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ABSTRACT

The investigation of velocity profiles and heat transfer properties in a hydromagnetic Boussinesq-Stokes suspension (BSS)
flow over an exponentially stretching impermeable sheet is presented in this paper. Partial differential equations are the
fundamental formulas that control flow and heat transfer. A suitable local similarity transformation has been applied to
convert the equations into nonlinear ordinary differential equations. The differential transform method (DTM) is used to
obtain the series solutions of the transformed equations with guaranteed convergence. On velocity profiles and heat transfer,
the influence of the Chandrasekhar number, couple stress parameter, Prandtl number, and Eckert number are examined. The
conclusions are explained graphically.

Keywords: MHD, Chandrasekhar Number, Differential Transform Method, Couple stress, Prandtl number, Eckert number.

1. INTRODUCTION

There are numerous uses for boundary layer flow on a continually stretched sheet, wire drawing, including hot rolling, the
manufacture of glass fibre, and the making of paper. Numerous papers have been published on different elements of flow
characteristics in boundary layer flow across a stretching boundary in Newtonian fluids since Crane's groundbreaking
theoretical work [1970]. The majority of these studies focus on boundary layer flows over stretching surfaces, where it is
considered that the surface's velocity stretches in quadratic proportion to the distance from the static origin, as developed by
Kumaran and Ramanaiah [1996], or in linear proportion, as developed by Crane [1970].

It is well known that the liquids around the stretching sheet help the sheet cool at a suitable rate, and that this has a significant
impact on the properties of the finished product. Siddheshwar and Mahabaleshwar's paper [2005] provide a good explanation
on this work. In practical terms, stretching cannot be expressed as an even or linear quadratic function of the axial coordinate
except the procedure is carried out exactly.

Regarding this, it is necessary to investigate the flow produced by exponential stretching in the axial coordinate. For the first
instance, the mass and heat transfer in a boundary layer flow caused by an exponentially stretching continuous surface was
investigated by Magyari and Keller (1999). The exponential stretching sheet problem with suction was examined by
Elbashbeshy (2001).

Numerous studies on the exponentially stretching sheet problem have surfaced, taking into account different [see Partha et
al. (2005), Khan and Sanjayanand (2005), Al-Odat et al (2006), Sanjayanand and Khan (2006), Chen et al. (2006), Sajid and
Hayat (2008), Rashidi and Keimanesh (2010), Ishak (2011), Haas and Oliveski (2011), Siddheshwar et al (2014)].

Most of the aforementioned works either employ a challenging homotopy analysis method or a first order solution. For the
previously stated reasons, we were opted to investigate the stretching sheet problem including a BSS in
magnetohydrodynamics.

Driven by the studies mentioned above and potential uses, we plan to examine heat transfer and momentum in a BSS flow
across an exponentially expanding sheet. To get a series solution, the DTM is applied.

The solution for temperature is obtained for non-isothermal boundary conditions of two the kinds (i) prescribed exponential
order boundary heat flux (PEHF) and (ii) prescribed exponential order surface temperature (PEST).
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2. NOMENCLATURE
couple stress parameter

C
212
E Eckert number (—)
ACy
Gy specific heat at constant pressure
F dimensionless stream function

Pr Prandtl number
E |a
E;s scaled Eckert number <E \/;)

Hy  uniform magnetic field
0 Chandrasekhar number
L reference length

Y dimensionless vertical coordinate

Re Reynold’s number T

T  temperature of liquid

Tw wall (sheet) temperature

T liquid temperature far away from the sheet

U  dimensionless horizontal velocity

u  dimensional horizontal velocity

U characteristic velocity

X  dimensionless horizontal coordinate
v dimensional vertical velocity

6  non-dimensional temperature

V' dimensionless vertical velocity

u=0,v=0
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Figure 1: Schematic diagram of exponential stretching sheet.

3. MATHEMATICAL FORMULATION

We investigate the steady 2D flow over an exponentially stretching sheet of an electrically conducting, incompressible fluid
of BSS. It is assumed that the boundary sheet is travelling axially at an exponentially fast rate (Figure 1). It is also assumed
that the sheet is heater than the surrounding liquid, i.e.,T,, (x) > T. The governing boundary layer equations of continuity,
heat transfer and momentum in a flow of BSS over an exponentially stretching sheet problem are as follow
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3.1)

(3.2)

(3.3)

where u and v be the fluid velocity components in x and y directions respectively, u,,1s the magnetic permeability, v is the
kinematics coefficient of viscosity, ¢ be the electrical conductivity, p is the density of the fluid, v’ is couple stress viscosity,

k be the fluid thermal conductivity and p is the dynamic viscosity.
We employ the below mentioned boundary conditions on temperature and velocity:

0%u

u="U,x) =Ujexp G),ﬁ =0,v=0
y
T=T,y =Te + (T, — To)elin PEST
at y=0,

aT 3x .
—k—=T,ezl in PEHF

dy

62
u—>0,ﬁ 0, T-Ty, as y = 00,

Where U,, be the stretching velocity of the boundary and 1 be the reference length.

The non—dimensionalization and transformation are used and are given below:

_ (XY _ u v
(X 'Y) - (l ! l) ! (U ! V) - ( Uov ’ 1/U0V>
Using the transformation (3.5), the equations (3.1) - (3.3) becomes to

v ov_

ax 0Y_0’

au au a%u a*u
Ua_X+V6_Y = a?—QU —Ca?,
VGV =n ()
whereQ=L“’H‘z’,C=%andPr=u—]fp.

Using (3.5), the boundary conditions (3.4) reduce to

_ |Yo x 0%U _ _
m [Eer v

T=T,=T,+ (T, —T,)eX, in PEST
3 at Y =0
9T _ Tulo3X in PEHF
oY k
22U
U-0, -0, T-T, asY — oo.
aY

The stream function Y(X,Y) that satisfies the continuity equation (3.6), given by

_ 9y - _%
U_BY' V= ax

into the equations (3.7) and (3.8), we get

Py ow oy sty ow _
CaYS aY3 + dY 9XdY X aY2 + Q6Y =0,

oYOT  OYoT _ 19°T | py (62¢)2
aY 9X 0X0Y Proy? = pCpl?2 \ay?

(3.4)

3.5)

(3.6)
3.7)

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)
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By means of the boundary conditions, (X, Y) can be found from the equation (3.9) :

w_ ok ow_o o

w7 w=% w0
T=T, =T+ (T, —Ts)eX, in PEST
3 at Y =0
I — TuleX, in PEHF
aY  k
oy o3y
E_)O’ ﬁﬁO, T->T, a Y- oo (3.13)

We present a similarity solution for the momentum equation (3.11) in the subsequent section.

4. MOMENTUM EQUATION SOLUTION

The following similarity transformation converts the partial differential equation (2.11), into an ordinary differential
equation:

Y(X.Y)=V2Ref(m exp (). (4.1)
heren = [Y \/% exp ()2—()] be similarity variable.

Substituting equation (4.1) into the equations (3.11) and (3.13), we got the nonlinear boundary value problem presented
below:

C o = S + 2 fnz ~ffimm +2Qf; =0, (4.2)
f=0, fy=1, fy=0 at n=0,
fa—0, fomm = 0 at n = oo, (4.3)

and additionally, to solve the fifth-order differential equation (4.2), we made the following assumptions:
fm=a, fymm=F at n=0, (4.4)

where o and  are unknown initial values. So as to use the DTM to find the solution of the equation (4.2), z used as a new
independent variable and is definedas z =1 —e™".

The non - linear equation (4.2) now becomes

CF"" —10Cf"" — (1 —25C)f"" — (15C —3)f" — (1 — C — 2Q)f' — C(4z — 62% + 423 — z*)f"""" + 10C (3z —
322 + 4Z3) " + fFf 4 zff + (1 —=25C)(2z — z2)f"" — (3 — 15C)zf" — ff" + 2(f)? —2z(f")* =0,
(4.5)

where prime represents the differentiation with respect to z. From equations (4.3) and (4.4), in terms of z, the boundary
conditions for solving equation (4.5) are obtained as:

f=0 f'=1f"=a+1, " =3a+2,
f"" =6+ 11la+ B at z=0,
And
f"" =0 f'=0 at  z=1. (4.6)

The differential transform of £, D¥{f(z)} is given by the following equation:

Flk] = D{f(2)} =

Applying differential transform on the equation (4.5), we obtain the recurrence relation.

1 d*f(2)
k! dzk 1,_o

A.7)

On employing differential transform on boundary conditions (4.6) at z = 0, we obtain

Flo]=0, F[1]=1, F[2]=(a+1),

2
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F[31= (5+

1 - (Ye B 1
5) , Fl4] = (24 toa +4)' (4.8)
F[5],F[6],F[7],.. are estimated from the recurrence relation and boundary conditions by using Mathematica. Taking
inverse differential transform on (4.7), we get a truncated series solution for f(z) in the form:

f(@) = X Flklz* = f(n) = T FIk](1 — ™M)k (4.9)
Where a and B are obtained by means of unused conditions f'(1) = 0 and f"'(1) = 0 in the equation (4.6) for fixed value
of Q and C (Table 1). The values of Q and C determine how well the aforementioned series converges.

Table 1: a and B values for different values of Q and C.

Q c P p
0.10 -0.9953 4.2800
0.0 0.15 -0.9544 3.3200
0.20 -0.9254 2.7827
0.30 -0.8866 2.1696
0.10 -1.1441 6.2463
0.5 0.15 -1.0817 4.8198
0.20 -1.0030 3.4597
0.30 -0.9763 3.0718
0.10 -1.2733 8.1112
1.0 0.15 -1.1944 6.2368
0.20 -1.1371 5.1600
0.30 -1.0584 3.9354
0.10 -1.4877 11.6072
2.0 0.15 -1.3848 8.8913
0.20 -1.3093 7.3352
0.30 -1.2035 5.5649

5. HEAT TRANSFER ANALYSIS
So as to solve the equation (3.12), we took non—isothermal boundary conditions, that PEST and PEHF.

5.1. PEST

The non-dimensional temperature 6(7) is given as:
T—Teo

o = —

Where T—T= 0(n)e’ and T,,—T.= €.

Using the equation (5.1) in the equation (3.12), we got the non-linear ordinary differential equation for 6(n) as given below:

(5.1)

Oy + Prf 6y — 2Prf,0 + PrE(fyy)" = 0 (5.2)

Equations (3.13) and (5.1) provide the boundary conditions for solving equation (5.2), which take the following form:
06=0 as n —-oand 8 =1 atn =0, (5.3)
and additionally, so as to solve the second order differential equation (5.2), we made the following assumption:
=y atn =0, (5.4)

where y is unknown initial value. In order to use the DTM for solving (5.2), we use
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z=1—e™"
dz
z=1—-e"s —=e¢M=1-72,
dn

_d0ds _ e
Gn T dzdn @ Z)e ’ 5.5

By = (1—2)%0" — (1-2)6',

where prime characterises the differentiation with respect to z. By means of the equation (5.5), the nonlinear equation (5.2)
now becomes

(1-2)0"—-0"+Prfo —2Prf'0+PrE(1—2)((1 —2)f" - f')2 =0 (5.6)
From equations (5.3) and (5.4) in terms of z, the boundary conditions for solving equation (5.6) are found as
0=1 0 =y atz=0ad 6=0 at z=1 (5.7)

The differential transforms of f and 6 are denoted by F[k] and G[k]. Applying the differential transform on the equation
(5.6), we obtain the recurrence relation:

On employing the differential transform to the conditions (5.7) at z = 0, we get
Glo]=1, G[1]=vy (5.8)

G[2],G[3], G[4] ...are computed from the recurrence relation and boundary conditions with F[0], F[1], F[3]...... by using
Mathematica. By inverse differential transform, we get a truncated series solution for 8(z) in the form:

0(2) = Lo Glk]z* = 0(n) = L3, G[k](1 —e™™M)" (5.9)

where y is determined using unused condition 6(1) = 0 in the equation (5.7) for fixed value of the parameters Q, C, Pr
and E (Table 2). The aforementioned series' convergence is depending upon Q, C, Pr, and E.

5.2. PEHF

Now the non-dimensional temperature ¢(n) is defined as

(5.10)

Using the equations (3.13) and (5.10) in the equation (3.12), we found the non-linear ordinary differential equation for
¢(M) in below form:

oy + Prfdy — 3Prfyp + PrE(fiy)” = 0 (5.11)
Equations (3.13) and (5.10) yield the following boundary conditions for solving equation (5.11):
¢é=—-1,at n=0and $ =0,as n > o (5.12)
and additionally, so as to solve the second order differential equation (5.11), we made the following assumption:
é=2A at n=0 (5.13)
where A is unknown initial value. So as to use the DTM for solving the equation (5.11), weuse z=1—e .
z=1—e™ :% =eM =1-7z

dn
oy = = -2,

(5.14)
(bnn =(1- Z)zd)” - (1 -2
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where prime denotes the differentiation with respect to z. By means of the equation (5.14), the nonlinear equation (5.11) now
becomes

(1-2)¢" —¢'+Prf¢p' —3Prf'¢p+PrE(1—2) (1 —2)f" — f')2 =0. (5.15)
Equations (5.12) and (5.13) are used to determine the boundary conditions for solving equation (5.15) in terms of z:
d=A ¢'=—1at z=0 and ¢ =0,at z=1. (5.16)

The equation (5.15) is in analogy with that of PEST instance (equation (5.6) but vary only by 6 and E, i.e., the dependent
variable 8 and the Eckert number E in PEST must be replaced by ¢ and the scaled Eckert number Es in PEHF. Applying
the differential transform on the equations (5.15) and (5.16), we get the recurrence relations as described in PEST case and
conditions ®[0] = A, and ®[1]=—1. L[2]. L[3], L[4] .. ...... are calculated using the above recurrence relations and along
with conditions, where L[k] is the differential transform of ¢. By the inverse differential transform, we get a truncated series
solution for ®(z) in the form:

$(2) = Timo LIk]Z* = o) = T LIk](1 — ek
(5.17)

where X is determined using unused condition ¢ (1) = 0 in the equation (5.16) for fixed value of Q, C, Pr and Es (Table
2). The values of Q, C, Pr, and Es determine whether the mentioned series will converge. Having discussed about the
stretching sheet problems in BSS, we now present the results found in the study.

Table 2: Values of y in PEST and 4 in PEHF for Q, C, Pr and E(Es) values.

0 c Pr E(Ey) PEST PEHF
0'(0)=y O(0) =1
1.0 -0.407177 1.15493
1.5 -0.448022 1.04401
1.0 0.5 2.0 1.0 -0.480362 0.983118
2.5 -0.503915 0.944525
3.0 -0.966957 0.917971
1.0 -1.49716 0.627298
1.5 -1.00800 0.772635
1.0 0.5 3.0 2.0 -0.518838 0.917971
25 -0.029676 1.06331
3.0 0.459486 1.20864
1.0 -0.518838 0.917971
1.5 -0.234599 1.00423
2.0 0.5 3.0 2.0 0.0404596 1.08992
25 0.305136 1.17446
3.0 0.558723 1.25740
0.1 0.554201 1.27028
1.0 03 3.0 2.0 -0.160968 1.02970
0.5 -0.518838 0.917971

6. RESULTS AND DISCUSSION

In the current study, we studied the heat transfer and hydromagnetic boundary layer flow characteristics of a BSS over an
exponentially stretching impermeable sheet. The equations were transformed into non-linear ordinary differential equations
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by applying the proper local similarity transformation. The flow phenomena are described by nonlinear partial differential
equations. The solutions of transformed equations are obtained by means of DTM. The attention has been focused on the
variations of @, C, Pr and E(Es) in both PEST and PEHF. The results of the work are showed in the form of graphs.

104 — f(n)
iy 20920020 = i)

084 W
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Figure 3: Plots of f(7) and f°(#) versus 5 for Q = 1.0 and different values of C.

In Figure (2) and (3), the graphs of f (1) and f'(n) versus 7 are plotted for chosen values of the Q and C.

Any motion in the liquid is opposed by the magnetic field's effect. Based on this reason, we find from Figure (2) that the
effect of increasing Q is to decrease the velocity profiles through the boundary layer. The applied magnetic field causes the
velocity boundary layer to contract transversely, and this causes the Lorentz force to significantly oppose motion.

In Figure (3), the plots of f(n) and f'(n) versus i are plotted for chosen values of C with Q=1.0. It has been found that
increasing C has the effect of increasing the velocity through the boundary layer. The reason is that the suspended particle
in the BSS rise in the carrier liquid velocity and henceforth to increase the flow.
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Figure 4: Plots of 6(n)) and ®@(n) in PEST and PEHF cases for different values of Pr.
1.1 4
PEST
1.0 4 Q =1.0 PEHF
o C =05 Q =1.0
0s C =05
e Pr=3.0 S =30
06 4
o(m) 05 @(n) Y
044 0.5 1 Eg=10.15.20.25.30
<33 E=1.0.1.5.2.0.25.3.0 041
024 0.3 4
o 024
] = 0.1 4
00 - . - e — J 0.0 v r - g - - g
o0 os 10 15 20 25 30 3s 40 00 os 1.0 15 20 25 3.0 35 40
n n
Figure 5: Plots of 6(n) and ®(n)) in PEST and PEHF cases for different values E(Es).
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Figure 7: Plots of () and ®(n) in PEST and PEHF cases for different values of C of E(Es).
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In Figure (4) - (7), The plots of 8(n) and ¢ (1) verses 1 are drawn for chosen values of Pr, E(Es), @, and C in both PEST
and PEHF cases. It is found that in PEST cases the wall temperature distribution is at unity, while it may be unity or other
than unity in the PEHF cases on the wall.

Figure (4) elucidates the influence of Pr on temperature profile 8(n) and ¢(n) in PEST and PEHF cases. From these graphs
it is observed that the increasing value of Pr is decreases the temperature. This is due the large values of Pr result in thinning
the thermal boundary layer. Figure (5) shows the effect of Eckert number E'(Es) on temperature profiles in PEHF and PEST
cases. The graphs reveal the effect of increasing E enhances the temperature in the flow region. This is because of the fact
that the heat energy stored in the considered liquid because of frictional heating. Figure (6) illustrates how raising Q causes
the temperature to rise. The graphs in equation (7) show that a rise in C values causes the temperature to decrease. We now
present the conclusion of the above study.

7. CONCLUSION
Some of the important findings of this chapter pertaining to exponentially stretching sheet are listed below:

1. The magnetic field has the effect of giving the electrically conducting liquid stiffness.

2. Thermal boundary layer thickness increases and momentum boundary layer thickness decreases with increasing values
of Chandrasekhar number Q.

3. Thermal boundary layer thickness decreases and momentum boundary layer thickness increases with an increase in
couple stress parameter C.

4. The temperature is going to decrease as the Prandtl number (Pr) increases.

The increase in the Eckert number E(Es) is to increase the temperature.
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