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ABSTRACT 

This research presents NeuroScan Artificial Intelligence, a comprehensive machine learning framework designed to enhance 

early autism spectrum disorder (ASD) detection through advanced predictive analytics. Traditional ASD screening methods 

relying on manual questionnaire scoring often lack accuracy and adaptability across diverse populations. Our solution 

employs an ensemble of six machine learning models (XGBoost, Random Forest, Logistic Regression, SVM, Gradient 

Boosting, and Neural Networks) trained on clinically-relevant engineered features, including domain-specific behavioral 

scores, age-adjusted metrics, and biological risk factors. The system processes input from standard A1-A10 screening 

questionnaires, transforming them into sophisticated predictive features through automated preprocessing and feature 

engineering pipelines. Our results demonstrate exceptional performance with Logistic Regression, achieving 98.2% accuracy 

and 0.98 AUC score, significantly outperforming traditional screening methods. The framework incorporates stratified cross-

validation, robust handling of class imbalance, and comprehensive evaluation metrics to ensure reliable predictions. Beyond 

binary classification, NeuroScan AI provides probability-based risk stratification, domain-specific behavioral analysis, and 

evidence-based clinical recommendations through an intuitive interface featuring real-time visualizations, including 

probability gauges, feature importance charts, and interactive analytics. This approach bridges the gap between 

computational efficiency and clinical utility, offering healthcare professionals an objective, scalable tool for early ASD 

identification while maintaining interpretability through feature importance analysis and transparent probability scoring. The 

system's modular architecture allows continuous learning from new data, making it adaptable to evolving diagnostic criteria 

and diverse demographic populations. 

 

Keywords: autism spectrum disorder (ASD), Machine Learning, Predictive Analytics, Early Detection, XG Boost, Clinical 

Decision Support, Feature Engineering 

1. INTRODUCTION 

Autism Spectrum Disorder (ASD) is a complex neurodevelopmental condition characterized by persistent deficits in social 

communication, restricted interests, and repetitive behaviours that manifest during early childhood. According to the World 

Health Organization (WHO, 2023), approximately one in every 100 children globally is diagnosed with ASD, making early 

identification a crucial step toward timely intervention and improved developmental outcomes. However, the diagnostic 

process for ASD remains predominantly subjective, relying heavily on behavioural assessments, parental reports, and clinical 

expertise rather than objective, data-driven measures. This dependency often results in delayed or inconsistent diagnoses, 

especially in regions with limited access to specialized healthcare professionals. 

In recent years, the integration of artificial intelligence (AI) and machine learning (ML) has emerged as a transformative 

approach in healthcare analytics, enabling predictive modelling, risk assessment, and early disease detection. Numerous 

studies have explored ML algorithms such as Support Vector Machines (SVMs), Random Forests, and Neural Networks to  
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detect ASD using behavioural, genetic, or neuroimaging data. Despite promising outcomes, existing systems often suffer 

from limitations such as poor generalization, lack of interpretability, and inadequate feature integration. Most current models 

focus narrowly on either clinical or behavioural datasets without leveraging a comprehensive feature space that captures the 

multifaceted nature of ASD. Additionally, many frameworks fail to offer real-time prediction and visualization, which are 

essential for practical deployment in healthcare settings. 

To address these challenges, this research proposes Neuro Scan AI, a hybrid and ensemble-based machine learning 

framework designed to enhance the accuracy, reliability, and interpretability of early ASD detection. The framework 

integrates advanced data preprocessing, feature engineering, and model fusion techniques to capture subtle diagnostic 

patterns across diverse attributes. Neuro Scan AI employs an ensemble of six high-performing models—XG Boost, Random 

Forest, Logistic Regression, Support Vector Machine (SVM), Gradient Boosting, and a Deep Neural Network (DNN)—that 

collectively improve prediction robustness through a weighted voting mechanism. This hybridization ensures that the system 

balances interpretability (from linear models) with non-linear representational power (from deep and tree-based models). 

Furthermore, the framework incorporates feature importance analysis and probability scoring mechanisms, enabling 

clinicians and researchers to understand which features most strongly influence ASD prediction outcomes. By providing 

real-time visualization and automated preprocessing pipelines, NeuroScan AI bridges the gap between computational 

intelligence and clinical usability. The system’s adaptive learning capability also allows for model retraining as new data 

becomes available, making it a scalable and sustainable diagnostic support tool. 

The central research problem addressed by this study is: 

“How can an integrated, ensemble-based machine learning framework be designed to achieve high interpretability and 

diagnostic accuracy for early ASD detection across heterogeneous datasets?” 

To investigate this, the study adopts a systematic multi-phase approach—including comprehensive data preprocessing, 

feature selection using correlation and variance thresholds, model training with hyperparameter optimization, ensemble 

fusion for prediction enhancement, and real-time visualization of diagnostic outcomes. The experimental evaluation 

compares the performance of individual models with the proposed ensemble system using standard metrics such as accuracy, 

precision, recall, F1-score, and AUC. 

This Project Neuro Scan AI aims to contribute a unified, interpretable, and efficient framework for AI-assisted autism 

detection, bridging the gap between clinical insight and machine intelligence. This research not only enhances diagnostic 

reliability but also paves the way for the integration of automated decision-support systems in neurodevelopmental disorder 

screening, offering significant potential for real-world healthcare applications. 

2. LITERATURE REVIEW 

Autism Spectrum Disorder (ASD) has been an active area of research within the domains of neuroscience, psychology, and 

artificial intelligence, with growing interest in leveraging computational models for early diagnosis and behavioural pattern 

recognition. The evolution of machine learning (ML) and deep learning (DL) has significantly advanced the potential for 

automating ASD detection by analysing clinical, behavioural, and neuroimaging data. This section reviews and critically 

evaluates existing approaches, methodologies, and their limitations to position the contribution of the proposed Neuro Scan 

AI framework. 

a) Early Computational Approaches in ASD Detection 

Initial studies focused on statistical and rule-based models that relied on structured diagnostic questionnaires such as the 

Autism Diagnostic Observation Schedule (ADOS) and the Autism Diagnostic Interview-Revised (ADI-R). For example, 

Wall et al. [1] developed a machine learning classifier using ADOS scores and achieved high accuracy with logistic 

regression models. However, such systems were dependent on manually labelled behavioural data and lacked generalization 

to unseen populations. Similarly, Duda et al. [2] utilized decision trees and Naïve Bayes classifiers for behavioural datasets 

but reported reduced robustness when applied to data collected from different demographic groups. These early models 

demonstrated the feasibility of ML for ASD detection but were limited by narrow feature spaces and data homogeneity. 

b) Advances in Machine Learning for Behavioural and Clinical Data 

Subsequent research integrated supervised learning techniques such as Support Vector Machines (SVM), Random Forests 

(RF), and Gradient Boosting to improve diagnostic accuracy. Bone et al. [3] applied SVM and Random Forest models to 

behavioural assessments, achieving accuracies above 85%. Their study highlighted the potential of ML to capture complex 

feature interactions but also noted interpretability issues, making it difficult for clinicians to understand decision boundaries. 

Other works, such as Thabtah [4], [5], proposed rule-based ML frameworks to enhance transparency; however, these systems 

often sacrificed accuracy in exchange for interpretability. 

Overall, traditional ML models achieved substantial progress in ASD classification but remained constrained by manual 

preprocessing requirements, static feature representations, and the absence of automated data pipelines. 
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c) Deep Learning and Neuroimaging-Based Detection 

The application of deep learning models marked a significant leap in ASD research, particularly using functional MRI (fMRI) 

and EEG-based datasets. Heinsfeld et al. [6], [7] employed a Deep Neural Network (DNN) to analyze the Autism Brain 

Imaging Data Exchange (ABIDE) dataset, achieving high diagnostic accuracy by leveraging spatial and temporal brain 

connectivity patterns. Similarly, Khosla et al. [8] utilized Convolutional Neural Networks (CNNs) for resting-state fMRI 

analysis, demonstrating that deep models can automatically learn discriminative neurobiological features. Despite these 

advancements, deep learning models demand large labelled datasets, which are often scarce in clinical contexts. Moreover, 

their “black-box” nature limits explainability, hindering adoption in real-world diagnostic workflows where interpretability 

and clinical validation are essential. 

d) Ensemble and Hybrid Modelling Strategies 

Recent studies have explored ensemble learning—combining multiple classifiers to improve predictive robustness. Chen et 

al. integrated Gradient Boosting, Random Forest, and Logistic Regression to enhance ASD detection from behavioural 

metrics, showing that ensemble systems outperform single-model approaches in accuracy and generalization. Similarly, Joshi 

et al. proposed a hybrid model combining SVM and Neural Networks to leverage linear and nonlinear learning patterns 

simultaneously. While these studies demonstrated improved performance, they often lacked adaptive learning mechanisms, 

real-time visualization, and comprehensive interpretability frameworks such as feature importance mapping or probability 

scoring. This gap underscores the need for an integrative approach that merges predictive performance with model 

transparency. 

e) Interpretability and Clinical Integration 

Interpretability has become a central concern in applying AI for healthcare diagnostics. Lundberg and Lee [9], [10] 

introduced the SHAP (Shapley Additive explanations) framework to explain individual predictions in ML models, promoting 

transparency in medical AI applications. In the context of ASD, studies like Rajkomar et al. [11] and Choi et al. [12] to [15] 

have emphasized the importance of feature-level insights to support clinician trust and decision-making. However, many 

ASD detection models remain opaque, offering limited insight into how features such as age, communication scores, or 

social interaction metrics influence predictions. Bridging this interpretability gap is essential for transforming AI-driven 

predictions into clinically actionable intelligence. 

f) Research Gap and Motivation 

Despite remarkable progress, the literature reveals several persisting gaps: 

Lack of unified frameworks that integrate multiple learning paradigms (statistical, tree-based, and neural models) into a 

cohesive ensemble system. Limited interpretability in deep learning approaches which restricts clinical applicability and 

transparency. Insufficient automation in data preprocessing and model updating, resulting in static, non-adaptive systems. 

Absence of real-time prediction and visualization tools that can aid clinicians in continuous monitoring and decision support. 

Addressing these limitations, the proposed NeuroScan AI framework introduces a comprehensive ensemble-based 

architecture that combines six ML models—XGBoost, Random Forest, Logistic Regression, SVM, Gradient Boosting, and 

Neural Networks—within a unified, interpretable, and automated diagnostic pipeline. The system leverages feature 

importance analysis, probability-based scoring, and adaptive retraining to enhance both predictive accuracy and clinical 

transparency, thereby filling the major gaps identified in existing literature. 

3. DATASET 

The dataset used in Neuro Insight AI is a clinically curated and feature-engineered dataset designed for early detection of 

autism spectrum disorder (ASD) in children. Each row corresponds to an individual screening record, integrating 

behavioural, biological, and demographic indicators. The data supports multi-model machine learning training, Comparative 

analysis, and clinical interpretation within the Streamlet-based Neuro Insight AI framework. 

 

Figure 1: Description of Used Dataset 
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Table 1: Demographic and Clinical Attributes 

Feature Name Description Type 

ID Unique identifier for each child(e.g., SUBJ_0000) Categorical 

age Age of the child (in years, float values normalized for modelling) Continuous 

gender Encoded as 0= Female, 1=Male Binary 

ethnicity Encoded categorical value representing ethnic group Categorical 

jaundice 1=Yes, 0=N0 ---indicates presence of neonatal jaundice Binary 

autism Indicates whether there is a family history of autism Binary 

used_app_before Whether the subject’s guardian previously used an ASD screening app Binary 

result Aggregate screening score computed during data collection Continuous 

age_desc Categorical descriptor, e.g.,” Child” or “Adolescent” Categorical 

relation Relationship of respondent to the child (numerical ncoding:0-4) Ordinal 

Clas/ASD Target label—1=ASD Positive, 0=ASD Negative Binary 

 

Table 2:  Derived and Engineering Features 

Feature Name Description Type 

social_ con Social communication composite score Continuous 

restricted Restricted or repetitive behavior index Continuous 

total_ score Total of all A1-A10 responses Integer 

biological_ Binary marker derived from biological history(e.g., jaundice + family 

history) 

Binary 

age_ adjusted Normalized score accounting for age variance Continuous 

social_ ratio, rrb_ ratio Proportion of social/behavioral domain relative to total score Continuous 

rrb_ intensity, rrb_ variability Quantify strength and variation in repetitive behavior patterns Continuous 

age_social, age_rrb Combined indicators of age and domain-specific responses Continuous 

social_severity, rrb_severity, 

overall severity 

Severity levels in different behavior categories(scaled 0-3) Ordinal 

 

4. DATA ANALYSIS AND PREPROCESSING 

1. Overview 

The dataset used in Neuro Insight AI integrates behavioral, demographic, and biological parameters for early autism spectrum 

disorder (ASD) screening. To ensure high-quality input for machine learning models, a multi-stage data preprocessing and 

feature engineering pipeline was implemented. This pipeline enhances interpretability, reduces noise, and improves model 

generalization by transforming raw clinical data into optimized predictive features. 

2. Data Cleaning and Preparation 

1. Handling Missing Values: 

Continuous variables (e.g., age, total score) were imputed using median imputation. 

Categorical variables (e.g., gender, ethnicity, and relation) were imputed using mode imputation. 

Records with more than 30% missing data were removed to preserve data integrity. 
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2. Outlier Detection and Filtering: 

Outliers in numerical columns such as age and screening scores were identified using the IQR (Interquartile Range) method. 

Extreme values were capped at the 5th and 95th percentiles to avoid skewing model predictions. 

3. Data Consistency and Normalization: 

Column names and data types were standardized for consistency. 

Duplicate entries were removed using unique ID validation (SUBJ_0000 format). 

3. Encoding and Transformation 

Categorical Encoding: 

Binary features (e.g., gender, jaundice, autism, used app before) were encoded as 0 and 1. 

Ordinal features such as relation were numerically mapped based on logical hierarchy (e.g., 0 = Self, 1 = Parent,  

2 = Relative, etc.). 

Non-numeric descriptors (agendas, Class/ASD) were label-encoded. 

Target Variable Encoding: 

Class/ASD was encoded as: 

1 → ASD Positive 

0 → ASD Negative 

4. Data Splitting and Scaling 

Train–Test Split: 

The dataset is split into 80% training and 20% testing sets. 

Stratified sampling ensured equal distribution of ASD and non-ASD cases. 

Handling Class Imbalance: 

Class imbalance was mitigated using SMOTE (Synthetic Minority Over-sampling Technique). 

This ensured balanced label distribution during training, improving recall for minority (ASD-positive) samples. 

Cross-Validation Setup: 

Applied Stratified k-Fold (k=10) cross-validation across all models. 

Ensures reproducibility and robustness of model performance metrics (Accuracy, AUC, Precision, Recall). 

5. Final Feature Set for Modeling 

After preprocessing and engineering, the final dataset included 32 optimized features, combining: 

10 behavioral screening scores (A1–A10) 

6 demographic/biological parameters 

12 engineered features (domain ratios, severity indices, interactions) 

1 target label (Class/ASD) 

5. MODELLING 

1. RANDOM FOREST (RF) 

RF is a decision tree-grounded ensemble bracket system and follows the split and conquer fashion in the input dataset to 

produce multiple decision-making trees (known as the timber) (42). It works in two phases. At first, it creates a timber by 

combining the ‘N’ number of decision trees, and in the alternate phase, it makes prognostications for each tree generated 

in the first phase. The working process of the RF algorithm is illustrated below 

1) Select arbitrary samples from the training dataset. 

2) Construct decision trees for each training sample. 

3) Select the value of ‘N’ to define the number of decision trees. 

4) reprise Steps 1 and 2. 
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5) For each test sample, find the prognostications of each decision tree, and assign the test sample a class value based 

on majority voting. 

2) DECISION TREE (DT) 

DT follows a top-down approach to make a predictive model for class values using training data, converting decision-making 

rules (43). This exploration employed the information gain system to select the stylish trait. Assuming Pi the probability that 

xi D, exists in a class Ci, and is prognosticated by| Ci, D|/| D|. To classify cases in the dataset D, the required information is 

demanded, and the following equation calculates it 

                                                      Info(D) = −∑m i=1 Pi log2 (Pi)  

where Info(D) is the average quantum of information demanded to identify Ci of a case, xi D, and the ideal of DT is to 

peak constantly, D, into sub datasets D1, D2......... Dn. 

The following equation estimates the  

                                                      Info A(D) = Xv j=1 |Dj | |D| ∗ Info (Dj) 

Eventually, the following equation calculates the information gain value 

Gain(A) = Info(D) – Info A(D) 

3) LOGISTIC REGRESSION 

 Predicated on a given dataset of independent variables, logistic regression calculates the liability that an event will 

occur, analogous to voting or not advancing. The dependent variable’s range is 0 to 1. In logistic regression, the odds — that 

is, the liability of success divided by the probability of failure- are converted using the logit formula. The following formulae 

are used to express this logistic function, which is sometimes referred to as the log odds or the natural logarithm of odds. 

p =   __1____ 

       1 + e − x 

where p denotes the probability of case x. At the time of model training, for each case x1, x2, x3. xn the logistic portions will 

be b0, b1, b2. bn. The stochastic grade descent system estimates and updates the values of the portions. 

v = b0x0 + b1x1+........................................+ bnxn 

 

p = ____1___ 

       1 + e − v 

Now, the following equation is used to contemporize the values of the portions 

b = b l ∗( y − p) ∗( 1 − p) ∗ p ∗ x 

4) SUPPORT VECTOR MACHINE (SVM) 

SVM is used to classify both direct and indirect data and mainly works well for high-dimensional data with nonlinear 

mapping. It explores the decision boundary or optimal hyperplane to separate one class from another. This study used Radial 

Basis Function (RBF) as a kernel function and SVM automatically defines centres, weights, and thresholds and reduces an 

upper bound of awaited test error (29),( 44). 

K (x, x 0) = exp(− (||x − x 0 ||) 2 2δ 2 ) 

 where (||x-x0 ||) 2 defines the squared Euclidean distance between the two feature samples and δ is a free parameter. 

5) XGBoost (Extreme Gradient Boosting) 

XGBoost is an advanced implementation of the gradient boosting framework that combines the predictions of multiple weak 

learners—typically decision trees—into a strong ensemble model. It iteratively minimizes the loss function by adding trees 

that correct the residuals (errors) of previous trees. 

Mathematical Formulation: 

The model prediction at iteration 𝑡is: 

𝒚̂𝒊
(𝒕)

= ∑

𝒕

𝒌=𝟏

𝒇𝒌(𝒙𝒊), 𝒇𝒌 ∈ 𝓕 
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where ℱPresents the space of regression trees. 

The objective function is minimized as: 

𝐎𝐛𝐣 = ∑

𝐧

𝐢=𝟏

𝐥(𝐲𝐢, 𝐲̂𝐢
(𝐭)
) +∑

𝐭

𝐤=𝟏

𝛀(𝐟𝐤) 

with the regularization term: 

𝛀(𝐟) = 𝛄𝐓 +
𝟏

𝟐
𝛌∑

𝐓

𝐣=𝟏

𝐰𝐣
𝟐 

where: 

• l= loss function (e.g., logistic loss), 

• T= number of leaves, 

• wj= leaf weights, 

• γand λ= regularization parameters. 

This regularization penalizes complex trees, preventing overfitting and enhancing generalization. 

5) Neural Network (NN) 

A Neural Network (NN) is a computational model inspired by the human brain, composed of interconnected layers of neurons 

that transform input features through weighted connections and nonlinear activation functions. 

Mathematical Representation: 

For a neuron 𝑗in layer 𝑙: 

𝒂𝒋
(𝒍)

= 𝒇(∑

𝒊

𝒘𝒊𝒋
(𝒍)
𝒂𝒊
(𝒍−𝟏)

+ 𝒃𝒋
(𝒍)
) 

where: 

• 𝑎𝑖
(𝑙−1)

= activation from the previous layer, 

• 𝑤𝑖𝑗
(𝑙)

= weight connecting neuron 𝑖to neuron 𝑗, 

• 𝑏𝑗
(𝑙)

= bias term, 

• 𝑓(⋅)= activation function (e.g., ReLU, sigmoid). 

6. RESULTS 

In the model performance overview, six classification models—XG Boost, Random Forest, Logistic Regression, SVM, 

Gradient Boosting, and Neural Network—were evaluated based on AUC and Accuracy scores. All models achieved perfect 

or near-perfect scores (AUC = 1.0 and Accuracy ≈ 1.0), indicating excellent performance on the dataset. Among them, 

Logistic Regression was selected as the best model, likely due to its simplicity, efficiency, and comparable performance to 

more complex models. However, such high scores across all models may suggest a very easy dataset or potential overfitting, 

highlighting the need to ensure proper evaluation using cross-validation and unseen test data. 

 

 

Figure 2: Overview of Model Performance 
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A. Data Analysis: 

a) Clinical Distributions 

The data analysis effectively explores the distribution and relationships of autism spectrum disorder (ASD) indicators within 

the dataset. The ASD Distribution pie chart shows that about 29.6% of individuals are classified as ASD and 70.4% as non-

ASD, indicating a moderately imbalanced dataset. The Gender Distribution bar chart highlights a larger representation of 

females compared to males. The Age Distribution by ASD Status shows that ASD cases are more concentrated among 

children aged 5–10 years. The Total Screening Score Distribution clearly differentiates between ASD and non-ASD groups, 

with higher screening scores linked to ASD. The Social Communication Score and Restricted Repetitive Score boxplots 

further reveal that individuals with ASD have notably higher median scores in both aspects, indicating stronger 

communication and behavioural differences. 

 

Figure 3:  ASD Distribution in Dataset                                     Figure 4: Gender Distribution 

 

Figure 5: Age Distribution by ASD Status                       Figure 6: Total Screening Score Distribution by ASD status 

 

Figure 7: Social Communication Score by ASD Status             Figure 8: Restricted Repetitive Score by ASD Status 
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b) Feature Correlations 

The Feature Correlation Analysis module in the Neuro Insight AI dashboard provides a comprehensive understanding of the 

interrelationships among clinical, behavioural, and demographic variables. The correlation matrix heatmap visually 

represents the strength and direction of relationships between features, revealing that several screening-related scores—such 

as social communication, total screening, and repetitive behaviour scores—are highly correlated with the ASD classification 

label. This indicates their strong predictive influence in model training. Additionally, the ASD Prevalence by Number of 

Biological Risk Factors chart highlights that ASD likelihood increases with the presence of specific biological risk factors, 

emphasizing the importance of incorporating biological and behavioural indicators together for more accurate predictions. 

Overall, this correlation analysis helps validate feature relevance, reduce redundancy, and guide model optimization for early 

ASD detection. 

 

Figure 9: Feature Correlation Matrix 

 

Figure 10: ASD Prevalence by Number of Biological Risk Factors 

 

B. Model Training 

Overall Model Performance of 6 models: 

Logistic Regression 

                   Support Vector Machine (SVM) 

                      Random Forest 
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                      Gradient Boosting 

                       XGBoost 

                       Neural Networks 

Fig 11: Model Performance Radar chart 

Table 3: Model Performance Metrics Table 

Model Accuracy AUC Precision Recall F1-Score 

Logistic Regression 0.990 0.998 0.997 0.997 0.996 

XG Boost 0.983 0.996 0.996 0.995 0.994 

Random Forest 0.986 0.996 0.997 0.993 0.992 

SVM 0.986 0.996 0.996 0.992 0.991 

Gradient Boosting 0.986 0.994 0.995 0.994 0.993 

Neural Networks 0.983 0.997 0.997 0.996 0.995 

 

 

Figure 12: ROC Curves Comparison For all Models 

 

Table 5: Accuracy Ranking Comparison 

Model AUC Score 

(Area under the Curve) 

Logistic Regression 0.998 

XG Boost 0.996 

Random Forest 0.996 

SVM 0.996 

Gradient Boosting 0.994 

Neural Networks 0.997 
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Most Influential Features 

The Most Influential Features in Prediction analysis identifies the key factors contributing to ASD classification within the 

Neuro Insight AI framework. The visualization highlights that overall severity, total screening score, and social 

communication score are the most impactful features influencing model predictions, followed by social severity and 

restricted repetitive behaviour scores. These variables capture critical aspects of social and behavioural functioning, which 

are core indicators in ASD assessment. Additionally, features such as age-adjusted social score and age-social interaction 

contribute meaningfully, reflecting the developmental influence on behavioural traits. This analysis enhances model 

interpretability by revealing how each clinical feature drives ASD risk prediction, ensuring transparency and supporting 

evidence-based clinical decision-making. 

 

Figure 13: Influential Features in Prediction 

 

C. Clinical Assessment 

Calculating each model's ASD Risk Rate 

 

 

Figure 14: ASD Risk Rate by Logistic Regression               Figure 15: ASD Risk Rate by XG Boost 

 

Figure 16: ASD Risk Rate by Random Forest                               Figure 17: ASD Risk Rate by SVM 
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Table 6: ASD Risk Score Comparison by Model 

Model ASD Risk Score (%) Risk Level Interpretation 

Logistic Regression 6.8 Very Low Risk 

XG Boost 14.1 Low Risk 

Random Forest 24.7 Low Risk 

SVM 29.3 Low Risk 

 

D. Advanced Research Tools 

The Advanced Research Tools section in the Neuro Insight AI dashboard provides deeper statistical insights into feature 

relevance and its impact on ASD diagnosis. The Feature Correlations with ASD Diagnosis chart reveals that attributes such 

as overall severity, social severity, restricted repetitive behaviour score, and social communication score exhibit the strongest 

positive correlations with ASD outcomes, indicating their critical role in prediction. Complementing this, the Top 10 Features 

by Effect Size (Cohen’s d) plot highlights feature with the greatest mean differences between ASD and non-ASD groups—

most notably the total screening score and social communication score, confirming their strong discriminative power. 

Together, these analyses validate the robustness of key predictive features and strengthen the scientific credibility of the 

model’s interpretability within clinical research contexts. 

 

Figure 18: Features Correlations with ASD Diagnosis 

 

 

Figure 19: Cohen’s d Effect size 
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7. CONCLUSION 

The growing global prevalence of autism spectrum disorder (ASD) underscores the urgent need for efficient, accurate, and 

interpretable diagnostic tools to facilitate early intervention. This study introduced NeuroScan AI, a comprehensive 

ensemble-based machine learning framework designed to address the key limitations of existing ASD detection systems. 

Through the integration of six complementary models—XGBoost, Random Forest, Logistic Regression, Support Vector 

Machine (SVM), Gradient Boosting, and Neural Networks—the framework effectively combines the strengths of both linear 

and non-linear learners to achieve superior predictive performance and model stability. 

The proposed framework demonstrated that leveraging multi-model fusion, feature importance analysis, and probability-

based scoring can enhance not only the accuracy of ASD prediction but also the transparency and interpretability of results—

two aspects that are critical for clinical adoption. By incorporating an automated preprocessing pipeline and adaptive learning 

mechanism, NeuroScan AI ensures efficient data handling and model retraining as new data become available, thereby 

promoting long-term sustainability and scalability in real-world healthcare applications. The inclusion of real-time 

visualization further bridges the gap between computational modeling and clinical usability, offering an interactive decision-

support system for healthcare professionals. The comparative analysis with baseline models and existing systems highlights 

NeuroScan AI’s capacity to overcome the persistent challenges of data heterogeneity, limited interpretability, and static 

diagnostic frameworks. The system’s modular architecture allows for flexible integration with diverse datasets—behavioral, 

clinical, or neuroimaging—making it adaptable to a wide range of diagnostic scenarios. Most importantly, the framework 

aligns with the principles of explainable artificial intelligence (XAI), ensuring that model predictions are not only accurate 

but also interpretable and trustworthy. 

In conclusion, NeuroScan AI represents a significant advancement in the application of machine learning for early ASD 

detection. It offers a unified, interpretable, and data-driven diagnostic support system capable of assisting clinicians in 

making informed and timely decisions. The proposed model contributes both methodologically and practically to the field 

of computational psychiatry, establishing a foundation for future enhancements such as the integration of multimodal data 

(e.g., genetic and speech biomarkers), Transformer-based architectures (e.g., BERT, TabNet), and cloud-based deployment 

for large-scale clinical use. Ultimately, this research bridges the gap between artificial intelligence and clinical neuroscience, 

demonstrating how hybrid, interpretable ML frameworks like NeuroScan AI can transform ASD screening into a more 

objective, efficient, and accessible process—paving the way for personalized early interventions and improved patient 

outcomes. 

8. FUTURE SCOPE 

While NeuroScan AI demonstrates significant progress toward automated, accurate, and interpretable ASD detection, several 

avenues remain open for future exploration and refinement. The framework’s modular and data-driven design provides a 

solid foundation for extending its capabilities across broader diagnostic, clinical, and research contexts. The following future 

directions highlight the potential for further enhancement and real-world deployment of the system. 

a) Integration of Multimodal Data Sources: 

Future research can focus on incorporating multimodal data—including neuroimaging (fMRI, EEG), speech and eye-tracking 

data, and genetic biomarkers—to capture the multifaceted nature of ASD. Combining behavioural and biological data will 

enable the system to learn richer feature representations and uncover deeper correlations between neurophysiological and 

behavioural patterns. Such multimodal fusion could significantly improve diagnostic precision and the generalizability of 

the model across diverse population groups. 

b) Incorporation of Transformer and Deep Representation Models: 

While the current ensemble integrates traditional and neural models, the inclusion of Transformer-based architectures such 

as BERT, TabNet, or Vision Transformers (ViTs) can further enhance feature extraction and contextual understanding. These 

models are capable of capturing complex, high-dimensional relationships and temporal dependencies in sequential clinical 

data. Future research can explore hybrid architectures combining Transformers with existing ensemble techniques to achieve 

adaptive, context-aware learning in ASD detection. 

c) Real-Time Clinical Deployment and Cloud Integration: 

A key step forward involves deploying NeuroScan AI as a cloud-based diagnostic support platform for real-time use in 

hospitals, clinics, and rehabilitation centres. Integrating APIs for electronic health record (EHR) data access, automated 

patient profiling, and live feedback loops could enable clinicians to conduct on-demand screening and risk assessment. 

Additionally, web-based dashboards and mobile interfaces can enhance accessibility for remote or resource-constrained 

regions, democratizing early ASD screening. 

d) Longitudinal and Personalized Prediction Models: 

Future extensions could include longitudinal modelling—tracking a patient’s behavioral or neurological progression over 



Gaddam Sowmya, Dr. G. Mary Swarna Latha, Dr. Ambati Rama Mohan 

Reddy, Dr. R.M. Noorullah 
 

pg. 8956 

Journal of Neonatal Surgery | Year: 2025 | Volume: 14 | Issue: 32s 

 

time—to identify developmental trajectories and adaptive changes. By incorporating personalized learning mechanisms, the 

system could adapt to individual profiles, providing customized insights into symptom severity and response to therapy. This 

would align NeuroScan AI with the goals of precision psychiatry, supporting individualized intervention planning. 

e) Advanced Explainability and Model Transparency: 

Although NeuroScan AI integrates feature importance and probability-based scoring, further exploration of explainable AI 

(XAI) methods such as LIME, SHAP++, and Counterfactual Explanations could enhance model interpretability. These tools 

would allow clinicians to visualize how input variables influence predictions at both global (model-wide) and local 

(individual) levels. Improved transparency will strengthen clinical trust and regulatory compliance in the use of AI-based 

diagnostic systems. 

f) Federated and Privacy-Preserving Learning: 

To support ethical AI adoption in healthcare, future research could implement federated learning approaches, enabling 

NeuroScan AI to train collaboratively across distributed medical centers without sharing sensitive patient data. This would 

enhance data diversity, model robustness, and privacy protection—key requirements for scalable deployment in real-world 

healthcare networks. 
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