A Survey on Artificial Intelligence-Powered Drug Discovery and Development in Real-Life Environments Including Neonatal Therapeutics

Authors

  • Jaswinder Singh
  • Gaurav Dhiman

DOI:

https://doi.org/10.52783/jns.v14.2156

Keywords:

Neonatal Surgery, Healthcare, Artificial Intelligence, Machine-learning, Deep-learning

Abstract

The drug discovery and development process is a complex, time-consuming, and expensive endeavor, often taking over a decade and costing billions of dollars. Artificial Intelligence (AI) has emerged as a transformative tool in this domain, offering the potential to accelerate drug discovery, reduce costs, and improve success rates. This paper provides a comprehensive survey of AI-powered approaches in drug discovery and development, focusing on their real-life applications, challenges, and future directions. We explore how AI is being used in target identification, molecular design, clinical trials, and post-market surveillance, with special attention to neonatal drug development, where AI-driven models can aid in formulating safe, effective, and personalized treatments for newborns. The paper discusses the ethical, regulatory, and technical challenges that must be addressed for widespread adoption, particularly in the development of neonatal-specific therapeutics where precision and safety are critical. Additionally, we highlight case studies, emerging trends, and the integration of AI into real-world pharmaceutical workflows, emphasizing its role in improving drug repurposing, optimizing dosage formulations, and accelerating approval processes. By examining AI's impact on both general and neonatal drug discovery, this survey serves as a valuable resource for researchers, clinicians, and pharmaceutical experts aiming to leverage AI for next-generation therapeutics.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Al-Rasheed, A., Alsaedi, T., Khan, R., Rathore, B., Dhiman, G., Kundi, M., & Ahmad, A. (2025). Machine Learning and Device’s Neighborhood-Enabled Fusion Algorithm for the Internet of Things. IEEE Transactions on Consumer Electronics.

Pavithra, L. K., Subbulakshmi, P., Paramanandham, N., Vimal, S., Alghamdi, N. S., & Dhiman, G. (2025). Enhanced Semantic Natural Scenery Retrieval System Through Novel Dominant Colour and Multi‐Resolution Texture Feature Learning Model. Expert Systems, 42(2), e13805.

Hamadneh, T., Batiha, B., Gharib, G. M., Montazeri, Z., Werner, F., Dhiman, G., ... & Eguchi, K. (2025). Orangutan optimization algorithm: An innovative bio-inspired metaheuristic approach for solving engineering optimization problems. Int. J. Intell. Eng. Syst, 18(1), 45-58.

Hamadneh, T., Batiha, B., Al-Baik, O., Montazeri, Z., Malik, O. P., Werner, F., ... & Eguchi, K. (2025). Spider-Tailed Horned Viper Optimization: An Effective Bio-Inspired Metaheuristic Algorithm for Solving Engineering Applications. International Journal of Intelligent Engineering & Systems, 18(1).

Hamadneh, T., Batiha, B., Al-Baik, O., Bektemyssova, G., Montazeri, Z., Werner, F., ... & Eguchi, K. (2024). Sales Training Based Optimization: A New Human-inspired Metaheuristic Approach for Supply Chain Management. International Journal of Intelligent Engineering & Systems, 17(6).

Wang, Z. S., Li, S. J., Ding, H. W., Dhiman, G., Hou, P., Li, A. S., ... & Wang, J. (2024). Elite‐guided equilibrium optimiser based on information enhancement: Algorithm and mobile edge computing applications. CAAI Transactions on Intelligence Technology, 9(5), 1126-1171.

Rizvi, F., Sharma, R., Sharma, N., Rakhra, M., Aledaily, A. N., Viriyasitavat, W., ... & Kaur, A. (2024). An evolutionary KNN model for DDoS assault detection using genetic algorithm based optimization. Multimedia Tools and Applications, 83(35), 83005-83028.

Deeba, K., Balakrishnan, A., Kumar, M., Ramana, K., Venkata Narasimhulu, C., & Dhiman, G. (2024). A disease monitoring system using multi-class capsule network for agricultural enhancement in muskmelon. Multimedia Tools and Applications, 83(35), 82905-82924.

Pradeepa, S., Jomy, E., Vimal, S., Hassan, M. M., Dhiman, G., Karim, A., & Kang, D. (2024). HGATT_LR: transforming review text classification with hypergraphs attention layer and logistic regression. Scientific Reports, 14(1), 19614.

Singh, S. P., Kumar, N., Alghamdi, N. S., Dhiman, G., Viriyasitavat, W., & Sapsomboon, A. (2024). Next-Gen WSN Enabled IoT for Consumer Electronics in Smart City: Elevating Quality of Service Through Reinforcement Learning-Enhanced Multi-Objective Strategies. IEEE Transactions on Consumer Electronics.

Singh, S. P., Kumar, N., Dhiman, G., Vimal, S., & Viriyasitavat, W. (2024). AI-Powered Metaheuristic Algorithms: Enhancing Detection and Defense for Consumer Technology. IEEE Consumer Electronics Magazine.

Baba, S. M., Bala, I., Dhiman, G., Sharma, A., & Viriyasitavat, W. (2024). Automated diabetic retinopathy severity grading using novel DR-ResNet+ deep learning model. Multimedia Tools and Applications, 83(28), 71789-71831.

Reddy, D. K. K., Nayak, J., Behera, H. S., Shanmuganathan, V., Viriyasitavat, W., & Dhiman, G. (2024). A systematic literature review on swarm intelligence based intrusion detection system: past, present and future. Archives of Computational Methods in Engineering, 31(5), 2717-2784.

Dhiman, G., Viriyasitavat, W., Nagar, A. K., Castillo, O., Kiran, S., Reddy, G. R., ... & Venkatramulu, S. (2024). Artificial Intelligence and Diagnostic Healthcare Using Computer Vision and Medical Imaging. Healthcare Analytics, 100352.

Bhattacharya, P., Prasad, V. K., Verma, A., Gupta, D., Sapsomboon, A., Viriyasitavat, W., & Dhiman, G. (2024). Demystifying ChatGPT: An in-depth survey of OpenAI’s robust large language models. Archives of Computational Methods in Engineering, 1-44.

Singamaneni, K. K., Yadav, K., Aledaily, A. N., Viriyasitavat, W., Dhiman, G., & Kaur, A. (2024). Decoding the future: exploring and comparing ABE standards for cloud, IoT, blockchain security applications. Multimedia Tools and Applications, 1-29.

Das, S. R., Mishra, A. K., Sahoo, A. K., Hota, A. P., Viriyasitavat, W., Alghamdi, N. S., & Dhiman, G. (2024). Fuzzy controller designed based multilevel inverter for power quality enhancement. IEEE Transactions on Consumer Electronics.

Qian, Z., Sun, G., Xing, X., & Dhiman, G. (2024). Refinement modeling and verification of secure operating systems for communication in digital twins. Digital Communications and Networks, 10(2), 304-314.

Sehrawat, N., Vashisht, S., Singh, A., Dhiman, G., Viriyasitavat, W., & Alghamdi, N. S. (2024). A power prediction approach for a solar-powered aerial vehicle enhanced by stacked machine learning technique. Computers and Electrical Engineering, 115, 109128.

Alferaidi, A., Yadav, K., Yasmeen, S., Alharbi, Y., Viriyasitavat, W., Dhiman, G., & Kaur, A. (2024). Node multi-attribute network community healthcare detection based on graphical matrix factorization. Journal of Circuits, Systems and Computers, 33(05), 2450080.

Mangla, C., Rani, S., & Dhiman, G. (2024). SHIS: secure healthcare intelligent scheme in internet of multimedia vehicular environment. Multimedia Tools and Applications, 1-20.

Jakhar, A. K., Singh, M., Sharma, R., Viriyasitavat, W., Dhiman, G., & Goel, S. (2024). A blockchain-based privacy-preserving and access-control framework for electronic health records management. Multimedia Tools and Applications, 1-35.

Sharma, S., Gupta, K., Gupta, D., Rani, S., & Dhiman, G. (2024). An Insight Survey on Sensor Errors and Fault Detection Techniques in Smart Spaces. CMES-Computer Modeling in Engineering & Sciences, 138(3).

Devi, R., Kumar, R., Lone, M., & Dhiman, G. (2024, February). Investigation of a fuzzy linear fractional programming (FLFP) solution. In AIP Conference Proceedings (Vol. 2986, No. 1). AIP Publishing.

Dhiman, G., & Alghamdi, N. S. (2024). Smose: Artificial intelligence-based smart city framework using multi-objective and iot approach for consumer electronics application. IEEE Transactions on Consumer Electronics, 70(1), 3848-3855.

Kumar, R., Dhiman, G., & Rakhra, M. (2024). Disseminate Reduce Flexible Fuzzy linear regression model to the analysis of an IoT-based Intelligent Transportation System.

Chopra, G., Rani, S., Viriyasitavat, W., Dhiman, G., Kaur, A., & Vimal, S. (2024). UAV-assisted partial co-operative NOMA-based resource allocation in CV2X and TinyML-based use case scenario. IEEE Internet of Things Journal, 11(12), 21402-21410.

Awasthi, A., Pattnayak, K. C., Dhiman, G., & Tiwari, P. R. (Eds.). (2024). Artificial intelligence for air quality monitoring and prediction. CRC Press.

Sasikaladevi, N., Pradeepa, S., Revathi, A., Vimal, S., & Dhiman, G. (2024). Anti-Diabetic Therapeutic Medicinal Plant Identification Using Deep Fused Discriminant Subspace Ensemble (D2 SE).

Pinki, Kumar, R., Vimal, S., Alghamdi, N. S., Dhiman, G., Pasupathi, S., ... & Kaur, A. (2025). Artificial intelligence‐enabled smart city management using multi‐objective optimization strategies. Expert Systems, 42(1), e13574.

Natarajan, S., Sampath, P., Arunachalam, R., Shanmuganathan, V., Dhiman, G., Chakrabarti, P., ... & Margala, M. (2023). Early diagnosis and meta-agnostic model visualization of tuberculosis based on radiography images. Scientific Reports, 13(1), 22803.

Kaur, H., Arora, G., Salaria, A., Singh, A., Rakhra, M., & Dhiman, G. (2023, December). The Role of Artificial Intelligence (AI) in the Accounting and Auditing Professions. In 2023 10th IEEE Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering (UPCON) (Vol. 10, pp. 30-34). IEEE.

Shukla, R. K., Talwani, S., Rakhra, M., Dhiman, G., & Singh, A. (2023, December). Prediction of Stock Price Market Using News Sentiments By Machine Learning. In 2023 10th IEEE Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering (UPCON) (Vol. 10, pp. 6-10). IEEE.

Kumar, R., Dhiman, G., & Yadav, K. (2023). The Impact of COVID-19 on Remote Work: An Examination of Home-Based Work Consequences. International Journal of Modern Research, 3(1), 1-11.

Garg, R. K., Soni, S. K., Vimal, S., & Dhiman, G. (2023). 3-D spatial correlation model for reducing the transmitting nodes in densely deployed WSN. Microprocessors and Microsystems, 103, 104963.

Gulia, P., Kumar, R., Viriyasitavat, W., Aledaily, A. N., Yadav, K., Kaur, A., & Dhiman, G. (2023). A systematic review on fuzzy-based multi-objective linear programming methodologies: concepts, challenges and applications. Archives of Computational Methods in Engineering, 30(8), 4983-5022.

Dehghani, M., Bektemyssova, G., Montazeri, Z., Shaikemelev, G., Malik, O. P., & Dhiman, G. (2023). Lyrebird optimization algorithm: a new bio-inspired metaheuristic algorithm for solving optimization problems. Biomimetics, 8(6), 507.

Mekala, M. S., Dhiman, G., Park, J. H., Jung, H. Y., & Viriyasitavat, W. (2023). Asxc2 approach: a service-x cost optimization strategy based on edge orchestration for iiot. IEEE Transactions on Industrial Informatics, 20(3), 4347-4359.

Rajinikanth, V., Razmjooy, N., Jamshidpour, E., Ghadimi, N., Dhiman, G., & Razmjooy, S. (2023). Technical and economic evaluation of the optimal placement of fuel cells in the distribution system of petrochemical industries based on improved firefly algorithm. In Metaheuristics and Optimization in Computer and Electrical Engineering: Volume 2: Hybrid and Improved Algorithms (pp. 165-197). Cham: Springer International Publishing.

Dehghani, M., Montazeri, Z., Bektemyssova, G., Malik, O. P., Dhiman, G., & Ahmed, A. E. (2023). Kookaburra optimization algorithm: a new bio-inspired metaheuristic algorithm for solving optimization problems. Biomimetics, 8(6), 470.

Sharma, M., Kumar, C. J., Talukdar, J., Singh, T. P., Dhiman, G., & Sharma, A. (2023). Identification of rice leaf diseases and deficiency disorders using a novel DeepBatch technique. Open Life Sciences, 18(1), 20220689.

Montazeri, Z., Niknam, T., Aghaei, J., Malik, O. P., Dehghani, M., & Dhiman, G. (2023). Golf optimization algorithm: A new game-based metaheuristic algorithm and its application to energy commitment problem considering resilience. Biomimetics, 8(5), 386.

Ding, H., Liu, Y., Wang, Z., Jin, G., Hu, P., & Dhiman, G. (2023). Adaptive guided equilibrium optimizer with spiral search mechanism to solve global optimization problems. Biomimetics, 8(5), 383.

Singh, S. P., Dhiman, G., Juneja, S., Viriyasitavat, W., Singal, G., Kumar, N., & Johri, P. (2023). A new qos optimization in iot-smart agriculture using rapid-adaption-based nature-inspired approach. IEEE Internet of Things Journal, 11(3), 5417-5426.

Khan, M., Kumar, R., Aledaily, A. N., Kariri, E., Viriyasitavat, W., Yadav, K., ... & Vimal, S. (2024). A systematic survey on implementation of fuzzy regression models for real life applications. Archives of Computational Methods in Engineering, 31(1), 291-311.

Singh, D., Rakhra, M., Aledaily, A. N., Kariri, E., Viriyasitavat, W., Yadav, K., ... & Kaur, A. (2023). Fuzzy logic based medical diagnostic system for hepatitis B using machine learning. Soft Computing, 1-17.

Mzili, T., Mzili, I., Riffi, M. E., & Dhiman, G. (2023). Hybrid genetic and spotted hyena optimizer for flow shop scheduling problem. Algorithms, 16(6), 265.

Dhiman, G., Yasmeen, S., Kaur, A. K., Singh, D., Devi, R., Kaur, R., & Kumar, R. (2023). The Composite Approach for Linear Fractional Programming Problem in Fuzzy Environment. Kilby, 100, 7th.

Slathia, S., Kumar, R., Aledaily, A. N., Dhiman, G., Kaur, A. K., & Singh, D. (2023). Evaluation the Optimal Appraisal of the Employee in Uncertainty Situation Using the Fuzzy Linear Programing Problems. Kilby, 100, 7th.

Kumar, R., Yadav, K., Dhiman, G., Kaur, A. K., & Singh, D. (2023). An Explanatory Method for Protecting Individual Identity While Spreading Data Over Social Networks. Kilby, 100, 7th.

Kumar, R., Yasmeen, S., Dhiman, G., & Kaur, A. K. (2023). Analysis of Fuzzy Linear Regression Based on Intuitionistic Data. Kilby, 100, 7th.

Kumar, R., Yasmeen, S., Dhiman, G., & Kaur, A. K. (2023). Performance-Based Evaluation of Clustering Algorithms: A Case Study. Kilby, 100, 7th.

Downloads

Published

2025-03-15

How to Cite

1.
Singh J, Dhiman G. A Survey on Artificial Intelligence-Powered Drug Discovery and Development in Real-Life Environments Including Neonatal Therapeutics. J Neonatal Surg [Internet]. 2025Mar.15 [cited 2025Sep.12];14(5S):809-1. Available from: https://www.jneonatalsurg.com/index.php/jns/article/view/2156