Invitro Evaluation of the Anti-Inflammatory Activity of Phloroglucinol and Alpha-lipoic acid
DOI:
https://doi.org/10.52783/jns.v14.1928Keywords:
Phloroglucinol, Alpha lipoic acid, Inflammation, Invitro studiesAbstract
It was decided to test the anti-inflammatory activity of phloroglucinol and alpha-lipoic acid combined in order to evaluate the possibility of a synergistic effect in the battle against inflammation. Both the antioxidant alpha-lipoic acid and the naturally occurring phenolic compound phloroglucinol were investigated by researchers in order to ascertain whether or not they were capable of modulating inflammatory pathways and pathways in vitro. The effects of the combination on numerous inflammatory mediators, including cytokines (TNF-α, IL-1β, and IL-6), prostaglandin E2 (PGE2), and nitric oxide (NO) generation, were assessed by employing human peripheral blood mononuclear cells (PBMCs) that were cultivated. The results demonstrated that these pro-inflammatory markers were greatly reduced following the combination treatment, which may indicate that the combination treatment had a synergistic effect on reducing inflammation. Furthermore, the combination had a considerable impact on inhibiting the activation of nuclear factor-kappa B (NF-κB), which is an essential regulator of inflammation. These findings imply that the combination of phloroglucinol and alpha-lipoic acid could be a feasible therapy method for inflammatory disorders; nevertheless, additional in vivo research are required to establish the efficacy and safety of the combination.
Downloads
Metrics
References
Singh I.P., Sidana J., Bharate S.B., Foley W.J. Phloroglucinol compounds of natural origin: Synthetic aspects. Nat. Prod. Rep. 2010;27:393–416. doi: 10.1039/b914364p.
Schmidt S., Jurgenliemk G., Schmidt T.J., Skaltsa H., Heilmann J. Bi-, tri-, and polycyclic acylphloroglucinols from Hypericum empetrifolium. J. Nat. Prod. 2012;75:1697–1705. doi: 10.1021/np300237n.
Song C.K., Zhao S., Hong X.T., Liu J.Y., Schulenburg K., Schwab W. A UDP-glucosyltransferase functions in both acylphloroglucinol glucoside and anthocyanin biosynthesis in strawberry (Fragaria×ananassa) Plant J. 2016;85:730–742. doi: 10.1111/tpj.13140.
Zhao J., Liu W., Wang J.C. Recent advances regarding constituents and bioactivities of plants from the genus Hypericum. Chem. Biodivers. 2015;12:309–349. doi: 10.1002/cbdv.201300304.
Tanaka N., Kobayashi J. Prenylated acylphloroglucinols and meroterpenoids from Hypericum plants. Heterocycles. 2015;90:23–40.
Henry G.E., Campbell M.S., Zelinsky A.A., Liu Y.B., Bowen-Forbes C.S., Li L.Y., Nair M.G., Rowley D.C., Seeram N.P. Bioactive Acylphloroglucinols from Hypericum densiflorum. Phytother. Res. 2009;23:1759–1762. doi: 10.1002/ptr.2845.
Tanaka N., Tsuji E., Kashiwad Y., Kobayashi J.I. Yezo’otogirins D-H, Acylphloroglucinols and meroterpenes from Hypericum yezoense. Chem. Pharm. Bull. 2016;64:991–995. doi: 10.1248/cpb.c16-00243.
Kondo A., Shimizu K. Spanate (flopropione), its clinical evaluation for urolithiasis and effects on ureteral peristalsis and blood pressure in dogs. Hinyokika Kiyo. 1969;15:748–754.
Fukuyama T., Takahashi Y., Kuze M., Arai E. Clinical experiences with spanate, a new antispasmodic. Hinyokika Kiyo. 1969;15:818–823.
Jung H.A., Jin S.E., Ahn B.R., Lee C.M., Choi J.S. Anti-inflammatory activity of edible brown alga Eisenia bicyclis and its constituents fucosterol and phlorotannins in LPS-stimulated RAW264.7 macrophages. Food Chem. Toxicol. 2013;59:199–206. doi: 10.1016/j.fct.2013.05.061.
Lopes G., Sousa C., Silva L.R., Pinto E., Andrade P.B., Bernardo J., Mouga T., Valentão P. Can phlorotannins purified extracts constitute a novel pharmacological alternative for microbial infections with associated inflammatory conditions? PLoS ONE. 2012:7. doi: 10.1371/journal.pone.0031145.
Koeberle A., Rossi A., Bauer J., Dehm F., Verotta L., Northoff H., Sautebin L., Werz O. Hyperforin, an anti-Inflammatory constituent from St. John’s Wort, inhibits microsomal prostaglandin E(2) synthase-1 and suppresses prostaglandin E(2) formation in vivo. Front Pharmacol. 2011;2:1–10. doi: 10.3389/fphar.2011.00007.
Shaari K., Suppaiah V., Wai L.K., Stanslas J., Tejo B.A., Israf D.A., Abas F., Ismail I.S., Shuaib N.H., Zareen S., Lajis N.H. Bioassay-guided identification of an anti-inflammatory prenylated acylphloroglucinol from Melicope ptelefolia and molecular insights into its interaction with 5-lipoxygenase. Bioorga. Med. Chem. 2011;19:6340–6347. doi: 10.1016/j.bmc.2011.09.001.
Veena V.K., Popavath R.N., Kennedy K., Sakthivel N. In vitro antiproliferative, pro-apoptotic, antimetastatic and anti-inflammatory potential of 2,4-diacteylphloroglucinol (DAPG) by Pseudomonas aeruginosa strain FP10. Apoptosis. 2015;20:1281–1295. doi: 10.1007/s10495-015-1162-9.
Zhou K., Ludwig L., Li S.M. Friedel-Crafts Alkylation of Acylphloroglucinols catalyzed by a fungal indole prenyltransferase. J. Nat. Prod. 2015;78:929–933. doi: 10.1021/np5009784.
Rinella M. E. Nonalcoholic fatty liver disease: a systematic review. JAMA. 2015;313(22):2263–2273. doi: 10.1001/jama.2015.5370.
Younossi Z. M., Marchesini G., Pinto-Cortez H., Petta S. Epidemiology of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis: implications for liver transplantation. Transplantation. 2019;103(1):22–27. doi: 10.1097/TP.0000000000002484.
Gao B., Tsukamoto H. Inflammation in alcoholic and nonalcoholic fatty liver disease: friend or foe? Gastroenterology. 2016;150(8):1704–1709. doi: 10.1053/j.gastro.2016.01.025.
Jelenik T., Kaul K., Séquaris G., et al. Mechanisms of insulin resistance in primary and secondary nonalcoholic fatty liver. Diabetes. 2017;66(8):2241–2253. doi: 10.2337/db16-1147.
Fruci B., Giuliano S., Mazza A., Malaguarnera R., Belfiore A. Nonalcoholic fatty liver: a possible new target for type 2 diabetes prevention and treatment. International Journal of Molecular Sciences. 2013;14(11):22933–22966. doi: 10.3390/ijms141122933.
Adams L. A., Waters O. R., Knuiman M. W., Elliott R. R., Olynyk J. K. NAFLD as a risk factor for the development of diabetes and the metabolic syndrome: an eleven-year follow-up study. The American Journal of Gastroenterology. 2009;104(4):861–867. doi: 10.1038/ajg.2009.67.
Wu S., Wu F., Ding Y., Hou J., Bi J., Zhang Z. Association of non-alcoholic fatty liver disease with major adverse cardiovascular events: a systematic review and meta-analysis. Scientific Reports. 2016;6(1, article 33386):p. 1. doi: 10.1038/srep33386.
Söderberg C., Stål P., Askling J., et al. Decreased survival of subjects with elevated liver function tests during a 28-year follow-up. Hepatology. 2010;51(2):595–602. doi: 10.1002/hep.23314.
Wong C. R., Lim J. K. The association between nonalcoholic fatty liver disease and cardiovascular disease outcomes. Clinics in Liver Disease. 2018;12(2):39–44. doi: 10.1002/cld.721.
Spahis S., Delvin E., Borys J. M., Levy E. Oxidative stress as a critical factor in nonalcoholic fatty liver disease pathogenesis. Antioxidants and Redox Signaling. 2017;26(10):519–541. doi: 10.1089/ars.2016.6776.
Ucar F., Sezer S., Erdogan S., Akyol S., Armutcu F., Akyol O. The relationship between oxidative stress and nonalcoholic fatty liver disease: Its effects on the development of nonalcoholic steatohepatitis. Redox Report. 2013;18(4):127–133. doi: 10.1179/1351000213Y.0000000050.
Maciejczyk M., Skutnik-Radziszewska A., Zieniewska I., et al. Antioxidant defense, oxidative modification, and salivary gland function in an early phase of cerulein pancreatitis. Oxidative Medicine and Cellular Longevity. 2019;2019:14. doi: 10.1155/2019/8403578.
Grattagliano I., de Bari O., Bernardo T. C., Oliveira P. J., Wang D. Q. H., Portincasa P. Role of mitochondria in nonalcoholic fatty liver disease-from origin to propagation. Clinical Biochemistry. 2012;45(9):610–618. doi: 10.1016/j.clinbiochem.2012.03.024.
Masarone M., Rosato V., Dallio M., et al. Role of oxidative stress in pathophysiology of nonalcoholic fatty liver disease. Oxidative Medicine and Cellular Longevity. 2018;2018:14. doi: 10.1155/2018/9547613.9547613
Kathirvel E., Chen P., Morgan K., French S. W., Morgan T. R. Oxidative stress and regulation of anti-oxidant enzymes in cytochrome P4502E1 transgenic mouse model of non-alcoholic fatty liver. Journal of Gastroenterology and Hepatology. 2010;25(6):1136–1143. doi: 10.1111/j.1440-1746.2009.06196.x.
Tsunoda K., Kai Y., Kitano N., Uchida K., Kuchiki T., Nagamatsu T. Impact of physical activity on nonalcoholic steatohepatitis in people with nonalcoholic simple fatty liver: a prospective cohort study. Preventive Medicine. 2016;88:237–240. doi: 10.1016/j.ypmed.2016.04.020.
heodosis-Nobelos P, Papagiouvannis G, Tziona P, et al. Lipoic acid: kinetics and pluripotent biological properties and derivatives. Mol Biol Rep. 2021;48:6539–6550. doi: 10.1007/s11033-021-06643-z.
Vadlapudi AD, Vadlapatla RK, Mitra AK. Sodium dependent multivitamin transporter (SMVT): a potential target for drug delivery. Curr Drug Targets. 2012;13:994–1003. doi: 10.2174/138945012800675650
Wang W, An LP, Li YF, et al. Alpha-lipoic acid ameliorates H2O2-induced human vein endothelial cells injury via suppression of inflammation and oxidative stress. Biosci Biotechnol Biochem. 2020;84:2253–2263. doi: 10.1080/09168451.2020.1802221.
Wongmekiat O, Leelarungrayub D, Thamprasert K. Alpha-lipoic acid attenuates renal injury in rats with obstructive nephropathy. Biomed Res Int. 2013;2013:138719. doi: 10.1155/2013/138719.
Barbosa M, Lopes G, Ferreres F, Andrade PB, Pereira DM, Gil-Izquierdo Á, Valentão P. Phlorotannin extracts from Fucales: Marine polyphenols as bioregulators engaged in inflammation-related mediators and enzymes. Algal Res. 2017;28:1–8. doi: 10.1016/j.algal.2017.09.009.
Barbosa M, Valentão P, Ferreres F, Gil-Izquierdo Á, Andrade PB. In vitro multifunctionality of phlorotannin extracts from edible Fucus species on targets underpinning neurodegeneration. Food Chem. 2020;333:127456. doi: 10.1016/j.foodchem.2020.127456.
Casas MP, Rodríguez-Hermida V, Pérez-Larrán P, Conde E, Liveri MT, Ribeiro D, Domínguez H. In vitro bioactive properties of phlorotannins recovered from hydrothermal treatment of Sargassum muticum. Sep Purif Technol. 2016;167:117–126. doi: 10.1016/j.seppur.2016.05.003.
Catarino MD, Marçal C, Bonifácio-Lopes T, Campos D, Mateus N, Silva A, Pintado MM, Cardoso SM. Impact of phlorotannin extracts from Fucus vesiculosus on human gut microbiota. Mar Drugs. 2021;19:375. doi: 10.3390/md19070375.
Catarino MD, Silva A, Mateus N, Cardoso SM. Optimization of phlorotannins extraction from Fucus vesiculosus and evaluation of their potential to prevent metabolic disorders. Mar Drugs. 2019;17:162. doi: 10.3390/md17030162.
Chia SR, Show PL, Phang SM, Ling TC, Ong HC. Sustainable approach in phlorotannin recovery from macroalgae. J Biosci Bioeng. 2018;126:220–225. doi: 10.1016/j.jbiosc.2018.02.015.
Cho HM, Doan TP, Ha TKQ, Kim HW, Lee BW, Pham HTT, Cho TO, Oh WK. Dereplication by high-performance liquid chromatography (HPLC) with quadrupole-time-of-flight mass spectroscopy (qTOF-MS) and antiviral activities of phlorotannins from Ecklonia cava. Mar Drugs. 2019;17:149. doi: 10.3390/md17030149.
Creis E, Delage L, Charton S, Goulitquer S, Leblanc C, Potin P, Gall EA. Constitutive or inducible protective mechanisms against UV-B radiation in the brown alga Fucus vesiculosus? A study of gene expression and phlorotannin content responses. PLoS One. 2015;10:e0128003. doi: 10.1371/journal.pone.0128003.
Xu T, Liu R, Zhu H, et al. The inhibition of LPS-induced oxidative stress and inflammatory responses is associated with the protective effect of (-)-epigallocatechin-3-gallate on bovine hepatocytes and murine liver. Antioxidants. 2022;11:914. doi: 10.3390/antiox11050914.
Ying Z, Kampfrath T, Sun Q, et al. Evidence that α-lipoic acid inhibits NF-κB activation independent of its antioxidant function. Inflamm Res. 2011;60:219–225. doi: 10.1007/s00011-010-0256-7.
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
You are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
Terms:
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.