Enhancing Brain Tumour Detection using an Ensemble approach of Particle Swarm Optimization and Convolution Neural Network

Authors

  • Manoj Ishi
  • Mahesh Mahajan
  • Makarand Mali
  • Sandip Sonawane

DOI:

https://doi.org/10.52783/jns.v14.1715

Keywords:

Brain tumor, Median Filtering, Feature optimization, Particle Swarm algorithm, Ensemble approach

Abstract

Detecting brain tumor is vital in medical imaging research and computer-aided diagnosis to improve timely diagnosis and treatment outcomes. The diagnostic accuracy depends on the subjective analysis of radiologists applying conventional methods for brain tumor identification, which include MRI scans and biopsies. Innovations in machine and deep learning provide promising automation to improve the precision of tumor diagnosis as compared to the current methods. In this paper, image augmentation, feature extraction, and optimization methods are used to enhance the diagnosis of brain tumors. The proposed approach employs rotation augmentation, median filtering, Grey-Level Co-occurrence Matrix (GLCM) feature extraction, Particle Swarm Optimization (PSO), and a Convolutional Neural Network (CNN) to boost the accuracy and pliability of brain tumor classification. The Harvard repository dataset was used. It has a wide range of brain images for training and validation.  The convolutional neural network combines particle swarm optimization techniques to detect brain tumors in MRI images. An accuracy rate of 96.71% is obtained with this integrated approach, which surpasses the present system. An effective solution for automated tumor detection in MRI images is achieved by integrating cutting-edge image processing methods such as rotation augmentation, median filtering, and GLCM feature extraction with the optimization strengths of PSO and the effective learning capabilities of CNNs.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

S. Saeedi, S. Rezayi, H. Keshavarz, and S. R. Niakan Kalhori, “MRI-based brain tumor detection using convolutional deep learning methods and chosen machine learning techniques,” BMC Med. Inform. Decis. Mak., vol. 23, no. 1, pp. 1–17, 2023, doi: 10.1186/s12911-023-02114-6.

R. Chawla et al., “Brain tumor recognition using an integrated bat algorithm with a convolutional neural network approach,” Meas. Sensors, vol. 24, no. July, p. 100426, 2022, doi: 10.1016/j.measen.2022.100426.

S. Patil and D. Kirange, “Ensemble of Deep Learning Models for Brain Tumor Detection,” Procedia Comput. Sci., vol. 218, no. 2022, pp. 2468–2479, 2022, doi: 10.1016/j.procs.2023.01.222.

A. Chattopadhyay and M. Maitra, “MRI-based brain tumour image detection using CNN based deep learning method,” Smart Agric. Technol., vol. 2, no. 4, p. 100060, 2022, doi: 10.1016/j.neuri.2022.100060.

J. Amin, M. Sharif, A. Haldorai, M. Yasmin, and R. S. Nayak, “Brain tumor detection and classification using machine learning: a comprehensive survey,” Complex Intell. Syst., vol. 8, no. 4, pp. 3161–3183, 2022, doi: 10.1007/s40747-021-00563-y.

P. Gokila Brindha, M. Kavinraj, P. Manivasakam, and P. Prasanth, “Brain tumor detection from MRI images using deep learning techniques,” IOP Conf. Ser. Mater. Sci. Eng., vol. 1055, no. 1, p. 012115, 2021, doi: 10.1088/1757-899x/1055/1/012115.

S. Sangui, T. Iqbal, P. C. Chandra, S. K. Ghosh, and A. Ghosh, “3D MRI Segmentation using U-Net Architecture for the detection of Brain Tumor,” Procedia Comput. Sci., vol. 218, pp. 542–553, 2022, doi: 10.1016/j.procs.2023.01.036.

M. S. I. Khan et al., “Accurate brain tumor detection using deep convolutional neural network,” Comput. Struct. Biotechnol. J., vol. 20, pp. 4733–4745, 2022, doi: 10.1016/j.csbj.2022.08.039.

O. Turk, D. Ozhan, E. Acar, T. C. Akinci, and M. Yilmaz, “Automatic detection of brain tumors with the aid of ensemble deep learning architectures and class activation map indicators by employing magnetic resonance images,” Z. Med. Phys., 2023, doi: 10.1016/j.zemedi.2022.11.010.

M. A. Salam, S. Taha, and S. El_ahmdy, “Predicting Brain Tumor using Transfer Deep Learning,” Int. J. Comput. Appl., vol. 184, no. 37, pp. 33–37, 2022, doi: 10.5120/ijca2022922445.

M. M. Badža and M. C. Barjaktarović, “Classification of brain tumors from mri images using a convolutional neural network,” Appl. Sci., vol. 10, no. 6, 2020, doi: 10.3390/app10061999.

M. Lather and P. Singh, “Investigating Brain Tumor Segmentation and Detection Techniques,” Procedia Comput. Sci., vol. 167, no. 2019, pp. 121–130, 2020, doi: 10.1016/j.procs.2020.03.189.

D. Daimary, M. B. Bora, K. Amitab, and D. Kandar, “Brain Tumor Segmentation from MRI Images using Hybrid Convolutional Neural Networks,” Procedia Comput. Sci., vol. 167, no. 2019, pp. 2419–2428, 2020, doi: 10.1016/j.procs.2020.03.295.

M. K. Islam, M. S. Ali, M. S. Miah, M. M. Rahman, M. S. Alam, and M. A. Hossain, “Brain tumor detection in MR image using superpixels, principal component analysis and template-based K-means clustering algorithm,” Mach. Learn. with Appl., vol. 5, no. May, p. 100044, 2021, doi: 10.1016/j.mlwa.2021.100044.

M. Jian, X. Zhang, L. Ma, and H. Yu, “Tumor Detection in MRI Brain Images Based on Saliency Computational Modeling,” IFAC-PapersOnLine, vol. 53, no. 5, pp. 43–46, 2020, doi: 10.1016/j.ifacol.2021.04.123.

R. Vankdothu and M. A. Hameed, “Brain tumor MRI images identification and classification based on the recurrent convolutional neural network,” Meas. Sensors, vol. 24, no. August, p. 100412, 2022, doi: 10.1016/j.measen.2022.100412.

D. Rammurthy and P. K. Mahesh, “Whale Harris hawks optimization based deep learning classifier for brain tumor detection using MRI images,” J. King Saud Univ. - Comput. Inf. Sci., vol. 34, no. 6, pp. 3259–3272, 2022, doi: 10.1016/j.jksuci.2020.08.006.

N. Kesav and M. G. Jibukumar, “Efficient and low complex architecture for detection and classification of Brain Tumor using RCNN with Two Channel CNN,” J. King Saud Univ. - Comput. Inf. Sci., vol. 34, no. 8, pp. 6229–6242, 2022, doi: 10.1016/j.jksuci.2021.05.008.

R. M. Kronberg, D. Meskelevicius, M. Sabel, M. Kollmann, C. Rubbert, and I. Fischer, “Optimal acquisition sequence for AI-assisted brain tumor segmentation under the constraint of largest information gain per additional MRI sequence,” Smart Agric. Technol., vol. 2, no. 4, p. 100053, 2022, doi: 10.1016/j.neuri.2022.100053.

A. Deshpande, V. V. Estrela, and P. Patavardhan, “The DCT-CNN-ResNet50 architecture to classify brain tumors with super-resolution, convolutional neural network, and the ResNet50,” Neurosci. Informatics, vol. 1, no. 4, p. 100013, 2021, doi: 10.1016/j.neuri.2021.100013.

G. Saad, A. Suliman, L. Bitar, and S. Bshara, “Developing a hybrid algorithm to detect brain tumors from MRI images,” Egypt. J. Radiol. Nucl. Med., vol. 54, no. 1, 2023, doi: 10.1186/s43055-023-00962-w.

S. Solanki, U. P. Singh, S. S. Chouhan, and S. Jain, “Brain Tumour Detection and Classification by using Deep Learning Classifier,” Int. J. Intell. Syst. Appl. Eng., vol. 11, no. 2s, pp. 279–292, 2023.

D. K. Sahoo, S. Mishra, M. N. Mohanty, R. K. Behera, and S. K. Dhar, “Brain Tumor Detection using Deep Learning Approach,” Neurol. India, vol. 71, no. 4, pp. 647–654, 2023, doi: 10.4103/0028-3886.383858.

H. Mohsen, E.-S. A. El-Dahshan, E.-S. M. El-Horbaty, and A.-B. M. Salem, “Classification using deep learning neural networks for brain tumors,” Futur. Comput. Informatics J., vol. 3, no. 1, pp. 68–71, 2018, doi: 10.1016/j.fcij.2017.12.001.

M. Alnowami, E. Taha, S. Alsebaeai, S. Muhammad Anwar, and A. Alhawsawi, “MR image normalization dilemma and the accuracy of brain tumor classification model,” J. Radiat. Res. Appl. Sci., vol. 15, no. 3, pp. 33–39, 2022, doi: 10.1016/j.jrras.2022.05.014.

[26 S. Tankala et al., “A novel depth search based light weight CAR network for the segmentation of brain tumour from MR images,” Neurosci. Informatics, vol. 2, no. 4, p. 100105, 2022, doi: 10.1016/j.neuri.2022.100105.

K. Dang, T. Vo, L. Ngo, and H. Ha, “A deep learning framework integrating MRI image preprocessing methods for brain tumor segmentation and classification,” IBRO Neurosci. Reports, vol. 13, no. October, pp. 523–532, 2022, doi: 10.1016/j.ibneur.2022.10.014.

J. Walsh, A. Othmani, M. Jain, and S. Dev, “Using U-Net network for efficient brain tumor segmentation in MRI images,” Healthc. Anal., vol. 2, no. August, p. 100098, 2022, doi: 10.1016/j.health.2022.100098.

H. M. Rai and K. Chatterjee, “Detection of brain abnormality by a novel Lu-Net deep neural CNN model from MR images,” Mach. Learn. with Appl., vol. 2, no. October, p. 100004, 2020, doi: 10.1016/j.mlwa.2020.100004.

A. S. M. Shafi, M. B. Rahman, T. Anwar, R. S. Halder, and H. M. E. Kays, “Classification of brain tumors and auto-immune disease using ensemble learning,” Informatics Med. Unlocked, vol. 24, p. 100608, 2021, doi: 10.1016/j.imu.2021.100608.

F. M. Refaat, M. M. Gouda, and M. Omar, “Detection and Classification of Brain Tumor Using Machine Learning Algorithms,” Biomed. Pharmacol. J., vol. 15, no. 4, pp. 2381–2397, 2022, doi: 10.13005/bpj/2576.

Y. Peng and J. Sun, “The multimodal MRI brain tumor segmentation based on AD-Net,” Biomed. Signal Process. Control, vol. 80, no. P2, p. 104336, 2023, doi: 10.1016/j.bspc.2022.104336.

Harvard medical dataset. URL: http://www.med.harvard.edu/AANLIB/.

Wang D, Tan D, Liu L. Particle swarm optimization algorithm: an overview. Soft Computing. 2018;22(2):387–408. https://doi.org/10.1007/s00500-016-2474-6.

Downloads

Published

2025-02-12

How to Cite

1.
Ishi M, Mahajan M, Mali M, Sonawane S. Enhancing Brain Tumour Detection using an Ensemble approach of Particle Swarm Optimization and Convolution Neural Network. J Neonatal Surg [Internet]. 2025Feb.12 [cited 2025Oct.4];14(1S):1165-73. Available from: https://www.jneonatalsurg.com/index.php/jns/article/view/1715