential equation for θ(η) as given below: 

𝜃𝜂𝜂 + 𝑃𝑟𝑓𝜃𝜂 − 2𝑃𝑟𝑓𝜂𝜃 + 𝑃𝑟𝐸(𝑓𝜂𝜂)
2

= 0    (5.2) 

Equations (3.13) and (5.1) provide the boundary conditions for solving equation (5.2), which take the following form: 

θ = 0     as    𝜂 → ∞ and  𝜃 = 1  at 𝜂 =  0,                                 (5.3) 

and additionally, so as to solve the second order differential equation (5.2), we made the following assumption: 

𝜃′ = 𝛾      at  𝜂 =  0,                                                                           (5.4) 

where γ is unknown initial value. In order to use the DTM for solving (5.2), we use  
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𝑧 = 1 − 𝑒−𝜂 

z = 1 − e−η ⇒
dz

dη
= e−η = 1 − z , 

  θ η
=

dθ

dz

dz

dη
 = (1 − z)θ′,                           (5.5) 

θηη  =  (1 − z)2θ′′ −  (1 − z)θ′ , 

where prime characterises the differentiation with respect to z. By means of the equation (5.5), the nonlinear equation (5.2) 

now becomes 

(1 − 𝑧)𝜃′′ − 𝜃′ + 𝑃𝑟 𝑓 𝜃′ − 2𝑃𝑟 𝑓′𝜃 + 𝑃𝑟𝐸(1 − 𝑧)((1 − 𝑧)𝑓′′ − 𝑓′)
2

= 0                       (5.6) 

From equations (5.3) and (5.4) in terms of z, the boundary conditions for solving equation (5.6) are found as  

θ = 1,    θ′ = γ   at  z = 0  and  θ = 0   at   z = 1                                                                                                      (5.7) 

The differential transforms of  𝑓 and  𝜃 are denoted by F[k] and G[k]. Applying the differential transform on the equation 

(5.6), we obtain the recurrence relation: 

On employing the differential transform to the conditions (5.7) at  𝑧 = 0, we get 

𝐺[0] = 1 ,     𝐺[1] = 𝛾                                (5.8) 

𝐺[2], 𝐺[3], 𝐺[4] …are computed from the recurrence relation and boundary conditions with 𝐹[0], 𝐹[1], 𝐹[3] … ….by using 

Mathematica. By inverse differential transform, we get a truncated series solution for θ(z) in the form: 

𝜃(𝑧) = ∑ 𝐺[𝑘]𝑧𝑘∞
𝑘=0 ⇒ 𝜃(𝜂) = ∑ 𝐺[𝑘](1 − 𝑒−𝜂)𝑘∞

𝑘=0  (5.9) 

where  𝛾 is determined using unused condition  𝜃(1) = 0 in the equation (5.7) for fixed value of the parameters 𝑄, 𝐶, 𝑃𝑟 

and 𝐸 (Table 2). The aforementioned series' convergence is depending upon Q, C, Pr, and E. 

5.2. PEHF 

Now the non-dimensional temperature  𝜙(𝜂) is defined as 

ϕ(η)  =  
T − T∞

Tw − T∞

  , 

where 

T − T∞ =  
T1l

k
√

2

Re

e
3X
2  ϕ(η)    and 

Tw − T∞ =
T1l

k
√

2

Re
e

3X

2                                (5.10) 

Using the equations (3.13) and (5.10) in the equation (3.12), we found the non-linear ordinary differential equation for 

ϕ(η) in below form: 

𝜙𝜂𝜂 + 𝑃𝑟𝑓𝜙𝜂 − 3𝑃𝑟𝑓𝜂𝜙 + 𝑃𝑟𝐸(𝑓𝜂𝜂)
2

= 0                            (5.11) 

Equations (3.13) and (5.10) yield the following boundary conditions for solving equation (5.11): 

ϕ = −1, at  η = 0  and  ϕ = 0, as  𝜂 → ∞                              (5.12) 

and additionally, so as to solve the second order differential equation (5.11), we made the following assumption: 

ϕ = λ    at    η = 0                   (5.13) 

where λ is unknown initial value. So as to use the DTM for solving the equation (5.11), we use 𝑧 = 1 − 𝑒−𝜂. 

z =  1 − e−η ⇒
dz

dη
 = e−η  =  1 − z, 

ϕη  =
dϕ

dz

dz

dη
 =  (1 − z)ϕ′ ,                                                                                                                                          

(5.14) 

ϕηη  =  (1 − z)2ϕ′′ −  (1 − z)ϕ′ 
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where prime denotes the differentiation with respect to z. By means of the equation (5.14), the nonlinear equation (5.11) now 

becomes 

(1 − 𝑧)𝜙′′ − 𝜙′ + Pr 𝑓 𝜙′ − 3 Pr 𝑓′𝜙 + 𝑃𝑟𝐸(1 − 𝑧) ((1 − 𝑧)𝑓′′ − 𝑓′)
2

= 0 .                                           (5.15) 

Equations (5.12) and (5.13) are used to determine the boundary conditions for solving equation (5.15) in terms of z: 

ϕ = λ,   ϕ′ = −1  at   z = 0  and  ϕ = 0, at  z = 1.                                  (5.16) 

The equation (5.15) is in analogy with that of PEST instance (equation (5.6) but vary only by  𝜃 and 𝐸, i.e., the dependent 

variable 𝜃 and the Eckert number 𝐸 in PEST must be replaced by 𝜙 and the scaled Eckert number 𝐸𝑠 in PEHF. Applying 

the differential transform on the equations (5.15) and (5.16), we get the recurrence relations as described in PEST case and 

conditions Φ[0] = λ, and Φ[1] = −1. 𝐿[2].   𝐿[3],   𝐿[4] … … ….are calculated using the above recurrence relations and along 

with conditions, where L[k] is the differential transform of ϕ. By the inverse differential transform, we get a truncated series 

solution for Φ(𝑧) in the form: 

ϕ(𝑧) = ∑ 𝐿[𝑘]𝑧𝑘∞
𝑘=0 ⇒ ϕ(𝜂) = ∑ 𝐿[𝑘](1 − 𝑒−𝜂)𝑘∞

𝑘=0                                                                                                 

(5.17) 

where λ is determined using unused condition  ϕ(1) = 0 in the equation (5.16) for fixed value of 𝑄, 𝐶, 𝑃𝑟  and 𝐸𝑠 (Table 

2). The values of Q, C, Pr, and Es determine whether the mentioned series will converge. Having discussed about the 

stretching sheet problems in BSS, we now present the results found in the study. 

Table 2: Values of γ in PEST and λ in PEHF for Q, C, Pr and E(Es) values. 

Q C Pr E(Es) PEST PEHF 

    Θ’(0) = γ Φ(0) = λ 

  1.0  -0.407177 1.15493 

  1.5  -0.448022 1.04401 

1.0 0.5 2.0 1.0 -0.480362 0.983118 

  2.5  -0.503915 0.944525 

  3.0  -0.966957 0.917971 

   1.0 -1.49716 0.627298 

   1.5 -1.00800 0.772635 

1.0 0.5 3.0 2.0 -0.518838 0.917971 

   2.5 -0.029676 1.06331 

   3.0 0.459486 1.20864 

1.0    -0.518838 0.917971 

1.5    -0.234599 1.00423 

2.0 0.5 3.0 2.0 0.0404596 1.08992 

2.5    0.305136 1.17446 

3.0    0.558723 1.25740 

 0.1   0.554201 1.27028 

1.0 0.3 3.0 2.0 -0.160968 1.02970 

 0.5   -0.518838 0.917971 

 

6. RESULTS AND DISCUSSION 

In the current study, we studied the heat transfer and hydromagnetic boundary layer flow characteristics of a BSS over an 

exponentially stretching impermeable sheet. The equations were transformed into non-linear ordinary differential equations 
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by applying the proper local similarity transformation. The flow phenomena are described by nonlinear partial differential 

equations. The solutions of transformed equations are obtained by means of DTM. The attention has been focused on the 

variations of 𝑄, 𝐶, 𝑃𝑟 and 𝐸(𝐸𝑠) in both PEST and PEHF. The results of the work are showed in the form of graphs. 

 

Figure 2: Plots of f(η) and f0(η) versus η for C = 0.5 and different values of Q. 

 

 

Figure 3: Plots of f(η) and f0(η) versus η for Q = 1.0 and different values of C. 

 

In Figure (2) and (3), the graphs of 𝑓(𝜂) and 𝑓′(𝜂) versus 𝜂 are plotted for chosen values of the 𝑄 and  𝐶. 

Any motion in the liquid is opposed by the magnetic field's effect. Based on this reason, we find from Figure (2) that the 

effect of increasing 𝑄 is to decrease the velocity profiles through the boundary layer. The applied magnetic field causes the 

velocity boundary layer to contract transversely, and this causes the Lorentz force to significantly oppose motion. 

In Figure (3), the plots of 𝑓(𝜂) and 𝑓′(𝜂) versus 𝜂 are plotted for chosen values of 𝐶 with 𝑄=1.0. It has been found that 

increasing C has the effect of increasing the velocity through the boundary layer. The reason is that the suspended particle 

in the BSS rise in the carrier liquid velocity and henceforth to increase the flow. 
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Figure 4: Plots of θ(η) and Φ(η) in PEST and PEHF cases for different values of Pr. 

  

Figure 5: Plots of θ(η) and Φ(η) in PEST and PEHF cases for different values E(Es). 

 

 

Figure 6: Plots of θ(η) and Φ(η) in PEST and PEHF cases for different values of Q. 

 

Figure 7: Plots of θ(η) and Φ(η) in PEST and PEHF cases for different values of C of E(Es). 
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In Figure (4) - (7), The plots of 𝜃(𝜂) and  𝜙(𝜂) verses 𝜂 are drawn for chosen values of 𝑃𝑟, 𝐸(𝐸𝑠), 𝑄, and 𝐶 in both PEST 

and PEHF cases. It is found that in PEST cases the wall temperature distribution is at unity, while it may be unity or other 

than unity in the PEHF cases on the wall. 

Figure (4) elucidates the influence of 𝑃𝑟 on temperature profile  𝜃(𝜂) and  𝜙(𝜂) in PEST and PEHF cases. From these graphs 

it is observed that the increasing value of 𝑃𝑟 is decreases the temperature. This is due the large values of 𝑃𝑟 result in thinning 

the thermal boundary layer. Figure (5) shows the effect of Eckert number 𝐸(𝐸𝑠) on temperature profiles in PEHF and PEST 

cases. The graphs reveal the effect of increasing 𝐸 enhances the temperature in the flow region. This is because of the fact 

that the heat energy stored in the considered liquid because of frictional heating. Figure (6) illustrates how raising Q causes 

the temperature to rise. The graphs in equation (7) show that a rise in C values causes the temperature to decrease. We now 

present the conclusion of the above study.  

7. CONCLUSION 

Some of the important findings of this chapter pertaining to exponentially stretching sheet are listed below: 

1. The magnetic field has the effect of giving the electrically conducting liquid stiffness. 

2. Thermal boundary layer thickness increases and momentum boundary layer thickness decreases with increasing values 

of Chandrasekhar number Q. 

3. Thermal boundary layer thickness decreases and momentum boundary layer thickness increases with an increase in 

couple stress parameter C.  

4. The temperature is going to decrease as the Prandtl number (Pr) increases. 

The increase in the Eckert number E(Es) is to increase the temperature. 
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