An Efficient and Hybrid Antlion Optimization-Based Genetic Algorithm Assisted Machine Learning Technique: A Metaheuristic Approach for Dengue Prediction

Authors

  • G. Ruba
  • S. Rizwana

DOI:

https://doi.org/10.52783/jns.v14.2024

Keywords:

Optimization, feature selection, dengue fever, over-sampling, synthetic sampling, accuracy

Abstract

Dengue Prediction is a very valuable task in public health, particularly in areas that are most at risk of dengue fever. In this research, an improved the Antlion Optimization Algorithm (ALO) with a Genetic Algorithm (GA) are proposed and applied to improve the predictive accuracy of dengue cases. The precondition for input data preparatory is an elaborate pre-processing pipeline which include handling missing values using mode imputation, removing noise using outlier detection methods and normalizing data. Categorical variables are then encoded While class imbalance problems are addressed either by Synthetic Minority Over-sampling Technique (SMOTE). After that feature selection and extraction processes are fine-tuned using the hybrid ALO-GA approach; adopting ALO for feature selection and GA for tuning the parameters, the proposed technique minimizes overfitting and improve the accuracy of the classifier. The proposed hybrid model is compared with other classifiers under the machine learning domain and good performance improvements are found in areas such as sensitivity, specificity, and F1-score. This metaheuristic approach allows for choosing the right epidemiological and environmental variables for the model making it more accurate.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Setyawan, A. F., Ariyanto, A. D. P., & Fikriah, F. K. (2024). CLASSIFICATION OF DENGUE FEVER DISEASE USING A MACHINE LEARNING-BASED RANDOM FOREST ALGORITHM. JIKO (Jurnal Informatika dan Komputer), 7(2), 88-92.

Van Duong, C., Tran, U. T. P., Van Nguyen, V., & Bae, Y. J. (2021). Predator selection and predator-prey interactions for the biological control of mosquito dengue vectors in northern Vietnam. Journal of Vector Ecology, 46(2), 163-172.

Jitonnom, J., Meelua, W., Tue-Nguen, P., Saparpakorn, P., Hannongbua, S., & Chotpatiwetchkul, W. (2024). 3D-QSAR and molecular docking studies of peptide-hybrids as dengue virus NS2B/NS3 protease inhibitors. Chemico-Biological Interactions, 396, 111040.

Sarma, D., Hossain, S., Mittra, T., Bhuiya, M. A. M., Saha, I., & Chakma, R. (2020, December). Dengue prediction using machine learning algorithms. In 2020 IEEE 8th R10 humanitarian technology conference (R10-HTC) (pp. 1-6). IEEE.

Dourjoy, S. M. K., Rafi, A. M. G. R., Tumpa, Z. N., & Saifuzzaman, M. (2021). A comparative study on prediction of dengue fever using machine learning algorithm. In Advances in Distributed Computing and Machine Learning: Proceedings of ICADCML 2020 (pp. 501-510). Springer Singapore.

Salim, N. A. M., Wah, Y. B., Reeves, C., Smith, M., Yaacob, W. F. W., Mudin, R. N., ... & Haque, U. (2021). Prediction of dengue outbreak in Selangor Malaysia using machine learning techniques. Scientific reports, 11(1), 939.

Majeed, M. A., Shafri, H. Z. M., Zulkafli, Z., & Wayayok, A. (2023). A deep learning approach for dengue fever prediction in Malaysia using LSTM with spatial attention. International journal of environmental research and public health, 20(5), 4130.

Gupta, G., Khan, S., Guleria, V., Almjally, A., Alabduallah, B. I., Siddiqui, T., ... & Al-Subaie, M. (2023). DDPM: A dengue disease prediction and diagnosis model using sentiment analysis and machine learning algorithms. Diagnostics, 13(6), 1093.

Nguyen, V. H., Tuyet-Hanh, T. T., Mulhall, J., Minh, H. V., Duong, T. Q., Chien, N. V., ... & Son, M. T. (2022). Deep learning models for forecasting dengue fever based on climate data in Vietnam. PLoS Neglected Tropical Diseases, 16(6), e0010509.

Cabrera, M., Leake, J., Naranjo-Torres, J., Valero, N., Cabrera, J. C., & Rodríguez-Morales, A. J. (2022). Dengue prediction in Latin America using machine learning and the one health perspective: a literature review. Tropical Medicine and Infectious Disease, 7(10), 322.

Gangula, R., Thirupathi, L., Parupati, R., Sreeveda, K., & Gattoju, S. (2023). Ensemble machine learning based prediction of dengue disease with performance and accuracy elevation patterns. Materials Today: Proceedings, 80, 3458-3463.

Roster, K., Connaughton, C., & Rodrigues, F. A. (2022). Machine-learning–based forecasting of dengue fever in Brazilian cities using epidemiologic and meteorological variables. American Journal of Epidemiology, 191(10), 1803-1812.

Yavari Nejad, F., & Varathan, K. D. (2021). Identification of significant climatic risk factors and machine learning models in dengue outbreak prediction. BMC Medical Informatics and Decision Making, 21(1), 141.

Jeevika Tharini, V., & Vijayarani, S. (2020). Bio-inspired High-Utility Item Framework based Particle Swarm Optimization Tree Algorithms for Mining High Utility Itemset. In Advances in Computational Intelligence and Informatics: Proceedings of ICACII 2019 (pp. 265-276). Springer Singapore.

Dey, S. K., Rahman, M. M., Howlader, A., Siddiqi, U. R., Uddin, K. M. M., Borhan, R., & Rahman, E. U. (2022). Prediction of dengue incidents using hospitalized patients, metrological and socio-economic data in Bangladesh: A machine learning approach. PloS one, 17(7), e0270933.

Akter, T., Islam, M. T., Hossain, M. F., & Ullah, M. S. (2024). A Comparative Study between Time Series and Machine Learning Technique to Predict Dengue Fever in Dhaka City. Discrete Dynamics in Nature and Society, 2024(1), 2757381.

Mumtaz, Z., Rashid, Z., Saif, R., & Yousaf, M. Z. (2024). Deep learning guided prediction modeling of dengue virus evolving serotype. Heliyon.

Kuo, C. Y., Yang, W. W., & Su, E. C. Y. (2024). Improving dengue fever predictions in Taiwan based on feature selection and random forests. BMC Infectious Diseases, 24(Suppl 2), 334.

Gupta, G., Khan, S., Guleria, V., Almjally, A., Alabduallah, B. I., Siddiqui, T., ... & Al-Subaie, M. (2023). DDPM: A dengue disease prediction and diagnosis model using sentiment analysis and machine learning algorithms. Diagnostics, 13(6), 1093.

Manoharan, S. N., Kumar, K. M., & Vadivelan, N. (2023). A novel CNN-TLSTM approach for dengue disease identification and prevention using IoT-fog cloud architecture. Neural Processing Letters, 55(2), 1951-1973.

Majeed, M. A., Shafri, H. Z. M., Zulkafli, Z., & Wayayok, A. (2023). A deep learning approach for dengue fever prediction in Malaysia using LSTM with spatial attention. International journal of environmental research and public health, 20(5), 4130.

Downloads

Published

2025-03-10

How to Cite

1.
Ruba G, Rizwana S. An Efficient and Hybrid Antlion Optimization-Based Genetic Algorithm Assisted Machine Learning Technique: A Metaheuristic Approach for Dengue Prediction. J Neonatal Surg [Internet]. 2025Mar.10 [cited 2025Nov.14];14(2):198-210. Available from: https://www.jneonatalsurg.com/index.php/jns/article/view/2024