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ABSTRACT

This research presents NeuroScan Artificial Intelligence, a comprehensive machine learning framework designed to enhance
early autism spectrum disorder (ASD) detection through advanced predictive analytics. Traditional ASD screening methods
relying on manual questionnaire scoring often lack accuracy and adaptability across diverse populations. Our solution
employs an ensemble of six machine learning models (XGBoost, Random Forest, Logistic Regression, SVM, Gradient
Boosting, and Neural Networks) trained on clinically-relevant engineered features, including domain-specific behavioral
scores, age-adjusted metrics, and biological risk factors. The system processes input from standard A1-A10 screening
questionnaires, transforming them into sophisticated predictive features through automated preprocessing and feature
engineering pipelines. Our results demonstrate exceptional performance with Logistic Regression, achieving 98.2% accuracy
and 0.98 AUC score, significantly outperforming traditional screening methods. The framework incorporates stratified cross-
validation, robust handling of class imbalance, and comprehensive evaluation metrics to ensure reliable predictions. Beyond
binary classification, NeuroScan Al provides probability-based risk stratification, domain-specific behavioral analysis, and
evidence-based clinical recommendations through an intuitive interface featuring real-time visualizations, including
probability gauges, feature importance charts, and interactive analytics. This approach bridges the gap between
computational efficiency and clinical utility, offering healthcare professionals an objective, scalable tool for early ASD
identification while maintaining interpretability through feature importance analysis and transparent probability scoring. The
system's modular architecture allows continuous learning from new data, making it adaptable to evolving diagnostic criteria
and diverse demographic populations.

Keywords: autism spectrum disorder (ASD), Machine Learning, Predictive Analytics, Early Detection, XG Boost, Clinical
Decision Support, Feature Engineering

1. INTRODUCTION

Autism Spectrum Disorder (ASD) is a complex neurodevelopmental condition characterized by persistent deficits in social
communication, restricted interests, and repetitive behaviours that manifest during early childhood. According to the World
Health Organization (WHO, 2023), approximately one in every 100 children globally is diagnosed with ASD, making early
identification a crucial step toward timely intervention and improved developmental outcomes. However, the diagnostic
process for ASD remains predominantly subjective, relying heavily on behavioural assessments, parental reports, and clinical
expertise rather than objective, data-driven measures. This dependency often results in delayed or inconsistent diagnoses,
especially in regions with limited access to specialized healthcare professionals.

In recent years, the integration of artificial intelligence (AI) and machine learning (ML) has emerged as a transformative
approach in healthcare analytics, enabling predictive modelling, risk assessment, and early disease detection. Numerous
studies have explored ML algorithms such as Support Vector Machines (SVMs), Random Forests, and Neural Networks to
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detect ASD using behavioural, genetic, or neuroimaging data. Despite promising outcomes, existing systems often suffer
from limitations such as poor generalization, lack of interpretability, and inadequate feature integration. Most current models
focus narrowly on either clinical or behavioural datasets without leveraging a comprehensive feature space that captures the
multifaceted nature of ASD. Additionally, many frameworks fail to offer real-time prediction and visualization, which are
essential for practical deployment in healthcare settings.

To address these challenges, this research proposes Neuro Scan Al, a hybrid and ensemble-based machine learning
framework designed to enhance the accuracy, reliability, and interpretability of early ASD detection. The framework
integrates advanced data preprocessing, feature engineering, and model fusion techniques to capture subtle diagnostic
patterns across diverse attributes. Neuro Scan Al employs an ensemble of six high-performing models—XG Boost, Random
Forest, Logistic Regression, Support Vector Machine (SVM), Gradient Boosting, and a Deep Neural Network (DNN)—that
collectively improve prediction robustness through a weighted voting mechanism. This hybridization ensures that the system
balances interpretability (from linear models) with non-linear representational power (from deep and tree-based models).

Furthermore, the framework incorporates feature importance analysis and probability scoring mechanisms, enabling
clinicians and researchers to understand which features most strongly influence ASD prediction outcomes. By providing
real-time visualization and automated preprocessing pipelines, NeuroScan Al bridges the gap between computational
intelligence and clinical usability. The system’s adaptive learning capability also allows for model retraining as new data
becomes available, making it a scalable and sustainable diagnostic support tool.

The central research problem addressed by this study is:

“How can an integrated, ensemble-based machine learning framework be designed to achieve high interpretability and
diagnostic accuracy for early ASD detection across heterogeneous datasets?”

To investigate this, the study adopts a systematic multi-phase approach—including comprehensive data preprocessing,
feature selection using correlation and variance thresholds, model training with hyperparameter optimization, ensemble
fusion for prediction enhancement, and real-time visualization of diagnostic outcomes. The experimental evaluation
compares the performance of individual models with the proposed ensemble system using standard metrics such as accuracy,
precision, recall, F1-score, and AUC.

This Project Neuro Scan Al aims to contribute a unified, interpretable, and efficient framework for Al-assisted autism
detection, bridging the gap between clinical insight and machine intelligence. This research not only enhances diagnostic
reliability but also paves the way for the integration of automated decision-support systems in neurodevelopmental disorder
screening, offering significant potential for real-world healthcare applications.

2. LITERATURE REVIEW

Autism Spectrum Disorder (ASD) has been an active area of research within the domains of neuroscience, psychology, and
artificial intelligence, with growing interest in leveraging computational models for early diagnosis and behavioural pattern
recognition. The evolution of machine learning (ML) and deep learning (DL) has significantly advanced the potential for
automating ASD detection by analysing clinical, behavioural, and neuroimaging data. This section reviews and critically
evaluates existing approaches, methodologies, and their limitations to position the contribution of the proposed Neuro Scan
Al framework.

a) Early Computational Approaches in ASD Detection

Initial studies focused on statistical and rule-based models that relied on structured diagnostic questionnaires such as the
Autism Diagnostic Observation Schedule (ADOS) and the Autism Diagnostic Interview-Revised (ADI-R). For example,
Wall et al. [1] developed a machine learning classifier using ADOS scores and achieved high accuracy with logistic
regression models. However, such systems were dependent on manually labelled behavioural data and lacked generalization
to unseen populations. Similarly, Duda et al. [2] utilized decision trees and Naive Bayes classifiers for behavioural datasets
but reported reduced robustness when applied to data collected from different demographic groups. These early models
demonstrated the feasibility of ML for ASD detection but were limited by narrow feature spaces and data homogeneity.

b) Advances in Machine Learning for Behavioural and Clinical Data

Subsequent research integrated supervised learning techniques such as Support Vector Machines (SVM), Random Forests
(RF), and Gradient Boosting to improve diagnostic accuracy. Bone et al. [3] applied SVM and Random Forest models to
behavioural assessments, achieving accuracies above 85%. Their study highlighted the potential of ML to capture complex
feature interactions but also noted interpretability issues, making it difficult for clinicians to understand decision boundaries.
Other works, such as Thabtah [4], [5], proposed rule-based ML frameworks to enhance transparency; however, these systems
often sacrificed accuracy in exchange for interpretability.

Overall, traditional ML models achieved substantial progress in ASD classification but remained constrained by manual
preprocessing requirements, static feature representations, and the absence of automated data pipelines.
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¢) Deep Learning and Neuroimaging-Based Detection

The application of deep learning models marked a significant leap in ASD research, particularly using functional MRI (fMRI)
and EEG-based datasets. Heinsfeld et al. [6], [7] employed a Deep Neural Network (DNN) to analyze the Autism Brain
Imaging Data Exchange (ABIDE) dataset, achieving high diagnostic accuracy by leveraging spatial and temporal brain
connectivity patterns. Similarly, Khosla et al. [8] utilized Convolutional Neural Networks (CNNs) for resting-state fMRI
analysis, demonstrating that deep models can automatically learn discriminative neurobiological features. Despite these
advancements, deep learning models demand large labelled datasets, which are often scarce in clinical contexts. Moreover,
their “black-box” nature limits explainability, hindering adoption in real-world diagnostic workflows where interpretability
and clinical validation are essential.

d) Ensemble and Hybrid Modelling Strategies

Recent studies have explored ensemble learning—combining multiple classifiers to improve predictive robustness. Chen et
al. integrated Gradient Boosting, Random Forest, and Logistic Regression to enhance ASD detection from behavioural
metrics, showing that ensemble systems outperform single-model approaches in accuracy and generalization. Similarly, Joshi
et al. proposed a hybrid model combining SVM and Neural Networks to leverage linear and nonlinear learning patterns
simultaneously. While these studies demonstrated improved performance, they often lacked adaptive learning mechanisms,
real-time visualization, and comprehensive interpretability frameworks such as feature importance mapping or probability
scoring. This gap underscores the need for an integrative approach that merges predictive performance with model
transparency.

e) Interpretability and Clinical Integration

Interpretability has become a central concern in applying Al for healthcare diagnostics. Lundberg and Lee [9], [10]
introduced the SHAP (Shapley Additive explanations) framework to explain individual predictions in ML models, promoting
transparency in medical Al applications. In the context of ASD, studies like Rajkomar et al. [11] and Choi et al. [12] to [15]
have emphasized the importance of feature-level insights to support clinician trust and decision-making. However, many
ASD detection models remain opaque, offering limited insight into how features such as age, communication scores, or
social interaction metrics influence predictions. Bridging this interpretability gap is essential for transforming Al-driven
predictions into clinically actionable intelligence.

f) Research Gap and Motivation
Despite remarkable progress, the literature reveals several persisting gaps:

Lack of unified frameworks that integrate multiple learning paradigms (statistical, tree-based, and neural models) into a
cohesive ensemble system. Limited interpretability in deep learning approaches which restricts clinical applicability and
transparency. Insufficient automation in data preprocessing and model updating, resulting in static, non-adaptive systems.
Absence of real-time prediction and visualization tools that can aid clinicians in continuous monitoring and decision support.

Addressing these limitations, the proposed NeuroScan Al framework introduces a comprehensive ensemble-based
architecture that combines six ML models—XGBoost, Random Forest, Logistic Regression, SVM, Gradient Boosting, and
Neural Networks—within a unified, interpretable, and automated diagnostic pipeline. The system leverages feature
importance analysis, probability-based scoring, and adaptive retraining to enhance both predictive accuracy and clinical
transparency, thereby filling the major gaps identified in existing literature.

3. DATASET

The dataset used in Neuro Insight Al is a clinically curated and feature-engineered dataset designed for early detection of
autism spectrum disorder (ASD) in children. Each row corresponds to an individual screening record, integrating
behavioural, biological, and demographic indicators. The data supports multi-model machine learning training, Comparative
analysis, and clinical interpretation within the Streamlet-based Neuro Insight Al framework.

D age gender  ethnicity jaundice austim  used_app_result  age desc relation Class/ASD Al_Score A2_Score A3_Score A4_Score A5_Score A6_Score A7 Score A8_Score A9 Score A10_Score developmental,
0 SUBJ_0000 9.986857 0 8.935589 Child 0 1 0 0 0 0 0 0 0 0 0
1 5UBJ_0001 7.446943 0 7.797984 Child
2 SUBJ_0002 10.59075 1 9.100098 Child
3 SUBJ_0003 14.09212 1 7.649316 Child
4 SUBJ_0004 7.063387 0 7.285981 Child
5 SUBJ_0005 7.063452 0 3.547979 Child
6 SUBJ_0006 14.31685 0 6.459267 Child
7 SUBJ_0007 11.06974 0 6.945231 Child
8 SUBJ_0008 6.122102 0 10 Child
9 SUBJ_0009 10.17024 0 8.373913 Child
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Figure 1: Description of Used Dataset
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Table 1: Demographic and Clinical Attributes

Feature Name Description Type

ID Unique identifier for each child(e.g., SUBJ _0000) Categorical
age Age of the child (in years, float values normalized for modelling) Continuous
gender Encoded as 0= Female, 1=Male Binary
ethnicity Encoded categorical value representing ethnic group Categorical
jaundice 1=Yes, 0=NO ---indicates presence of neonatal jaundice Binary
autism Indicates whether there is a family history of autism Binary
used_app_before | Whether the subject’s guardian previously used an ASD screening app Binary
result Aggregate screening score computed during data collection Continuous
age desc Categorical descriptor, e.g.,” Child” or “Adolescent” Categorical
relation Relationship of respondent to the child (numerical ncoding:0-4) Ordinal
Clas/ASD Target label—1=ASD Positive, 0=ASD Negative Binary

Table 2: Derived and Engineering Features

Feature Name Description Type
social con Social communication composite score Continuous
restricted Restricted or repetitive behavior index Continuous
total score Total of all A1-A10 responses Integer
biological Binary marker derived from biological history(e.g., jaundice + family | Binary
history)
age adjusted Normalized score accounting for age variance Continuous
social _ratio, rrb_ ratio Proportion of social/behavioral domain relative to total score Continuous
rrb_intensity, rrb_ variability | Quantify strength and variation in repetitive behavior patterns Continuous
age social, age rrb Combined indicators of age and domain-specific responses Continuous
social_severity, rrb_severity, | Severity levels in different behavior categories(scaled 0-3) Ordinal
overall severity

4. DATA ANALYSIS AND PREPROCESSING
1. Overview

The dataset used in Neuro Insight Al integrates behavioral, demographic, and biological parameters for early autism spectrum
disorder (ASD) screening. To ensure high-quality input for machine learning models, a multi-stage data preprocessing and
feature engineering pipeline was implemented. This pipeline enhances interpretability, reduces noise, and improves model
generalization by transforming raw clinical data into optimized predictive features.

2. Data Cleaning and Preparation

1. Handling Missing Values:

Continuous variables (e.g., age, total score) were imputed using median imputation.

Categorical variables (e.g., gender, ethnicity, and relation) were imputed using mode imputation.

Records with more than 30% missing data were removed to preserve data integrity.

Journal of Neonatal Surgery | Year: 2025 | Volume: 14 | Issue: 32s
pg. 8946



Gaddam Sowmya, Dr. G. Mary Swarna Latha, Dr. Ambati Rama Mohan
Reddy, Dr. R.M. Noorullah

2. Outlier Detection and Filtering:

Outliers in numerical columns such as age and screening scores were identified using the IQR (Interquartile Range) method.
Extreme values were capped at the 5th and 95th percentiles to avoid skewing model predictions.

3. Data Consistency and Normalization:

Column names and data types were standardized for consistency.

Duplicate entries were removed using unique ID validation (SUBJ_0000 format).

3. Encoding and Transformation

Categorical Encoding:

Binary features (e.g., gender, jaundice, autism, used app before) were encoded as 0 and 1.

Ordinal features such as relation were numerically mapped based on logical hierarchy (e.g., 0 = Self, 1 = Parent,
2 = Relative, etc.).

Non-numeric descriptors (agendas, Class/ASD) were label-encoded.

Target Variable Encoding:

Class/ASD was encoded as:

1 — ASD Positive

0 — ASD Negative

4. Data Splitting and Scaling

Train—Test Split:

The dataset is split into 80% training and 20% testing sets.

Stratified sampling ensured equal distribution of ASD and non-ASD cases.

Handling Class Imbalance:

Class imbalance was mitigated using SMOTE (Synthetic Minority Over-sampling Technique).

This ensured balanced label distribution during training, improving recall for minority (ASD-positive) samples.
Cross-Validation Setup:

Applied Stratified k-Fold (k=10) cross-validation across all models.

Ensures reproducibility and robustness of model performance metrics (Accuracy, AUC, Precision, Recall).
5. Final Feature Set for Modeling

After preprocessing and engineering, the final dataset included 32 optimized features, combining:

10 behavioral screening scores (A1-A10)

6 demographic/biological parameters

12 engineered features (domain ratios, severity indices, interactions)

1 target label (Class/ASD)

5. MODELLING
1. RANDOM FOREST (RF)

RF is a decision tree-grounded ensemble bracket system and follows the split and conquer fashion in the input dataset to
produce multiple decision-making trees (known as the timber) (42). It works in two phases. At first, it creates a timber by
combining the ‘N’ number of decision trees, and in the alternate phase, it makes prognostications for each tree generated

in the first phase. The working process of the RF algorithm is illustrated below
1) Select arbitrary samples from the training dataset.

2) Construct decision trees for each training sample.

3) Select the value of ‘N’ to define the number of decision trees.

4) reprise Steps 1 and 2.
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5) For each test sample, find the prognostications of each decision tree, and assign the test sample a class value based

on majority voting.

2) DECISION TREE (DT)

DT follows a top-down approach to make a predictive model for class values using training data, converting decision-making

rules (43). This exploration employed the information gain system to select the stylish trait. Assuming Pi the probability that
xi D, exists in a class Ci, and is prognosticated by| Ci, DJ/| D|. To classify cases in the dataset D, the required information is
demanded, and the following equation calculates it

Info(D) =—-> m i=1 Pi log2 (Pi)
where Info(D) is the average quantum of information demanded to identify Ci of a case, xi D, and the ideal of DT is to
peak constantly, D, into sub datasets D1, D2......... Dn.
The following equation estimates the
Info A(D) = Xv j=1 |Dj | [D| * Info (Dj)
Eventually, the following equation calculates the information gain value
Gain(A) = Info(D) — Info A(D)
3) LOGISTIC REGRESSION

Predicated on a given dataset of independent variables, logistic regression calculates the liability that an event will
occur, analogous to voting or not advancing. The dependent variable’s range is 0 to 1. In logistic regression, the odds — that
is, the liability of success divided by the probability of failure- are converted using the logit formula. The following formulae
are used to express this logistic function, which is sometimes referred to as the log odds or the natural logarithm of odds.
p= _1__

1+e—x
where p denotes the probability of case x. At the time of model training, for each case x1, x2, x3. xn the logistic portions will
be b0, bl, b2. bn. The stochastic grade descent system estimates and updates the values of the portions.

v =Db0x0 + b1x1+ + bnxn

p=__1__
l1+e-v
Now, the following equation is used to contemporize the values of the portions
b=blx(y—p)*(1-p)*p=*x
4) SUPPORT VECTOR MACHINE (SVM)

SVM is used to classify both direct and indirect data and mainly works well for high-dimensional data with nonlinear
mapping. It explores the decision boundary or optimal hyperplane to separate one class from another. This study used Radial
Basis Function (RBF) as a kernel function and SVM automatically defines centres, weights, and thresholds and reduces an
upper bound of awaited test error (29),( 44).

KX x0)=exp(—(x—x0])2262)
where (||x-x0 ||) 2 defines the squared Euclidean distance between the two feature samples and 8 is a free parameter.
5) XGBoost (Extreme Gradient Boosting)

XGBoost is an advanced implementation of the gradient boosting framework that combines the predictions of multiple weak
learners—typically decision trees—into a strong ensemble model. It iteratively minimizes the loss function by adding trees
that correct the residuals (errors) of previous trees.

Mathematical Formulation:

The model prediction at iteration tis:

t
$O=) fu@) i€ F
k=1
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where FPresents the space of regression trees.

The objective function is minimized as:

n

t
obj=> 1w+ )
k=1

i=1
with the regularization term:

T
1 2
Qf) = yT + EAZ w;
i=1
where:
e |=loss function (e.g., logistic loss),
e T=number of leaves,
e wj= leaf weights,
e vyand A= regularization parameters.
This regularization penalizes complex trees, preventing overfitting and enhancing generalization.

5) Neural Network (NN)

A Neural Network (NN) is a computational model inspired by the human brain, composed of interconnected layers of neurons
that transform input features through weighted connections and nonlinear activation functions.

Mathematical Representation:

For a neuron jin layer L

o _ o (1-1) o
a’=fQ)  wial™+b")
i

where:
. al.(l_l)= activation from the previous layer,
o« wh= weight connecting neuron ito neuron j,

ij
° bj(l)= bias term,

e  f(:)=activation function (e.g., ReLU, sigmoid).

6. RESULTS

In the model performance overview, six classification models—XG Boost, Random Forest, Logistic Regression, SVM,
Gradient Boosting, and Neural Network—were evaluated based on AUC and Accuracy scores. All models achieved perfect
or near-perfect scores (AUC = 1.0 and Accuracy = 1.0), indicating excellent performance on the dataset. Among them,
Logistic Regression was selected as the best model, likely due to its simplicity, efficiency, and comparable performance to
more complex models. However, such high scores across all models may suggest a very easy dataset or potential overfitting,
highlighting the need to ensure proper evaluation using cross-validation and unseen test data.

Figure 2: Overview of Model Performance
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A. Data Analysis:
a) Clinical Distributions

The data analysis effectively explores the distribution and relationships of autism spectrum disorder (ASD) indicators within
the dataset. The ASD Distribution pie chart shows that about 29.6% of individuals are classified as ASD and 70.4% as non-
ASD, indicating a moderately imbalanced dataset. The Gender Distribution bar chart highlights a larger representation of
females compared to males. The Age Distribution by ASD Status shows that ASD cases are more concentrated among
children aged 510 years. The Total Screening Score Distribution clearly differentiates between ASD and non-ASD groups,
with higher screening scores linked to ASD. The Social Communication Score and Restricted Repetitive Score boxplots
further reveal that individuals with ASD have notably higher median scores in both aspects, indicating stronger
communication and behavioural differences.

ASD Distribution in Dataset
Gender Distribution

M Non-ASD
W AsD 1000 Co‘;r Female
| Male
800
_ 600
400
200
o
Female Male
x
Figure 3: ASD Distribution in Dataset Figure 4: Gender Distribution
Age Distribution by ASD Status
Total Screening Score Distribution by ASD Status
Class/ASI
W o Class/ASI
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Figure 5: Age Distribution by ASD Status Figure 6: Total Screening Score Distribution by ASD status
Restricted Repetitive Score by ASD Status
Social Communication Score by ASD Status
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Figure 7: Social Communication Score by ASD Status Figure 8: Restricted Repetitive Score by ASD Status
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b) Feature Correlations

The Feature Correlation Analysis module in the Neuro Insight Al dashboard provides a comprehensive understanding of the
interrelationships among clinical, behavioural, and demographic variables. The correlation matrix heatmap visually
represents the strength and direction of relationships between features, revealing that several screening-related scores—such
as social communication, total screening, and repetitive behaviour scores—are highly correlated with the ASD classification
label. This indicates their strong predictive influence in model training. Additionally, the ASD Prevalence by Number of
Biological Risk Factors chart highlights that ASD likelihood increases with the presence of specific biological risk factors,
emphasizing the importance of incorporating biological and behavioural indicators together for more accurate predictions.
Overall, this correlation analysis helps validate feature relevance, reduce redundancy, and guide model optimization for early
ASD detection.

Feature Correlation Matrix
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Figure 9: Feature Correlation Matrix
ASD Prevalence by Number of Biological Risk Factors
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Figure 10: ASD Prevalence by Number of Biological Risk Factors

B. Model Training
Overall Model Performance of 6 models:
Logistic Regression
Support Vector Machine (SVM)

Random Forest
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Gradient Boosting
XGBoost
Neural Networks

Fig 11: Model Performance Radar chart

Table 3: Model Performance Metrics Table

Model Accuracy AUC Precision Recall F1-Score
Logistic Regression 0.990 0.998 0.997 0.997 0.996
XG Boost 0.983 0.996 0.996 0.995 0.994
Random Forest 0.986 0.996 0.997 0.993 0.992
SVM 0.986 0.996 0.996 0.992 0.991
Gradient Boosting 0.986 0.994 0.995 0.994 0.993
Neural Networks 0.983 0.997 0.997 0.996 0.995

ROC Curves Comparison
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Figure 12: ROC Curves Comparison For all Models

Table 5: Accuracy Ranking Comparison

Model AUC Score
(Area under the Curve)
Logistic Regression 0.998
XG Boost 0.996
Random Forest 0.996
SVM 0.996
Gradient Boosting 0.994
Neural Networks 0.997
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Most Influential Features

The Most Influential Features in Prediction analysis identifies the key factors contributing to ASD classification within the
Neuro Insight AI framework. The visualization highlights that overall severity, total screening score, and social
communication score are the most impactful features influencing model predictions, followed by social severity and
restricted repetitive behaviour scores. These variables capture critical aspects of social and behavioural functioning, which
are core indicators in ASD assessment. Additionally, features such as age-adjusted social score and age-social interaction
contribute meaningfully, reflecting the developmental influence on behavioural traits. This analysis enhances model
interpretability by revealing how each clinical feature drives ASD risk prediction, ensuring transparency and supporting
evidence-based clinical decision-making.

Most Influential Features in Prediction
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Figure 13: Influential Features in Prediction

C. Clinical Assessment
Calculating each model's ASD Risk Rate

ASD Risk Score ASD Risk Score

Figure 14: ASD Risk Rate by Logistic Regression Figure 15: ASD Risk Rate by XG Boost

ASD Risk Score

Figure 16: ASD Risk Rate by Random Forest Figure 17: ASD Risk Rate by SVM
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Table 6: ASD Risk Score Comparison by Model

Model ASD Risk Score (%) Risk Level Interpretation
Logistic Regression 6.8 Very Low Risk

XG Boost 14.1 Low Risk

Random Forest 24.7 Low Risk

SVM 293 Low Risk

D. Advanced Research Tools

The Advanced Research Tools section in the Neuro Insight Al dashboard provides deeper statistical insights into feature
relevance and its impact on ASD diagnosis. The Feature Correlations with ASD Diagnosis chart reveals that attributes such
as overall severity, social severity, restricted repetitive behaviour score, and social communication score exhibit the strongest
positive correlations with ASD outcomes, indicating their critical role in prediction. Complementing this, the Top 10 Features
by Effect Size (Cohen’s d) plot highlights feature with the greatest mean differences between ASD and non-ASD groups—
most notably the total screening score and social communication score, confirming their strong discriminative power.
Together, these analyses validate the robustness of key predictive features and strengthen the scientific credibility of the
model’s interpretability within clinical research contexts.

Feature Correlations with ASD Diagnosis
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Figure 18: Features Correlations with ASD Diagnosis

Top 10 Features by Effect Size
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Figure 19: Cohen’s d Effect size
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7. CONCLUSION

The growing global prevalence of autism spectrum disorder (ASD) underscores the urgent need for efficient, accurate, and
interpretable diagnostic tools to facilitate early intervention. This study introduced NeuroScan Al, a comprehensive
ensemble-based machine learning framework designed to address the key limitations of existing ASD detection systems.
Through the integration of six complementary models—XGBoost, Random Forest, Logistic Regression, Support Vector
Machine (SVM), Gradient Boosting, and Neural Networks—the framework effectively combines the strengths of both linear
and non-linear learners to achieve superior predictive performance and model stability.

The proposed framework demonstrated that leveraging multi-model fusion, feature importance analysis, and probability-
based scoring can enhance not only the accuracy of ASD prediction but also the transparency and interpretability of results—
two aspects that are critical for clinical adoption. By incorporating an automated preprocessing pipeline and adaptive learning
mechanism, NeuroScan Al ensures efficient data handling and model retraining as new data become available, thereby
promoting long-term sustainability and scalability in real-world healthcare applications. The inclusion of real-time
visualization further bridges the gap between computational modeling and clinical usability, offering an interactive decision-
support system for healthcare professionals. The comparative analysis with baseline models and existing systems highlights
NeuroScan Al’s capacity to overcome the persistent challenges of data heterogeneity, limited interpretability, and static
diagnostic frameworks. The system’s modular architecture allows for flexible integration with diverse datasets—behavioral,
clinical, or neuroimaging—making it adaptable to a wide range of diagnostic scenarios. Most importantly, the framework
aligns with the principles of explainable artificial intelligence (XAI), ensuring that model predictions are not only accurate
but also interpretable and trustworthy.

In conclusion, NeuroScan Al represents a significant advancement in the application of machine learning for early ASD
detection. It offers a unified, interpretable, and data-driven diagnostic support system capable of assisting clinicians in
making informed and timely decisions. The proposed model contributes both methodologically and practically to the field
of computational psychiatry, establishing a foundation for future enhancements such as the integration of multimodal data
(e.g., genetic and speech biomarkers), Transformer-based architectures (e.g., BERT, TabNet), and cloud-based deployment
for large-scale clinical use. Ultimately, this research bridges the gap between artificial intelligence and clinical neuroscience,
demonstrating how hybrid, interpretable ML frameworks like NeuroScan Al can transform ASD screening into a more
objective, efficient, and accessible process—paving the way for personalized early interventions and improved patient
outcomes.

8. FUTURE SCOPE

While NeuroScan Al demonstrates significant progress toward automated, accurate, and interpretable ASD detection, several
avenues remain open for future exploration and refinement. The framework’s modular and data-driven design provides a
solid foundation for extending its capabilities across broader diagnostic, clinical, and research contexts. The following future
directions highlight the potential for further enhancement and real-world deployment of the system.

a) Integration of Multimodal Data Sources:

Future research can focus on incorporating multimodal data—including neuroimaging (fMRI, EEG), speech and eye-tracking
data, and genetic biomarkers—to capture the multifaceted nature of ASD. Combining behavioural and biological data will
enable the system to learn richer feature representations and uncover deeper correlations between neurophysiological and
behavioural patterns. Such multimodal fusion could significantly improve diagnostic precision and the generalizability of
the model across diverse population groups.

b) Incorporation of Transformer and Deep Representation Models:

While the current ensemble integrates traditional and neural models, the inclusion of Transformer-based architectures such
as BERT, TabNet, or Vision Transformers (ViTs) can further enhance feature extraction and contextual understanding. These
models are capable of capturing complex, high-dimensional relationships and temporal dependencies in sequential clinical
data. Future research can explore hybrid architectures combining Transformers with existing ensemble techniques to achieve
adaptive, context-aware learning in ASD detection.

¢) Real-Time Clinical Deployment and Cloud Integration:

A key step forward involves deploying NeuroScan Al as a cloud-based diagnostic support platform for real-time use in
hospitals, clinics, and rehabilitation centres. Integrating APIs for electronic health record (EHR) data access, automated
patient profiling, and live feedback loops could enable clinicians to conduct on-demand screening and risk assessment.
Additionally, web-based dashboards and mobile interfaces can enhance accessibility for remote or resource-constrained
regions, democratizing early ASD screening.

d) Longitudinal and Personalized Prediction Models:

Future extensions could include longitudinal modelling—tracking a patient’s behavioral or neurological progression over
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time—to identify developmental trajectories and adaptive changes. By incorporating personalized learning mechanisms, the
system could adapt to individual profiles, providing customized insights into symptom severity and response to therapy. This
would align NeuroScan Al with the goals of precision psychiatry, supporting individualized intervention planning.

e) Advanced Explainability and Model Transparency:

Although NeuroScan Al integrates feature importance and probability-based scoring, further exploration of explainable Al
(XAI) methods such as LIME, SHAP++, and Counterfactual Explanations could enhance model interpretability. These tools
would allow clinicians to visualize how input variables influence predictions at both global (model-wide) and local
(individual) levels. Improved transparency will strengthen clinical trust and regulatory compliance in the use of Al-based
diagnostic systems.

f) Federated and Privacy-Preserving Learning:

To support ethical Al adoption in healthcare, future research could implement federated learning approaches, enabling
NeuroScan Al to train collaboratively across distributed medical centers without sharing sensitive patient data. This would
enhance data diversity, model robustness, and privacy protection—key requirements for scalable deployment in real-world
healthcare networks.
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