Antiviral Efficacy of Iota-Carrageenan Lozenges in Treating Acute Viral Pharyngitis: A Randomized Controlled Study
DOI:
https://doi.org/10.52783/jns.v13.1432Keywords:
Iota-carrageenan, acute viral pharyngitis, human rhinovirus, antiviral therapy, symptom relief, viral load reduction, randomized controlled trialAbstract
Acute viral pharyngitis, commonly caused by human rhinovirus (HRV), poses significant public health challenges, often requiring symptomatic treatment without directly addressing viral replication. This randomized controlled study aimed to evaluate the efficacy of iota-carrageenan lozenges in reducing symptom severity and viral load in patients with acute viral pharyngitis. A total of 180 patients were randomly assigned to receive either iota-carrageenan or a placebo, administered as lozenges six times daily for up to 10 days. Symptom severity was tracked using Jackson’s Total Symptom Score (TSS), while viral load was assessed through RT-PCR on Days 1 and 5. The results showed that the iota-carrageenan group experienced a significant reduction in TSS, particularly between Days 2 and 4, indicating faster symptom relief compared to the placebo group. HRV-positive patients in the iota-carrageenan group demonstrated a greater reduction in viral load, with a 90.2% decrease versus 72.0% in the placebo group. Both groups reported minimal adverse effects, primarily mild throat irritation, suggesting that iota-carrageenan is well-tolerated. These findings suggest that iota-carrageenan lozenges may provide an effective antiviral therapy for acute viral pharyngitis, reducing both symptom burden and viral replication. The treatment’s safety profile and its potential to curb transmission make it a valuable alternative or adjunct to conventional treatments. Further research with larger, diverse populations is recommended to confirm these results and expand the potential applications of iota-carrageenan in managing upper respiratory tract infections.
Downloads
Metrics
References
S. Cherian, V. Potdar, S. Jadhav, P. Yadav, N. Gupta, M. Das, P. Rakshit, S. Singh, P. Abraham, S. Panda, et al., "Convergent evolution of SARS-CoV-2 spike mutations, L452R, E484Q and P681R, in the second wave of COVID-19 in Maharashtra, India," bioRxiv, Apr. 2021, doi: 10.1101/2021.04.22.440932.
E. Volz, S. Mishra, M. Chand, J. C. Barrett, R. Johnson, L. Geidelberg, W. R. Hinsley, D. J. Laydon, G. Dabrera, Á. O’Toole, et al., "Assessing transmissibility of SARS-CoV-2 lineage B.1.1.7 in England," Nature, vol. 593, pp. 266–269, 2021, doi: 10.1038/s41586-021-03470-x.
N. G. Davies, S. Abbott, R. C. Barnard, C. I. Jarvis, A. J. Kucharski, J. D. Munday, C. A. B. Pearson, T. W. Russell, D. C. Tully, A. D. Washburne, et al., "Estimated transmissibility and impact of SARS-CoV-2 lineage B.1.1.7 in England," Science, vol. 372, no. 6538, 2021, doi: 10.1126/science.abg3055.
Y. J. Kim, U. S. Jang, S. M. Soh, J. Y. Lee, and H. R. Lee, "The Impact on infectivity and neutralization efficiency of SARS-CoV-2 lineage B.1.351 pseudovirus," Viruses, vol. 13, no. 633, 2021, doi: 10.3390/v13040633.
D. Planas, D. Veyer, A. Baidaliuk, I. Staropoli, F. Guivel-Benhassine, M. M. Rajah, C. Planchais, F. Porrot, N. Robillard, J. Puech, et al., "Reduced sensitivity of SARS-CoV-2 variant delta to antibody neutralization," Nature, vol. 596, pp. 276–280, 2021, doi: 10.1038/s41586-021-03777-9.
P. Wang, R. G. Casner, M. S. Nair, M. Wang, J. Yu, G. Cerutti, L. Liu, P. D. Kwong, Y. Huang, L. Shapiro, et al., "Increased resistance of SARS-CoV-2 variant P.1 to antibody neutralization," bioRxiv, Mar. 2021, doi: 10.1101/2021.03.01.433466.
National Institutes of Health, "COVID-19 Treatment Guidelines—Therapeutic Management of Nonhospitalized Adults With COVID-19." [Online]. Available: https://www.covid19treatmentguidelines.nih.gov/management/clinical-management/nonhospitalized-adults--therapeutic-management/. Accessed: Jul. 28, 2021.
European Centre for Disease Prevention and Control, "Risk of SARS-CoV-2 Transmission from Newly-Infected Individuals with Documented Previous Infection or Vaccination." [Online]. Available: https://www.ecdc.europa.eu/en/publications-data/sars-cov-2-transmission-newly-infected-individuals-previous-infection#copy-to-clipboard. Accessed: Aug. 2, 2021.
Y. J. Hou, K. Okuda, C. E. Edwards, D. R. Martinez, T. Asakura, K. H. Dinnon, T. Kato, R. E. Lee, B. L. Yount, T. M. Mascenik, et al., "SARS-CoV-2 reverse genetics reveals a variable infection gradient in the respiratory tract," Cell, vol. 182, pp. 429–446.e14, 2020, doi: 10.1016/j.cell.2020.05.042.
M. Meselson, "Droplets and aerosols in the transmission of SARS-CoV-2," N. Engl. J. Med., vol. 382, p. 2063, 2020, doi: 10.1056/NEJMc2009324.
P. Little, R. C. Read, R. Amlôt, T. Chadborn, C. Rice, J. Bostock, and L. Yardley, "Reducing risks from coronavirus transmission in the home-the role of viral load," BMJ, vol. 369, p. m1728, 2020, doi: 10.1136/bmj.m1728.
D. A. Collier, A. De Marco, I. Ferreira, B. Meng, R. P. Datir, A. C. Walls, S. A. Kemp, J. Bassi, D. Pinto, C. Silacci-Fregni, et al., "Sensitivity of SARS-CoV-2 B.1.1.7 to mRNA vaccine-elicited antibodies," Nature, vol. 593, pp. 136–141, 2021, doi: 10.1038/s41586-021-03461-y.
C. K. Wibmer, F. Ayres, T. Hermanus, M. Madzivhandila, P. Kgagudi, B. E. Lambson, T. de Oliveira, M. Vermeulen, K. van der Berg, et al., "SARS-CoV-2 501Y.V2 escapes neutralization by South African COVID-19 donor plasma," Nat. Med., vol. 27, pp. 622–625, 2021, doi: 10.1038/s41591-021-01285-x.
B. Korber, W. M. Fischer, S. Gnanakaran, H. Yoon, J. Theiler, W. Abfalterer, N. Hengartner, E. E. Giorgi, T. Bhattacharya, B. Foley, et al., "Tracking Changes in SARS-CoV-2 Spike: Evidence that D614G Increases Infectivity of the COVID-19 Virus," Cell, vol. 182, pp. 812–827.e19, 2020, doi: 10.1016/j.cell.2020.06.043.
S. E. Galloway, P. Paul, D. R. MacCannell, M. A. Johansson, J. T. Brooks, A. MacNeil, R. B. Slayton, S. Tong, B. J. Silk, G. L. Armstrong, et al., "Emergence of SARS-CoV-2 B.1.1.7 Lineage—United States, December 29, 2020-January 12, 2021," MMWR Morb. Mortal. Wkly. Rep., vol. 70, pp. 95–99, 2021, doi: 10.15585/mmwr.mm7003e2.
B. Meng, S. A. Kemp, G. Papa, R. Datir, I. Ferreira, S. Marelli, W. T. Harvey, S. Lytras, A. Mohamed, G. Gallo, et al., "Recurrent emergence of SARS-CoV-2 spike deletion H69/V70 and its role in the Alpha variant B.1.1.7," Cell Rep., vol. 35, p. 109292, 2021, doi: 10.1016/j.celrep.2021.109292.
H. Tegally, E. Wilkinson, M. Giovanetti, A. Iranzadeh, V. Fonseca, J. Giandhari, D. Doolabh, S. Pillay, E. J. San, N. Msomi, et al., "Detection of a SARS-CoV-2 variant of concern in South Africa," Nature, vol. 592, pp. 438–443, 2021, doi: 10.1038/s41586-021-03402-9.
Public Health England, "Investigation of SARS-CoV-2 Variants of Concern: Technical Briefings." [Online]. Available: https://www.gov.uk/government/publications/investigation-of-novel-sars-cov-2-variant-variant-of-concern-20201201. Accessed: Apr. 13, 2022.
M. Mwenda, N. Saasa, N. Sinyange, G. Busby, P. J. Chipimo, J. Hendry, O. Kapona, S. Yingst, J. Z. Hines, P. Minchella, et al., "Detection of B.1.351 SARS-CoV-2 Variant Strain—Zambia, December.
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
You are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
Terms:
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.