Significant Analysis of Heart Disease Detection Using Artificial Intelligence Algorithms

Authors

  • Varsha
  • P. Sardar Maran

DOI:

https://doi.org/10.52783/jns.v14.1602

Keywords:

Heart Disease Detection, ECG Analysis, AI Algorithms, Machine Learning Algorithms, Healthcare Analysis.

Abstract

Lifestyle changes affect human health significantly, leading to heart disease and Sudden death in patients. The Healthcare Industry faces multiple challenges in managing and treating the increasing number of patients according to their disease severity level. The challenges for medical experts include early identification of symptoms & timely treatment to save them. The non-availability of efficient, effective, and automatic screening methods and limited medical data analytics augment these challenges. Some current medical applications have stated that Artificial intelligence algorithms provide efficient outcomes in predicting heart diseases. This paper conducted a detailed survey on various artificial intelligence algorithms used for heart disease prediction from various related datasets. The survey aims to identify the limitations and factual problem statements and identify solutions.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Chang, V., Bhavani, V. R., Xu, A. Q., & Hossain, M. A. (2022). An artificial intelligence model for heart disease detection using machine learning algorithms. Healthcare Analytics, 2, 100016.

Chen, Z., Xiao, C., Qiu, H., Tan, X., Jin, L., He, Y., ... & He, N. (2020). Recent advances in artificial intelligence in cardiovascular disease. Journal of Biomedical Nanotechnology, 16(7), 1065-1081.

Kagiyama, N., Shrestha, S., Farjo, P. D., & Sengupta, P. P. (2019). Artificial intelligence: practical primer for clinical research in cardiovascular disease. Journal of the American Heart Association, 8(17), e012788.

Lin, W. C., Chen, J. S., Chiang, M. F., & Hribar, M. R. (2020). Applications of artificial intelligence to electronic health record data in ophthalmology. Translational vision science & technology, 9(2), 13-13.

Manimurugan, S., Almutairi, S., Aborokbah, M. M., Narmatha, C., Ganesan, S., Chilamkurti, N., ... & Almoamari, H. (2022). Two-stage classification model for the prediction of heart disease using IoMT and artificial intelligence. Sensors, 22(2), 476.

Abdel-Motaleb, I., & Akula, R. (2012, May). Artificial intelligence algorithm for heart disease diagnosis using phonocardiogram signals. In 2012 IEEE International Conference on Electro/Information Technology (pp. 1-6). IEEE.

Bahado-Singh, R., Friedman, P., Talbot, C., Aydas, B., Southekal, S., Mishra, N. K., ... & Vishweswaraiah, S. (2023). Cell-free DNA in maternal blood and artificial intelligence: accurate prenatal fetal congenital heart defects detection. American journal of obstetrics and gynaecology, 228(1), 76-e1.

Lin, Y. J., Chuang, C. W., Yen, C. Y., Huang, S. H., Huang, P. W., Chen, J. Y., & Lee, S. Y. (2019, March). The artificial intelligence of things is a wearable system for cardiac disease detection. In 2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS) (pp. 67-70). IEEE.

Mathur, P., Srivastava, S., Xu, X., & Mehta, J. L. (2020). Artificial intelligence, machine learning, and cardiovascular disease. Clinical Medicine Insights: Cardiology, 14, 1179546820927404.

Romiti, S., Vinciguerra, M., Saade, W., Anso Cortajarena, I., & Greco, E. (2020). Artificial intelligence (AI) and cardiovascular diseases: an unexpected alliance. Cardiology Research and Practice, 2020.

Raja, M. S., Anurag, M., Reddy, C. P., & Sirisala, N. R. (2021, January). Machine learning-based heart disease prediction system. In 2021 International Conference on Computer Communication and Informatics (ICCCI) (pp. 1-5). IEEE.

Ganesan, M., & Sivakumar, N. (2019, March). IoT-based heart disease prediction and diagnosis model for healthcare using machine learning models. In 2019 IEEE International Conference on System, Computation, Automation and Networking (ICSCAN) (pp. 1-5). IEEE.

Naidu, T. P., Gopal, K. A., Ahmed, S. R., Revathi, R., Ahammad, S. H., Rajesh, V., ... & Saikumar, K. (2021, December). A hybridized model for the prediction of heart disease using ML algorithms. In 2021 3rd International Conference on Advances in Computing, Communication Control and Networking (ICAC3N) (pp. 256-261). IEEE.

Ogundokun, R. O., Misra, S., Sadiku, P. O., Gupta, H., Damasevicius, R., & Maskeliunas, R. (2022). Computational intelligence approaches for heart disease detection. In Recent Innovations in Computing: Proceedings of ICRIC 2021, Volume 2 (pp. 385-395). Singapore: Springer Singapore.

Wang, J., Liu, C., Li, L., Li, W., Yao, L., Li, H., & Zhang, H. (2020). A stacking-based model for non-invasive detection of coronary heart disease. IEEE Access, 8, 37124-37133.

Premsmith, J., & Ketmaneechairat, H. (2021). A predictive model for heart disease detection using data mining techniques. Journal of Advances in Information Technology, 12(1).

Abdellatif, A., Abdellatef, H., Kanesan, J., Chow, C. O., Chuah, J. H., & Gheni, H. M. (2022). Improving heart disease detection and patients' survival using supervised infinite feature selection and improved weighted random forest. IEEE Access, 10, 67363-67372.

Ramesh, T. R., Lilhore, U. K., Poongodi, M., Simaiya, S., Kaur, A., & Hamdi, M. (2022). Predictive analysis of heart diseases with machine learning approaches. Malaysian Journal of Computer Science, 132-148.

Ali, M. M., Paul, B. K., Ahmed, K., Bui, F. M., Quinn, J. M., & Moni, M. A. (2021). Heart disease prediction using supervised machine learning algorithms: Performance analysis and comparison. Computers in Biology and Medicine, 136, 104672.

Karthick, K., Aruna, S. K., Samikannu, R., Kuppusamy, R., Teekaraman, Y., & Thelkar, A. R. (2022). Implementation of a heart disease risk prediction model using machine learning. Computational and Mathematical Methods in Medicine, 2022.

Rao, I. S., & Rao, T. S. (2016). Performance identification of different heart diseases based on neural network classification. Int. J. Appl. Eng. Res, 11(6), 3859-3864.

Almulihi, A., Saleh, H., Hussien, A. M., Mostafa, S., El-Sappagh, S., Alnowaiser, K., ... & Refaat Hassan, M. (2022). Ensemble Learning Based on Hybrid Deep Learning Model for Heart Disease Early Prediction. Diagnostics, 12(12), 3215.

Sharma, S., & Parmar, M. (2020). Heart disease prediction using deep learning neural network model. International Journal of Innovative Technology and Exploring Engineering (IJITEE), 9(3), 2244-2248.

Rath, A., Mishra, D., Panda, G., & Satapathy, S. C. (2021). Heart disease detection using deep learning methods from imbalanced ECG samples. Biomedical Signal Processing and Control, 68, 102820.

Bharti, R., Khamparia, A., Shabaz, M., Dhiman, G., Pande, S., & Singh, P. (2021). Prediction of heart disease using a combination of machine learning and deep learning. Computational intelligence and neuroscience, 2021.

Miao, K. H., & Miao, J. H. (2018). Coronary heart disease diagnosis using deep neural networks. International journal of advanced computer science and applications, 9(10).

MAlnajjar, M. K., & Abu-Naser, S. S. (2022). Heart sound analysis and classification for cardiovascular disease diagnosis using deep learning.

Khan, M. A. (2020). An IoT framework for heart disease prediction based on MDCNN classifier. IEEE Access, 8, 34717-34727.

Brunese, L., Martinelli, F., Mercaldo, F., & Santone, A. (2020). Deep learning for heart disease detection through cardiac sounds. Procedia Computer Science, 176, 2202-2211.

Sharean, T. M., & Johncy, G. (2022). Deep learning models on Heart Disease Estimation-A review. Journal of Artificial Intelligence, 4(2), 122-130.

https://my.clevelandclinic.org/health/diseases/17069-heart-failure-understanding-heart-failure.

Kim, D.; Kim, S.-H.; Kim, T.; Kang, B.B.; Lee, M.; Park, W.; Ku, S.; Kim, D.; Kwon, J.; Lee, H. Review of machine learning methods in soft robotics. PLoS ONE 2021, 16, e0246102. [Google Scholar] [CrossRef]

Szczepanski, M. Economic Impacts of Artificial Intelligence (AI). 2019. EPRS: European Parliamentary Research Service. Available online: https://policycommons.net/artifacts/1334867/economic-impacts-of-artificial-intelligence-ai/1940719/ (accessed on 27 May 2022).

Watanabe, S.; Hori, T.; Karita, S.; Hayashi, T.; Nishitoba, J.; Unno, Y.; Soplin, N.E.Y.; Heymann, J.; Wiesner, M.; Chen, N. Espnet: End-to-end speech processing toolkit. arXiv 2018, arXiv:1804.00015. [Google Scholar]

Kerkeni, L.; Serrestou, Y.; Mbarki, M.; Raoof, K.; Mahjoub, M.A.; Cleder, C. Automatic speech emotion recognition using machine learning. In Social Media and Machine Learning; IntechOpen: London, UK, 2019. [Google Scholar]

An, J.; Mikhaylov, A.; Sokolinskaya, N. Machine learning in economic planning: Ensembles of algorithms. In Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, 2019; p. 012126. [Google Scholar]

Usuga Cadavid, J.P.; Lamouri, S.; Grabot, B.; Pellerin, R.; Fortin, A. Machine learning applied in production planning and control: A state-of-the-art in the era of industry 4.0. J. Intell. Manuf. 2020, 31, 1531–1558. [Google Scholar] [CrossRef]

Ogidan, E.T.; Dimililer, K.; Ever, YK Machine learning for expert systems in data analysis. In Proceedings of the 2018 2nd International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), Ankara, Turkey, 19–21 October 2018; pp. 1–5. [Google Scholar]

Prasadl, B.; Prasad, P.; Sagar, Y. An approach to develop expert systems in medical diagnosis using machine learning algorithms (asthma) and a performance study. Int. J. Soft Comput. 2011, 2, 26–33. [Google Scholar] [CrossRef]

Kim, D.; Kim, S.-H.; Kim, T.; Kang, B.B.; Lee, M.; Park, W.; Ku, S.; Kim, D.; Kwon, J.; Lee, H. Review of machine learning methods in soft robotics. PLoS ONE 2021, 16, e0246102. [Google Scholar] [CrossRef]

Mosavi, A.; Varkonyi, A. Learning in robotics. Int. J. Comput. Appl. 2017, 157, 8–11. [Google Scholar] [CrossRef]

Artrith, N.; Butler, K.T.; Coudert, F.-X.; Han, S.; Isayev, O.; Jain, A.; Walsh, A. Best practices in machine learning for chemistry. Nat. Chem. 2021, 13, 505–508. [Google Scholar] [CrossRef]

Mater, A.C.; Coote, M.L. Deep learning in chemistry. J. Chem. Inf. Modeling 2019, 59, 2545–2559. [Google Scholar] [CrossRef]

Cruz, J.A.; Wishart, D.S. Applications of machine learning in cancer prediction and prognosis. Cancer Inform. 2006, 2, 59–77. [Google Scholar] [CrossRef]

Miotto, R.; Wang, F.; Wang, S.; Jiang, X.; Dudley, J.T. Deep learning for healthcare: Review, opportunities and challenges. Brief. Bioinform. 2018, 19, 1236–1246. [Google Scholar] [CrossRef]

Shen, D.; Wu, G.; Suk, H.-I. Deep learning in medical image analysis. Annu. Rev. Biomed. Eng. 2017, 19, 221–248. [Google Scholar] [CrossRef][Green Version]

Ball, NM; Brunner, R.J. Data mining and machine learning in astronomy. Int. J. Mod. Phys. D 2010, 19, 1049–1106. [Google Scholar] [CrossRef][Green Version]

Chicco, D. Ten quick tips for machine learning in computational biology. BioData Min. 2017, 10, 1–17. [Google Scholar] [CrossRef]

Zitnik, M.; Nguyen, F.; Wang, B.; Leskovec, J.; Goldenberg, A.; Hoffman, M.M. Machine learning for integrating data in biology and medicine: Principles, practice, and opportunities. Inf. Fusion 2019, 50, 71–91. [Google Scholar] [CrossRef]

Liakos, K.G.; Busato, P.; Moshou, D.; Pearson, S.; Bochtis, D. Machine learning in agriculture: A review. Sensors 2018, 18, 2674. [Google Scholar] [CrossRef][Green Version]

Mahdavinejad, M.S.; Rezvan, M.; Barekatain, M.; Adibi, P.; Barnaghi, P.; Sheth, A.P. Machine learning for Internet of Things data analysis: A survey. Digit. Commun. Netw. 2018, 4, 161–175. [Google Scholar] [CrossRef]

Farrar, C.R.; Worden, K. Structural Health Monitoring: A Machine Learning Perspective; John Wiley & Sons: New York, NY, USA, 2012. [Google Scholar]

Lai, J.; Qiu, J.; Feng, Z.; Chen, J.; Fan, H. Prediction of soil deformation in tunnelling using artificial neural networks. Comput. Intell. Neurosci. 2016, 2016, 33. [Google Scholar] [CrossRef] [PubMed][Green Version]

Recknagel, F. Applications of machine learning to ecological modelling. Ecol. Model. 2001, 146, 303–310. [Google Scholar] [CrossRef]

Tatarinov, V.; Manevich, A.; Losev, I. A system approach to geodynamic zoning based on artificial neural networks. Gorn. Nauk. I Tekhnologii Min. Sci. Technol. 2018, 3, 14–25. [Google Scholar] [CrossRef]

Kuchin, Y.; Mukhamediev, R.; Yakunin, K.; Grundspenkis, J.; Symagulov, A. Assessing the impact of expert labelling of training data on the quality of automatic classification of lithological groups using artificial neural networks. Appl. Comput. Syst. 2020, 25, 145–152. [Google Scholar] [CrossRef]

Kuchin, Y.I.; Mukhamediev, R.I.; Yakunin, K.O. One method of generating synthetic data to assess the upper limit of machine learning algorithms performance. Cogent Eng. 2020, 7, 1718821. [Google Scholar] [CrossRef]

Chen, Y.; Wu, W. Application of one-class support vector machine to quickly identify multivariate anomalies from geochemical exploration data. Geochem. Explor. Environ. Anal. 2017, 17, 231–238. [Google Scholar] [CrossRef]

Mukhamediev, R.I.; Kuchin, Y.; Amirgaliyev, Y.; Yunicheva, N.; Muhamedijeva, E. Estimation of Filtration Properties of Host Rocks in Sandstone-Type Uranium Deposits Using Machine Learning Methods. IEEE Access 2022, 10, 18855–18872. [Google Scholar] [CrossRef]

Goldberg, Y. A primer on neural network models for natural language processing. J. Artif. Intell. Res. 2016, 57, 345–420. [Google Scholar] [CrossRef][Green Version]

Sadovskaya, L.L.; Guskov, A.E.; Kosyakov, D.V.; Mukhamediev, R.I. Natural language text processing: A review of publications. Artif. Intell. Decis. Mak. 2021, 95–115. [Google Scholar] [CrossRef]

Nassif, A.B.; Shahin, I.; Attili, I.; Azzeh, M.; Shaalan, K. Speech recognition using deep neural networks: A systematic review. IEEE Access 2019, 7, 19143–19165. [Google Scholar] [CrossRef]

Kotsiantis, S.B.; Zaharakis, I.; Pintelas, P. Supervised machine learning: A review of classification techniques. Emerg. Artif. Intell. Appl. Comput. Eng. 2007, 160, 3–24. [Google Scholar]

Hastie, T.; Tibshirani, R.; Friedman, J. Unsupervised learning. In The Elements of Statistical Learning; Springer: Berlin/Heidelberg, Germany, 2009; pp. 485–585. [Google Scholar]

Li, Y. Deep reinforcement learning: An overview. arXiv 2017, arXiv:1701.07274. [Google Scholar]

LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]

Downloads

Published

2025-02-07

How to Cite

1.
Varsha V, Maran PS. Significant Analysis of Heart Disease Detection Using Artificial Intelligence Algorithms. J Neonatal Surg [Internet]. 2025Feb.7 [cited 2025Sep.19];14(1S):776-8. Available from: https://www.jneonatalsurg.com/index.php/jns/article/view/1602