A Review: Wild And Mutant P53 In Cancer Progression And Therapy

Authors

  • Seema Gupta
  • Biswajit Maity

DOI:

https://doi.org/10.52783/jns.v14.3041

Keywords:

N/A

Abstract

N/A

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Aggarwal, M., Saxena, R., Sinclair, E., et al. Reactivation of mutant p53 by a dietary-related compound phenethyl isothiocyanate inhibits tumor growth. Cell Death Differ, 2016; 23: 1615–1627.

Alam, S.K., Yadav, V.K., Bajaj, S., et al. DNA damage-induced ephrin-B2 reverse signaling promotes chemoresistance and drives EMT in colorectal carcinoma harboring mutant p53. Cell Death Differ, 2016; 23: 707–722.

Alexandrova, E.M., Yallowitz, A.R., Li, D., et al. Improving survival by exploiting tumour dependence on stabilized mutant p53 for treatment. Nature,2015; 523: 352–356.

Di Minin, G., Bellazzo A., Dal Ferro, M., et al. Mutant p53 reprograms TNF signaling in cancer cells through interaction with the tumor suppressor DAB2IP. Mol. Cell.2014; 56: 617–629.

Dittmer, D., Pati, S., Zambetti, G., et al. Gain of function mutations inp53. Nat. Genet,1993; 4: 42–46.

Donehower, L.A., Soussi, T., Korkut, A., et al. Integrated analysis of TP53 gene and pathway alterations in The Cancer Genome Atlas. Cell Rep, 2019; 28: 1370–1384.

Dong, P., Karaayvaz, M., Jia, N., et al. Mutant p53 gain-of-function induces epithelial-mesenchymal transition through modulation of the miR-130b–ZEB1 axis. Oncogene,2013; 32: 3286–3295.

Dong, Z.Y., Zhong, W.Z., Zhang, X.C., et al. . Potential predictive value of TP53 and KRAS mutation status for response to PD-1 blockade immunotherapy in lung adenocarcinoma. Clin. Cancer Res, 2017; 23: 3012–3024.

Escoll, M., Gargini, R., Cuadrado, A., et al. Mutant p53 oncogenic functions in cancer stem cells are regulated by WIP through YAP/TAZ. Oncogene,2017; 36: 3515–3527.

Fontemaggi, G., Dell’Orso, S., Trisciuoglio, D., et al. The execution ofthe transcriptional axis mutant p53, E2F1 and ID4 promotes tumor neo-angiogenesis. Nat. Struct. Mol. Biol, 2009; 16: 1086–1093.

Foster, B.A., Coffey, H.A., Morin, M.J., et al. . Pharmacological rescue of mutant p53 conformation and function. Science,1999; 286: 2507–2510.

Freed-Pastor, W.A., Mizuno, H., Zhao, X., et al. Mutant p53 disrupts mammary tissue architecture via the mevalonate pathway. Cell,2012; 148: 244–258.

Freed-Pastor, W.A., and Prives, C. Mutant p53: one name, many proteins. Genes Dev, 2012; 26: 1268–1286.

.Frum, R.A., Love, I.M., Damle, P.K., et al. Constitutive activation of DNA damage checkpoint signaling contributes to mutant p53 accumulation via modulation of p53 ubiquitination. Mol. Cancer Res, 2016; 14: 423–436.

Jones MJ and Lal A. MicroRNAs, wild-type and mutant p53: More questions than answers. RNA Biology, 2012; 9:6, 781-791.

Donzelli, S., Fontemaggi, G., Fazi, F., et al. MicroRNA-128-2 targets the transcriptional repressor E2F5 enhancing mutant p53 gain of function. Cell Death Differ, 2012; 19: 1038–1048.

Nakayama M, Hong CP, Oshima H, Sakai E, Kim SJ and Oshima M. Loss of wild-type p53 promotes mutant p53-driven metastasis through acquisition of survival and tumor-initiating properties.Nature Communications, 2020; 11: 2333, 1-14.

Hiraki M, et al. Small-Molecule Reactivation of Mutant p53 to Wild-Type-like p53 through the p53-Hsp40 Regulatory Axis. Chemistry & Biology 2015; 22: 1206–1216

O’Farrell TJ, Ghosh P, Dobashi N, Sasaki CY and Longo DL. Comparison of the Effect of Mutant and Wild-Type p53 on Global Gene Expression. Cancer Research, 2004; 64: 8199 – 8207.

Zhu G, Pan C, Bei J-X, Li B, Liang C, Xu Y and Fu X . Mutant p53 in Cancer Progression and Targeted Therapies. Front. Oncol, 2020; 10:595187

Zhang C , Liu J , Xu D, Zhang T, Hu W, and Feng Z. Review: Gain-of-function mutant p53 in cancer progression and therapy.Journal of Molecular Cell Biology, 2020; 12(9): 674–687

Muller PAJ, and Vousden KH. Mutant p53 in Cancer: New Functions and Therapeutic Opportunities.Cancer Cell, 2014; 25: 304-317.

Chen Z, Zhang T, Su W, Dou Z, Zhao D, Jin X, Lei H, Wang J, Xie X, Cheng B, Li Q, Zhang H, and Di C. Review: Mutant p53 in cancer: from molecular mechanism to therapeutic modulation. Cell Death and Disease, 2022; 13:974.

Babamohamadi M, Babaei E, Salih BA, Babamohammadi M, Azeez HJ, and Othman G. Review: Recent findings on the role of wild-type and mutant p53 in cancer development and therapy. Front. Mol. Biosci, 2022; 9:903075.

Junk DJ , Vrba L, Watts GS, Oshiro MM, Martinez JD and Futscher BW. Different Mutant/Wild-Type p53 Combinations Cause a Spectrum of Increased Invasive Potential in Nonmalignant Immortalized Human Mammary Epithelial Cells. Neoplasia, 2008; 10: 450–461

Sangoi AR, Chan E, Abdulfatah E,Stohr BA,Nguyen J, Trpkov K, Siadat F, Hirsch M,Falzarano S, Udager AM and Kunju LP. p53 null phenotype is a “positive result” in urothelial carcinoma in situ. Modern Pathology, 2022; 35:1287–1292.

Corazzari M and Collavin L. Mini Review: Wild-type and mutant p53 in cancer-related ferroptosis. A matter of stress management?. Front. Genet, 2023; 14:1148192.

Ramy Rahmé R, Silverman LR, Anguiano V, Campbell MJ, Fenaux P and Manfredi JJ. Mutant p53 regulates a distinct gene set by a mode of genome occupancy that is shared with wild type. EMBO Reports, 2025;

Blagih J, Buck MD and Vousden KH. Review: p53, cancer and the immune response. Journal of Cell Science, 2020; 133: 1-13.

Kastan MB. Mini Review: Wild-Type p53: Tumors Can’t Stand It.Cell, 2007; 128: 837-840.

Psyrri A, Kountourakis P, Yu Z, Papadimitriou C, Markakis S,Camp RL, Economopoulos T, and Dimopoulos MA. Analysis of p53 protein expression levels on ovarian cancer tissue microarray using automated quantitative analysis elucidates prognostic patient subsets. Annals of Oncology, 2007; 18: 709–715.

Marei HE, Althani A, Aff N, Hasan A, Thomas Caceci T, Pozzoli G, Morrione A, Giordano A and Cenciarelli C. Review: p53 signaling in cancer progression and therapy.. Cancer Cell International, 2021; 21: 703,1-15

Goh AM, Coffill CR and David P Lane DP. Review: role of mutant p53 in human cancer. J Pathol, 2011; 223: 116–126.

Zhang S, Carlsen L, Borrero LH, Seyhan AA, Tian X and El-Deiry WS. Review: Advanced Strategies for Therapeutic Targeting of Wild-Type and Mutant p53 in Cancer.Cancer. Biomolecules, 2022: 12: 548, 1-26

Román-Rosales AA, E. García-Villa E, Herrera LA, Gariglio P and Díaz-Chávez J. Mutant p53 gain of function induces HER2 over-expression in cancer cells. BMC Cancer, 2018; 18:709, 1-12.

.Hiraki, M., Hwang, S.Y., Cao, S., et al. Small-molecule reactivation of mutant p53 to wild-type-like p53 through the p53–Hsp40 regulatory axis. Chem. Biol 2015; 22: 1206–1216.

Kravchenko, J.E., Ilyinskaya, G.V., Komarov, P.G., et al. Small-molecule RETRA suppresses mutant p53-bearing cancer cells through a p73-dependent salvage pathway. Proc. Natl Acad. Sci. USA, 2008; 105: 6302–6307.

.Ladds, M., and Lain, S. Small molecule activators of the p53 response. J. Mol. Cell Biol, 2019; 11: 245–254.

Labuschagne, C.F., Zani, F., and Vousden, K.H. Control of metabolism by p53—cancer and beyond. Biochim. Biophys. Acta Rev. Cancer, 2018; 1870: 32–42.

Lambert, J.M., Gorzov, P., Veprintsev, D.B., et al. (2009). PRIMA-1 reactivates mutant p53 by covalent binding to the core domain. Cancer Cell 15, 376–388.

31. Lang, G.A., Iwakuma, T., Suh, Y.A., et al. (2004). Gain of function of a p53 hot spot mutation in a mouse model of Li-Fraumeni syndrome. Cell 119, 861–872.

Leijen, S., van Geel, R.M., Sonke, G.S., et al. (2016). Phase II study of WEE1 inhibitor AZD1775 plus carboplatin in patients with TP53-mutated ovarian cancer refractory or resistant to first-line therapy within 3 months. J. Clin. Oncol. 34, 4354–4361.

Levine, A.J. (2019). The many faces of p53: something for everyone. J. Mol. Cell Biol. 11, 524–530.

Levine, A.J., Hu, W., and Feng, Z. (2006). The P53 pathway: what questions remain to be explored? Cell Death Differ. 13, 1027–1036.

Li, D., Marchenko, N.D., and Moll, U.M. (2011a). SAHA shows preferential cytotoxicity in mutant p53 cancer cells by destabilizing mutant p53 through inhibition of the HDAC6–Hsp90 chaperone axis. Cell Death Differ. 18, 1904–1913.

Li, D., Marchenko, N.D., Schulz, R., et al. (2011b). Functional inactivation of endogenous MDM2 and CHIP by HSP90 causes aberrant stabilization of mutant p53 in human cancer cells. Mol. Cancer Res. 9, 577–588.

Li, D., Yallowitz, A., Ozog, L., et al. (2014). A gain-of-function mutant p53–HSF1 feed forward circuit governs adaptation of cancer cells to proteotoxic stress. Cell Death Dis. 5, e1194.

Liao, P., Zeng, S.X., Zhou, X., et al. (2017). Mutant p53 gains its function via c-Myc activation upon CDK4 phosphorylation at serine 249 and consequent PIN1 binding. Mol. Cell 68, 1134–1146.e6.

Liu, J., Zhang, C., Hu, W., et al. (2019a). Tumor suppressor p53 and metabolism. J. Mol. Cell Biol. 11, 284–292.

Liu, J., Zhang, C., Zhao, Y., et al. (2017a). MicroRNA control of p53. J. Cell. Biochem. 118, 7–14.

Liu, J., Zhang, C., Zhao, Y., et al. (2017b). Parkin targets HIF-1a for ubiquitination and degradation to inhibit breast tumor progression. Nat. Commun. 8, 1823.

Liu, Y., Tavana, O., and Gu, W. (2019b). p53 modifications: exquisite decorations of the powerful guardian. J. Mol. Cell Biol. 11, 564–577.

Loizou, E., Banito, A., Livshits, G., et al. (2019). A gain-of-function p53-mutant oncogene promotes cell fate plasticity and myeloid leukemia through the pluripotency factor FOXH1. Cancer Discov. 9, 962–979.

Lukashchuk, N., and Vousden, K.H. (2007). Ubiquitination and degradation of mutant p53. Mol. Cell. Biol. 27, 8284–8295.

Mackay, H.L., Moore, D., Hall, C., et al. (2018). Genomic instability in mutant p53 cancer cells upon entotic engulfment. Nat. Commun. 9, 3070.

Madar, S., Harel, E., Goldstein, I., et al. (2013). Mutant p53 attenuates the anti-tumorigenic activity of fibroblasts-secreted interferon b. PLoS One 8, e61353.

Wang Z, Strasser A, Kelly GL. Should mutant TP53 be targeted for cancer therapy? Cell Death Differ. 2022;29:911–20.

Hafner A, Bulyk ML, Jambhekar A, Lahav G. The multiple mechanisms that regulate p53 activity and cell fate. Nat Rev Mol Cell Biol. 2019;20:199–210.

Vaddavalli PL, Schumacher B. The p53 network: cellular and systemic DNA damage responses in cancer and aging. Trends Genet. 2022;38:598–612.

Malekzadeh, P., Pasetto, A., Robbins, P.F., et al. (2019). Neoantigen screening identifies broad TP53 mutant immunogenicity in patients with epithelial cancers. J. Clin. Invest. 129, 1109–1114.

Mantovani, F., Collavin, L., and Del Sal, G. (2019). Mutant p53 as a guardian of the cancer cell. Cell Death Differ. 26, 199–212.

Masciarelli, S., Fontemaggi, G., Di Agostino, S., et al. (2014). Gain-of-function mutant p53 downregulates miR-223 contributing to chemoresistance of cultured tumor cells. Oncogene 33, 1601–1608.

Mathupala, S.P., Heese, C., and Pedersen, P.L. (1997). Glucose catabolism in cancer cells. The type II hexokinase promoter contains functionally active response elements for the tumor suppressor p53. J. Biol. Chem. 272, 22776–22780.

Matoba, S., Kang, J.G., Patino, W.D., et al. (2006). p53 regulates mitochondrial respiration. Science 312, 1650–1653.

Meng, X., Bi, J., Li, Y., et al. (2018). AZD1775 increases sensitivity to olaparib and gemcitabine in cancer cells with p53 mutations. Cancers 10, 149.

Merkle, F.T., Ghosh, S., Kamitaki, N., et al. (2017). Human pluripotent stem cells recurrently acquire and expand dominant negative P53 mutations. Nature 545, 229–233.

Milner, J., and Medcalf, E.A. (1991). Cotranslation of activated mutant p53 with wild type drives the wild-type p53 protein into the mutant conformation. Cell, 1991, 65: 765–774.

Milner, J., Medcalf, E.A., and Cook, A.C. (1991). Tumor suppressor p53: analysis of wild-type and mutant p53 complexes. Mol. Cell. Biol. 11, 12–19.

Muller, P.A., Caswell, P.T., Doyle, B., et al. Mutant p53 drives invasion by promoting integrin recycling. Cell, 2009,139: 1327–1341.

Muller, P.A., Trinidad, A.G., Timpson, P., et al. Mutant p53 enhances MET trafficking and signalling to drive cell scattering and invasion. Oncogene, 2013; 32: 1252–1265.

Muller, P.A., and Vousden, K.H. p53 mutations in cancer. Nat. Cell Biol, 2013; 15: 2–8.

Muller, P.A., and Vousden, K.H. Mutant p53 in cancer: new functions and therapeutic opportunities. Cancer Cell, 2014; 25: 304–317.

Muller, P.A., Vousden, K.H., and Norman, J.C. p53 and its mutants in tumor cell migration and invasion. J. Cell Biol. 2011;192: 209–218.

Murphy, K.L., Dennis, A.P., and Rosen, J.M. A gain of function p53 mutant promotes both genomic instability and cell survival in a novel p53-null mammary epithelial cell model. FASEB J. 2000; 14: 2291–2302.

Neilsen, P.M., Noll, J.E., Suetani, R.J., et al. Mutant p53 uses p63 as a molecular chaperone to alter gene expression and induce a pro-invasive secretome. Oncotarget, 2011; 2: 1203–1217.

Novo, D., Heath, N., Mitchell, L., et al. Mutant p53s generate pro-invasive niches by influencing exosome podocalyxin levels. Nat. Commun. 2018;9: 5069.

Olive, K.P., Tuveson, D.A., Ruhe, Z.C., et al. Mutant p53 gain of function in two mouse models of Li-Fraumeni syndrome. Cell, 2004; 119: 847–860.

Padmanabhan, A., Candelaria, N., Wong, K.K., et al. USP15-dependent lysosomal pathway controls p53-R175H turnover in ovarian cancer cells. Nat. Commun. 2018; 9: 1270.

Parrales, A., Ranjan, A., Iyer, S.V., et al. DNAJA1 controls the fate of misfolded mutant p53 through the mevalonate pathway. Nat. Cell Biol. 2016; 18: 1233–1243.

Peng, Y., Chen, L., Li, C., et al. Inhibition of MDM2 by hsp90 contributes to mutant p53 stabilization. J. Biol. Chem. 2001; 276: 40583–40590.

Pfister, N.T., Fomin, V., Regunath, K., et al. Mutant p53 cooperates with the SWI/SNF chromatin remodeling complex to regulate VEGFR2 in breast cancer cells. Genes Dev. 2015; 29: 1298–1315.

Pfister, N.T., and Prives, C. Transcriptional regulation by wild-type and cancer-related mutant forms of p53. Cold Spring Harb. Perspect. Med. 2017 ;7: a026054.

Polotskaia, A., Xiao, G., Reynoso, K., et al. Proteome-wide analysis of mutant p53 targets in breast cancer identifies new levels of gain-of-function that influence PARP, PCNA, and MCM4. Proc. Natl Acad. Sci. USA, 2015; 112: E1220–E1229.

Pourebrahim, R., Zhang, Y., Liu, B., et al. Integrative genome analysis of somatic p53 mutant osteosarcomas identifies Ets2-dependent regulation of small nucleolar RNAs by mutant p53 protein. Genes Dev. 2017;31: 1847–1857.

Powell, E., Piwnica-Worms, D., and Piwnica-Worms, H. Contribution of p53 to metastasis. Cancer Discov. 2014; 4: 405–414.

Pruszko, M., Milano, E., Forcato, M., et al. The mutant p53–ID4 complex controls VEGFA isoforms by recruiting lncRNA MALAT1. EMBO Rep. 2017; 18: 1331–1351.

Puca, R., Nardinocchi, L., Porru, M., et al. Restoring p53 active conformation by zinc increases the response of mutant p53 tumor cells to anticancer drugs. Cell Cycle, 2011; 10: 1679–1689.

Qiu, Z., Oleinick, N.L., and Zhang, J. ATR/CHK1 inhibitors and cancer therapy. Radiother. Oncol, 2018; 126: 450–464.

Rahnamoun, H., Hong, J., Sun, Z., et al. Mutant p53 regulates enhancer-associated H3K4 monomethylation through interactions with the methyltransferase MLL4. J. Biol. Chem, 2018, 293: 13234–13246.

Rivlin, N., Brosh, R., Oren, M., et al. Mutations in the p53 tumor suppressor gene: important milestones at the various steps of tumorigenesis. Genes Cancer, 2011; 2: 466–474.

Rodriguez, O.C., Choudhury, S., Kolukula, V., et al. Dietary downregulation of mutant p53 levels via glucose restriction: mechanisms and implications for tumor therapy. Cell Cycle, 2012; 11: 4436–4446.

Sampath, J., Sun, D., Kidd, V.J., et al. Mutant p53 cooperates with ETS and selectively up-regulates human MDR1 not MRP1. J. Biol. Chem 2001; 276: 39359–39367.

Schulz-Heddergott, R., Stark, N., Edmunds, S.J., et al. . Therapeutic ablation of gain-of-function mutant p53 in colorectal cancer inhibits Stat3-mediated tumor growth and invasion. Cancer Cell, 2018; 34: 298–314.

Shetzer, Y., Kagan, S., Koifman, G., et al. The onset of p53 loss of heterozygosity is differentially induced in various stem cell types and may involve the loss of either allele. Cell Death Differ, 2014; 21: 1419–1431.

Shetzer, Y., Molchadsky, A., and Rotter, V. Oncogenic mutant p53 gain of function nourishes the vicious cycle of tumor development and cancer stem-cell formation. Cold Spring Harb. Perspect. Med, 2016; 6: a026203.

Silva, J.L., Cino, E.A., Soares, I.N., et al. Targeting the prion-like aggregation of mutant p53 to combat cancer. Acc. Chem. Res, 2018; 51: 181–190.

Singh, S., Vaughan, C.A., Frum, R.A., et al. Mutant p53 establishes targetable tumor dependency by promoting unscheduled replication. J. Clin. Invest, 2017; 127: 1839–1855.

Solomon, H., Dinowitz, N., Pateras, I.S., et al. Mutant p53 gain of function underlies high expression levels of colorectal cancer stem cells markers. Oncogene, 2018; 37: 1669–1684.

Sonego, M., Schiappacassi, M., Lovisa, S., et al. Stathmin regulates mutant p53 stability and transcriptional activity in ovarian cancer. EMBO Mol. Med, 2013; 5: 707–722.

Song, H., Hollstein, M., and Xu, Y. p53 gain-of-function cancer mutants induce genetic instability by inactivating ATM. Nat. Cell Biol, 2007; 9: 573–580.

Soragni, A., Janzen, D.M., Johnson, L.M., et al. A designed inhibitor of p53 aggregation rescues p53 tumor suppression in ovarian carcinomas. Cancer Cell, 2016; 29: 90–103.

Stein, Y., Aloni-Grinstein, R., and Rotter, V. Mutant p53—a potential player in shaping the tumor–stroma crosstalk. J. Mol. Cell Biol, 2019; 11: 600–604.

Stojanovic, N., Hassan, Z., Wirth, M., et al. HDAC1 and HDAC2 integrate the expression of p53 mutants in pancreatic cancer. Oncogene, 2017; 36: 1804–1815.

Suh, Y.A., Post, S.M., Elizondo-Fraire, A.C., et al. Multiple stress signals activate mutant p53 in vivo. Cancer Res, 2011; 71: 7168–7175.

Synnott, N.C., O’Connell, D., Crown, J., et al. COTI-2 reactivates mutant p53 and inhibits growth of triple-negative breast cancer cells. Breast Cancer Res. Treat, 2020; 179: 47–56.

Terzian, T., Suh, Y.A., Iwakuma, T., et al. The inherent instability of mutant p53 is alleviated by Mdm2 or p16INK4a loss. Genes Dev, 2008; 22: 1337–1344.

Tomasini, R., Tsuchihara, K., Tsuda, C., et al. TAp73 regulates the spindle assembly checkpoint by modulating BubR1 activity. Proc. Natl Acad. Sci. USA, 2009; 106: 797–802.

Ubertini, V., Norelli, G., D’Arcangelo, D., et al. Mutant p53 gains new function in promoting inflammatory signals by repression of the secreted interleukin-1 receptor antagonist. Oncogene, 2015; 34: 2493–2504.

Vakifahmetoglu-Norberg, H., Kim, M., Xia, H.G., et al. Chaperone-mediated autophagy degrades mutant p53. Genes Dev, 2013; 27: 1718–1730.

Valenti, F., Ganci, F., Fontemaggi, G., et al. Gain of function mutant p53 proteins cooperate with E2F4 to transcriptionally downregulate RAD17 and BRCA1 gene expression. Oncotarget, 2015; 6: 5547–5566.

Vaughan, C., Pearsall, I., Yeudall, A., et al. p53: its mutations and their impact on transcription. Subcell. Biochem, 2014; 85: 71–90.

Verduci, L., Ferraiuolo, M., Sacconi, A., et al. The oncogenic role of circPVT1 in head and neck squamous cell carcinoma is mediated through the mutant p53/YAP/TEAD transcription-competent complex. Genome Biol, 2017; 18: 237.

Walerych, D., Lisek, K., Sommaggio, R., et al. Proteasome machinery is instrumental in a common gain-of-function program of the p53 missense mutants in cancer. Nat. Cell Biol, 2016; 18: 897–909.

Wang, H., Liao, P., Zeng, S.X., et al. It takes a team: a gain-of-function story of p53-R249S. J. Mol. Cell Biol, 2019; 11: 277–283.

Wang, J., Zhao, Q., Qi, Q., et al. Gambogic acid-induced degradation of mutant p53 is mediated by proteasome and related to CHIP. J. Cell. Biochem, 2011; 112: 509–519.

Wang, W., Cheng, B., Miao, L., et al. Mutant p53-R273H gains new function in sustained activation of EGFR signaling via suppressing miR-27a expression. Cell Death Dis,2013; 4: e574.

Wang, X., Chen, J.X., Liu, J.P., et al. Gain of function of mutant TP53 in glioblastoma: prognosis and response to temozolomide. Ann. Surg. Oncol, 2014; 21: 1337–1344.

Wang, Y., Yang, J., Zheng, H., et al. Expression of mutant p53 proteins implicates a lineage relationship between neural stem cells and malignant astrocytic glioma in a murine model. Cancer Cell, 2009; 15: 514–526.

Weinmann, L., Wischhusen, J., Demma, M.J., et al. A novel p53 rescue compound induces p53-dependent growth arrest and sensitises glioma cells to Apo2L/TRAIL-induced apoptosis. Cell Death Differ, 2008; 15: 718–729.

Weissmueller, S., Manchado, E., Saborowski, M., et al. Mutant p53 drives pancreatic cancer metastasis through cell-autonomous PDGF receptor b signaling. Cell, 2014; 157: 382–394.

Wiech, M., Olszewski, M.B., Tracz-Gaszewska, Z., et al. Molecular mechanism of mutant p53 stabilization: the role of HSP70 and MDM2. PLoS One, 2012; 7: e51426.

Will, K., Warnecke, G., Wiesmuller, L., et al. . Specific interaction of mutant p53 with regions of matrix attachment region DNA elements (MARs) with a high potential for base-unpairing. Proc. Natl Acad. Sci. USA, 1998; 95: 13681–13686.

Xiao, G., Lundine, D., Annor, G.K., et al. Gain-of-function mutant p53 R273H interacts with replicating DNA and PARP1 in breast cancer. Cancer Res. 2020; 80: 394–405.

Xiong, S., Tu, H., Kollareddy, M., et al. Pla2g16 phospholipase mediates gain-of-function activities of mutant p53. Proc. Natl Acad. Sci. USA, 2014; 111: 11145–11150.

Xu, J., Wang, J., Hu, Y., et al. . Unequal prognostic potentials of p53 gain-of-function mutations in human cancers associate with drug-metabolizing activity. Cell Death Dis. 2014; 5: e1108.

Yan, W., Jung, Y.S., Zhang, Y., et al. Arsenic trioxide reactivates proteasome-dependent degradation of mutant p53 protein in cancer cells in part via enhanced expression of Pirh2 E3 ligase. PLoS One, 2014; 9: e103497.

Yu, X., Vazquez, A., Levine, A.J., et al. Allele-specific p53 mutant reactivation. Cancer Cell, 2012; 21: 614–625.

Zhang, C., Liu, J., Zhao, Y., et al. Glutaminase 2 is a novel negative regulator of small GTPase Rac1 and mediates p53 function in suppressing metastasis. eLife, 2016; 5: e10727.

Zhao, Y., Wu, L., Yue, X., et al. A polymorphism in the tumor suppressor p53 affects aging and longevity in mouse models. eLife, 2018; 7: e34701.

Zhao, Y., Yu, H., and Hu, W. The regulation of MDM2 oncogene and its impact on human cancers. Acta Biochim. Biophys. Sin. 2014; 46: 180–189.

Zhao, Y., Zhang, C., Yue, X., et al. Pontin, a new mutant p53-binding protein, promotes gain-of-function of mutant p53. Cell Death Differ. 2015; 22: 1824–1836.

Zheng, T., Wang, J., Zhao, Y., et al. Spliced MDM2 isoforms promote mutant p53 accumulation and gain-of-function in tumorigenesis. Nat. Commun, 2013; 4: 2996.

Zhou, G., Wang, J., Zhao, M., et al. Gain-of-function mutant p53 promotes cell growth and cancer cell metabolism via inhibition of AMPK activation. Mol. Cell, 2014; 54: 960–974.

Zhou, X., Hao, Q., and Lu, H . Mutant p53 in cancer therapy—the barrier or the path. J. Mol. Cell Biol. 2019; 11: 293–305.

Zhu, J., Sammons, M.A., Donahue, G., et al. (2015). Gain-of-function p53 mutants co-opt chromatin pathways to drive cancer growth. Nature 525, 206–211.

Yue, X., Zhang, C., Zhao, Y., et al. Gain-of-function mutant p53 activates small GTPase Rac1 through SUMOylation to promote tumor progression. Genes Dev, 2017a; 31: 1641–1654.

Yue, X., Zhao, Y., Huang, G., et al. A novel mutant p53 binding partner BAG5 stabilizes mutant p53 and promotes mutant p53 GOFs in tumorigenesis. Cell Discov, 2016; 2: 16039.

Yue, X., Zhao, Y., Liu, J., et al. BAG2 promotes tumorigenesis through enhancing mutant p53 protein levels and function. eLife, 2015; 4: e08401.

Yue, X., Zhao, Y., Xu, Y., et al. Mutant p53 in cancer: accumulation, gain-of-function, and therapy. J. Mol. Biol,2017b; 429: 1595–1606.

Zerbini, L.F., Wang, Y., Correa, R.G., et al. Blockage of NF-jB induces serine 15 phosphorylation of mutant p53 by JNK kinase in prostate cancer cells. Cell Cycle, 2005; 4: 1247–1253.

Zhang, C., Lin, M., Wu, R., et al. Parkin, a p53 target gene, mediates the role of p53 in glucose metabolism and the Warburg effect. Proc. Natl Acad. Sci. USA, 2011; 108, 16259–16264.

Zhang, C., Liu, J., Liang, Y., et al. Tumour-associated mutant p53 drives the Warburg effect. Nat. Commun. 2013; 4: 2935

Singh S, Vaughan CA, Frum RA, Grossman SR, Deb S, Palit Deb S. Mutant p53 establishes targetable tumor dependency by promoting unscheduled replication. J Clin Invest, 2017; 127:1839–55.

Amelio I, Melino G. Context is everything: extrinsic signalling and gain-of-function p53 mutants. Cell Death Discovery, 2020; 6:16.

D’Orazi G, Cirone M. Mutant p53 and Cellular Stress Pathways: A Criminal Alliance That Promotes Cancer Progression. Cancers (Basel), 2019; 11:614.

Downloads

Published

2025-04-04

How to Cite

1.
Gupta S, Maity B. A Review: Wild And Mutant P53 In Cancer Progression And Therapy. J Neonatal Surg [Internet]. 2025Apr.4 [cited 2025Nov.14];14(11S):687-713. Available from: https://www.jneonatalsurg.com/index.php/jns/article/view/3041