Effect of Nano-particles on plant growth and their applications in agriculture: A Review
Abstract
Nanotechnology opens a large scope of novel application in the fields of biotechnology and agricultural industries, because nanoparticles (NPs) have unique physicochemical properties, i.e., high surface area, high reactivity, tunable pore size, and particle morphology. Nanoparticles can serve as “magic bullets”, containing herbicides, nano-pesticide fertilizers, or genes, which target specific cellular organelles in plant to release their content. Numerous studies suggest that nanotechnology will have major, long-term effects on agriculture and food production. Nanoparticles have enhanced reactivity due to enhanced solubility, greater proportion of surface atoms relative to the interior of a structure, unique magnetic/optical properties, electronic states, and catalytic reactivity that differ from equivalent bulk materials. The positive morphological effects of nanomaterials include enhanced germination percentage and rate; length of root and shoot, and their ratio; and vegetative biomass of seedlings along with enhancement of physiological parameters like enhanced photosynthetic activity and nitrogen metabolism in many crop plants. Additionally, this technology holds the promise of controlled release of agrochemicals and site targeted delivery of various macromolecules needed for improved plant disease resistance, efficient nutrient utilization and enhanced plant growth. Meanwhile, concerns have been raised about potential adverse effects of nanoparticles on biological systems and the environment such as toxicity generated by free radicals leading to lipid peroxidation and DNA damage. Generally, abiotic stresses have adverse impacts on plant growth and development which affects agricultural productivity, causing food security problems, and resulting in economic losses. To reduce the negative effects of environmental stress on crop plants, novel technologies, such as nanotechnology, have emerged. Implementing nanotechnology in modern agriculture can also help improve the efficiency of water usage, prevent plant diseases, ensure food security, reduce environmental pollution, and enhance sustainability.
Downloads
Metrics
References
Abdel Latef, A. A. H., Srivastava, A. K., El Sadek, M. S. A., Kordrostami, M., and Tran, L. S. P. (2018). Titanium dioxide nanoparticles improve growth and enhance tolerance of broad bean plants under saline soil conditions. Land Degrad. Dev. 29, 1065–1073. doi: 10.1002/ldr.2780
Abdelmonem, A.M., 2020. Application of carbon-based nanomaterials in food preservation area Carbon Nanomaterials for Agri-Food and Environmental Applications Elsevier, 583-593
Abobatta, W.F., 2018. Nanotechnology application in agriculture, Acta. Sci. Agri. 2018; 2:99-102
Acharya, P., Jayaprakasha, G.K., Crosby, K.M., Jifon, J.L., Patil, B.S., 2019. Green- green-synthesized nanoparticles enhanced seedling growth, yield, and quality of onion (Allium cepa L.). ACS Sustainable Chem. Eng. 7, 14580–14590. https://doi.org/10.1021/acssuschemeng.9b02180.
Al-Ashkar, I., Al-Suhaibani, N., Abdella, K., Sallam, M., Alotaibi, M., and Seleiman, M. F. (2021). Combining genetic and multidimensional analyses to identify interpretive traits related to water shortage tolerance as an indirect selection tool for detecting genotypes of drought tolerance in wheat breeding. Plants 10:931. doi: 10.3390/plants10050931, PubMed Abstract | CrossRef Full Text | Google Scholar
An, J. ∙ Zhang, M. ∙ Wang, S., 2008. Physical, chemical and microbiological changes in stored green asparagus spears as affected by coating of silver nanoparticles-PVP, LWT - Food Sci. Technol. (Lebensmittel-Wissenschaft -Technol.). 2008; 41:1100-1107
Anton, N. ∙ Vandamme, T.F., 2011. Nano-emulsions and micro-emulsions: clarifications of the critical differences Pharm. Res. (N. Y.). 2011; 28:978-985
Arnott, A., Galagedara, L., Thomas, R., Cheema, M., Sobze, J.M., 2021. The potential of rock dust nanoparticles to improve seed germination and seedling vigor of native species: a review. Sci. Total Environ. 775, 145139 https://doi.org/10.1016/j.scitotenv.2021.145139.
Ashraf, S.A., Siddiqui, A.J., Abd Elmoneim, O. E., Khan, M.I., Patel, M., Alreshidi, M., Moin, A., Singh, R., Snoussi, M., Adnan, M., 2021. Innovations in nanoscience for the sustainable development of food and agriculture with implications on health and environment. Sci. Total Environ. 768, 144990 https://doi.org/10.1016/j.scitotenv.2021.144990.
Atha, D. H., Wang, H., Petersen, E. J., Cleveland, D., Holbrook, R. D., Jaruga, P., et al. (2012). Copper oxide nanoparticle mediated DNA damage in terrestrial plant models. Environ. Sci. Technol. 46, 1819–1827. doi: 10.1021/es202660k
Axelos, M.A. ∙ Van De Voorde, M., 2017. Nanotechnology in Agriculture and Food Science, John Wiley & Sons, 2017; 347-362
Azevedo, M. A., Bourbon, A. I., Vicente, A. A., and Cerqueira, M. A. (2014). Alginate/chitosan nanoparticles for encapsulation and controlled release of vitamin B2. Int. J. Biol. Macromol. 71, 141–146. doi: 10.1016/j.ijbiomac.2014.05.036PubMed Abstract | CrossRef Full Text | Google Scholar
Bano, I., Skalickova, S., Sajjad, H., Skladanka, J., Horky, P., 2021. Uses of Selenium nanoparticles in the plant production. Agronomy 11, 2229. https://doi.org/10.3390/agronomy11112229.
Barrena, R., Casals, E., Colo´n, J., Font, X., S´anchez, A., Puntes, V., 2009. Evaluation of the ecotoxicity of model nanoparticles. Chemosphere 75 (7), 850–857. https://doi.org/10.1016/j.chemosphere.2009.01.078.
Barrett, C.B., 2021. Overcoming global food security challenges through science and solidarity, Am. J. Agric. Econ. 2021; 103:422-447
Baruah, S. ∙ Dutta, J., 2009. Nanotechnology applications in pollution sensing and degradation in agriculture: a review
Baulcombe, D., Crute, I., Davies, B., Dunwell, J., Gale, M., Jones, J., et al. (2009). Reaping the Benefits: Science and the Sustainable Intensification of Global Agriculture. London: The Royal Society.Google Scholar
Bouwmeester, H. ∙ Dekkers, S. ∙ Noordam, M.Y., 2009. Review of health safety aspects of nanotechnologies in food production Regul. Toxicol. Pharmacol. 2009; 53:52-62
Campos, E. V., de Oliveira, J. L., da Silva, C. M., Pascoli, M., Pasquoto, T., Lima, R., et al. (2015a). Polymeric and solid lipid nanoparticles for sustained release of carbendazim and tebuconazole in agricultural applications. Sci. Rep. 5:13809. doi: 10.1038/srep13809 PubMed Abstract | CrossRef Full Text | Google Scholar
Campos, E. V., de Oliveira, J. L., Fraceto, L. F., and Singh, B. (2015b). Polysaccharides as safer release systems for agrochemicals. Agron. Sustain. Dev. 35, 47–66. doi: 10.1007/s13593-014-0263-0CrossRef Full Text | Google Scholar
Cao, Z., Stowers, C., Rossi, L., Zhang, W., Lombardini, I., Ma, X., 2017. Physiological effects of cerium oxide nanoparticles on the photosynthesis and water use efficiency of soybean (Glycine max (L.) Merr.). Environ. Sci. Nano. 4, 1086–1094. https://doi.org/10.1039/C7EN00015D.
Chalupowicz, D. ∙ Veltman, B. ∙ Droby, S., 2020. Evaluating the use of biosensors for monitoring of Penicillium digitatum infection in citrus fruit
Chaudhry, Q., Scotter, M., Blackburn, J., Ross, B., Boxall, A., Castle, L., Aitken, R. and Watkins, R., 2008. Applications and implications of nanotechnologies for the food sector. Food additives and contaminants, 25(3), pp.241-258.
Chinnamuthu, C. ∙ Boopathi, P.M., 2009. Nanotechnology and agroecosystem, Madras Agri. J. 2009; 96:17-31
Cifuentes, Z., Custardoy, L., de la Fuente, J. M., Marquina, C., Ibarra, M. R., Rubiales, D., et al. (2010). Absorption and translocation to the aerial part of magnetic carbon-coated nanoparticles through the root of different crop plants. J. Nanobiotechnology 8:26. doi: 10.1186/1477-3155-8-26CrossRef Full Text | Google Scholar
Corredor, E., Testillano, P. S., Coronado, M. J., González-Melendi, P., Fernández-Pacheco, R., Marquina, C. I., et al. (2009). Nanoparticle penetration and transport in living pumpkin plants: in situ subcellular identification. BMC Plant Biol. 9:45. doi: 10.1186/1471-2229-9-45PubMed Abstract | CrossRef Full Text | Google Scholar
Costa, M. V. J. D., and Sharma, P. K. (2016). Effect of copper oxide nanoparticles on growth, morphology, photosynthesis, and antioxidant response in Oryza sativa. Photosynthetica 54, 110–119. doi: 10.1007/s11099-015-0167-5
Cota-Ruiz, K., Delgado-Rios, M., Martínez-Martínez, A., Núñez-Gastelum, J. A., Peralta-Videa, J. R., and Gardea-Torresdey, J. L. (2018). Current findings on terrestrial plants–Engineered nanomaterial interactions: are plants capable of phytoremediating nanomaterials from soil? Curr. Opin. Environ. Sci. Health 6, 9–15.
Cox, A., Venkatachalam, P., Sahi, S., Sharma, N., 2016. Silver and Titanium dioxide nanoparticle toxycity in plants: a review of current research. Plant Physiol. Biochem. 107, 147–163. https://doi.org/10.1016/j.plaphy.2016.05.022. Dalton, D.A., Russell, S.A., Evans, H.J., 1988. Nickel as a micronutrient element forplants. Biofactors 1 (1), 11–16.
Cvjetko, P., Milošic, A., Domijan, A. M., Vinkovic-Vrcek, I., Tolic, S., Peharec-Štefanic, P., et al. (2017). Toxicity of silver ions and differently coate ’ d silver nanoparticles in Allium cepa roots. Ecotoxicol. Environ. Saf. 137, 18–28. doi: 10.1016/j.ecoenv.2016.11.009
Darvishzadeh, F., Najatzadeh, F., and Iranbakhsh, A. R. (2015). Effect of silver nanoparticles on salinity tolerance of basil plant in germination stages under laboratory conditions. J. Cell. Biotechnol. Mol. 20, 63–70.
Dasgupta, N. ∙ Ranjan, S. ∙ Mundekkad, D., 2015. Nanotechnology in agro-food: from field to plate Food Res. Int. 2015; 69:381-400
Davari, M.R. ∙ Kazazi, S.B. ∙ Pivehzhani, O.A., 2017. Nanomaterials: implications on agroecosystem. Nanotechnology Prasad, R. ∙ Kumar, M. ∙ Kumar, V. Nanotechnology, Springer, Singapore; 59-71
Davydova, N.V., Zamana, S.P., Krokhmal, I.I., Ryezepkin, A.M., Romanova, E.S., Olkhovskaya, I.P., Bogoslovskaya, O.A., Yablokov, A.G., Glushchenko, N.N., 2019. Spring wheat features in response to seed treatment by metal nanoparticles.
De Azeredo, H.M., 2009. Nanocomposites for food packaging applications, Food Res. Inter. 2009; 42:1240-1253
De Oliveira, J. L., Campos, E. V., Gonçalves da Silva, C. M., Pasquoto, T., Lima, R., and Fraceto, L. F. (2015). Solid lipid nanoparticles co-loaded with simazine and atrazine: preparation, characterization, and evaluation of herbicidal activity. J. Agric. Food Chem. 63:422–432. doi: 10.1021/jf5059045CrossRef Full Text | Google Scholar
de Sousa, A., Saleh, A. M., Habeeb, T. H., Hassan, Y. M., Zrieq, R., Wadaan, M. A. M., et al. (2019). Silicon dioxide nanoparticles ameliorate the phytotoxic hazards of aluminum in maize grown on acidic soil. Sci. Total Environ. 693:133636. doi: 10.1016/j.scitotenv.2019.133636
Demirer, G. S., Silva, T. N., Jackson, C. T., Thomas, J. B., Ehrhardt, W., Rhee, S. Y., et al. (2021). Nanotechnology to advance CRISPR–Cas genetic engineering of plants. Nat. Nanotechnol. 16, 243–250. Google Scholar
Dietz, K. J., and Herth, S. (2011). Plant nanotoxicology. Trends Plant Sci. 16, 582–589.
Duncan, T.V., 2011. Applications of nanotechnology in food packaging and food safety: barrier materials, antimicrobials and sensors. Journal of colloid and interface science, 363(1), pp.1-24.
Duran, N.M., Savassa, S.M., Giovanini de Lima, R., de Almeida, E., Linhares, F.S., van Gestel, C.A.M., Pereira de Carvalho, H.W., 2017. X-Ray spectroscopy uncovering the effects of Cu based nanoparticle concentration and structure on Phaseolus vulgaris germination and seedling development. J. Agric. Food Chem. 65 (36), 7874–7884. https://doi.org/10.1021/acs.jafc.7b03014, 2017.
Duro, J.A. ∙ Lauk, C. ∙ Kastner, T., 2020. Global inequalities in food consumption, cropland demand and land-use efficiency: a decomposition analysis
Eichert, T., and Goldbach, H. E. (2008). Equivalent pore radii of hydrophilic foliar uptake routes in stomatous and astomatous leaf surfaces–further evidence for a stomatal pathway. Physiol. Plant. 132, 491–502. doi: 10.1111/j.1399-3054.2007.01023.xPubMed Abstract | CrossRef Full Text | Google Scholar
Eichert, T., Kurtz, A., Steiner, U., and Goldbach, H. E. (2008). Size exclusion limits and lateral heterogeneity of the stomatal foliar uptake pathway for aqueous solutes and water-suspended nanoparticles. Physiol. Plant. 134, 151–160. doi: 10.1111/j.1399-3054.2008.01135.xPubMed Abstract | CrossRef Full Text | Google Scholar
Ekhtiyari, R., and Moraghebi, F. (2012). Effect of nanosilver particles on salinity tolerance of cumin (Cuminum cyminum L.). J. Plant Biotechnol. 25, 99–107.
Elingarami, S. ∙ Li, X. ∙ He, N., 2013. Applications of nanotechnology, next generation sequencing and microarrays in biomedical research, J. Nanosci. Nanotechnol. 2013; 13:4539-4551
El-Temsah, Y.S., Joner, E.J., 2012. Impact of Fe and Ag nanoparticles on seed germination and differences in bioavailability during exposure in aqueous suspension and soil. Environ. Toxicol. 27 (1), 42–49. https://doi.org/10.1002/tox.20610.
Etxeberria, E., Gonzalez, P., Baroja-Fernandez, E., and Romero, J. P. (2006). Fluid phase endocytic uptake of artificial nano-spheres and fluorescent quantum dots by sycamore cultured cells: evidence for the distribution of solutes to different intracellular compartments. Plant Signal. Behav. 1, 196–200. doi: 10.4161/psb.1.4.3142PubMed Abstract | CrossRef Full Text | Google Scholar
Faisal, M., Saquib, Q., Alatar, A. A., Al-Khedhairy, A. A., Hegazy, A. K., and Musarrat, J. (2013). Phytotoxic hazards of NiO-nanoparticles in tomato: a study on mechanism of cell death. J. Hazard. Mater. 250–251, 318–332. doi: 10.1016/j.jhazmat.2013.01.063 PubMed Abstract | CrossRef Full Text | Google Scholar
Faizan, M., Faraz, A., Yusuf, M., Khan, S.T., Hayat, S., 2018. Zinc oxide nanoparticle- mediated changes in photosynthetic efficiency and antioxidant system of tomato plants. Photosynthetica 56, 678–686. https://doi.org/10.1007/s11099-017-0717-0.
Fakhouri, F. ∙ Casari, A. ∙ Mariano, M., 2014. Effect of a gelatin-based edible coating containing cellulose nanocrystals (CNC) on the quality and nutrient retention of fresh strawberries during storage, IOP Publishing, in: IOP Conference Series: Materials Science and Engineering. vol. 64. 2014, No. 1
Falguera, V. ∙ Quintero, J.P. ∙ Jiménez, A., 2011. Edible films and coatings: structures, active functions and trends in their use, Tren. Food Sci. Tech. 2011; 22:292-303
FAO, 2019. The State of Food and Agriculture 2019. Moving Forward on Food Loss and Waste Reduction. Rome, 2019
Fatima, F., Hashim, A., Anees, S., 2021. Efficacy of nanoparticles as nanofertilizer production: a review. Environ. Sci. Pollut. Res. 28, 1292–1303. https://doi.org/10.1007/s11356-020-11218-9.
Feng, Y., Cui, X., He, S., Dong, G., Chen, M., Wang, J., et al. (2013). The role of metal nanoparticles in influencing arbuscular mycorrhizal fungi effects on plant growth. Environ. Sci. Technol. 47, 9496–9504. doi: 10.1021/es402109nPubMed Abstract | CrossRef Full Text | Google Scholar
Feynman, R. P. (1960). There's plenty of room at the bottom. Eng. Sci. 23, 22–36.Google Scholar
Flores-López, M.L. ∙ Cerqueira, M.A. ∙ De Rodríguez, D.J., 2016. Perspectives on utilization of edible coatings and nano-laminate coatings for extension of postharvest storage of fruits and vegetables, Food Eng. Rev. 2016; 8:292-305
Foyer, C. H., and Noctor, G. (2005). Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell 17, 1866–1875. doi: 10.1105/tpc.105.033589
Fraceto, L. F., Grillo, R., de Medeiros, G. A., Scognamiglio, V., Rea, G., and Bartolucci, C. (2016). Nanotechnology in agriculture: which innovation potential does it have? Front. Environ. Sci. 4:20. doi: 10.3389/fenvs.2016.00020CrossRef Full Text | Google Scholar
Gogos, A. ∙ Knauer, K. ∙ Bucheli, T.D., 2012. Nanomaterials in plant protection and fertilization: current state, foreseen applications, and research priorities
González-Melendi, P., Fernández-Pacheco, R., Coronado, M. J., Corredor, E., Testillano, P. S., Risueño, M. C., et al. (2008). Nanoparticles as smart treatment-delivery systems in plants: assessment of different techniques of microscopy for their visualisation in plant tissues. Ann. Bot. 101, 187–195. doi: 10.1093/aob/mcm283PubMed Abstract | CrossRef Full Text | Google Scholar
Gothandam, K.M. ∙ Ranjan, S. ∙ Dasgupta, N., 2018. Nanotechnology, Food Security and Water Treatment, Springer International Publishing, Cham, 2018
Grand, F., Tucci, P., 2016. Titanium dioxide nanoparticles: a risk for human health? Mini Rev. Med. Chem. 16, 762–769. https://doi.org/10.2174/
Grillo, R., Pereira, A. E., Nishisaka, C. S., de Lima, R., Oehlke, K., Greiner, R., et al. (2014). Chitosan/tripolyphosphate nanoparticles loaded with paraquat herbicide: an environmentally safer alternative for weed control. J. Hazard. Mater. 278, 163–171. doi: 10.1016/j.jhazmat.2014.05.079PubMed Abstract | CrossRef Full Text | Google Scholar
Hayes, K.L., Mui, J., Song, B., Sani, E.S., Eisenman, S.W., Sheffeld, J.B., Kim, B., 2020.
Hojjat, S. S. (2019). Effect of interaction between Ag nanoparticles and salinity on germination stages of Lathyrus sativus L. J. Environ. Soil Sci. 2, 186–191. doi: 10.32474/oajess.2019.02.000132
Hojjat, S. S., and Kamyab, M. (2017). The effect of silver nanoparticle on fenugreek seed germination under salinity levels. Russ. Agric. Sci. 43, 61–65. doi: 10.3103/S1068367417010189
Hossain, A., Skalicky, M., Brestic, M., Maitra, S., Ashraful Alam, M., Syed, M. S., et al. (2021). Consequences and mitigation strategies of abiotic stresses in wheat (Triticum aestivum L.) under the changing climate. Agronomy 11:241. doi: 10.3390/agronomy11020241, CrossRef Full Text | Google Scholar
Hossain, Z., Mustafa, G., and Komatsu, S. (2015). Plant responses to nanoparticle stress. Int. J. Mol. Sci. 16, 26644–26653. doi: 10.3390/ijms161125980
Hussain, A., Ali, S., Rizwan, M., Rehman, M., Qayyum, M. F., and Wang, H. (2019c). Responses of wheat (Triticum aestivum) plants grown in a Cd contaminated soil to the application of iron oxide nanoparticles. Ecotoxicol. Environ. Saf. 173, 156–164. doi: 10.1016/j.ecoenv.2019.01.118
Iqbal, M., Raja, N.I., Mashwani, Z.U., Wattoo, F.H., Hussain, M., Ejaz, M., Saira, H., 2019.
Iqbal, S., Waheed, Z., Naseem, A., 2020. Nanotechnology and abiotic stresses. In: Javad, S. (Ed.), Nanoagronomy. Springer, Cham, pp. 37–52. https://doi.org/10.1007/978-3-030-41275-3_3.
Jafari, S.M. and McClements, D.J., 2017. Nanotechnology approaches for increasing nutrient bioavailability. Advances in food and nutrition research, 81, pp.1-30.
Jaskulski, D., Jaskulska, I., Majewska, J., Radziemska, M., Bilgin, A., 2022. Silver nanoparticles (AgNPs) in urea solution in laboratory tests and field experiments with crops and vegeTables. Materials 15 (3), 870. https://doi.org/10.3390/ma15030870.
Jiang, H. S., Qiu, X. N., Li, G. B., Li, W., and Yin, L. Y. (2014). Silver nanoparticles induced accumulation of reactive oxygen species and alteration of antioxidant systems in the aquatic plant Spirodela polyrhiza. Environ. Toxicol. Chem. 33, 1398–1405. doi: 10.1002/etc.2577
Judy, J. D., Unrine, J. M., Rao, W., Wirick, S., and Bertsch, P. M. (2012). Bioavailability of gold nanomaterials to plants: importance of particle size and surface coating. Environ. Sci. Technol. 46, 8467–8474. doi: 10.1021/es3019397PubMed Abstract | CrossRef Full Text | Google Scholar
Juhel, G., Batisse, E., Hugues, Q., Daly, D., van Pelt, F.N., O’Halloran, J., Jansen, M.A., 2011. Alumina nanoparticles enhance growth of Lemna minor. Aquat. Toxicol. 105 (3–4), 328–336. https://doi.org/10.1016/j.aquatox.2011.06.019.
Kah, M. (2015). Nanopesticides and nanofertilizers: emerging contaminants or opportunities for risk mitigation? Front. Chem. 3:64. doi: 10.3389/fchem.2015.00064PubMed Abstract | CrossRef Full Text | Google Scholar
Kalita, D. and Baruah, S., 2019. The impact of nanotechnology on food. In Nanomaterials applications for environmental matrices. Elsevier, pp. 369-379.
Kashyap, P. L., Xiang, X., and Heiden, P. (2015). Chitosan nanoparticle-based delivery systems for sustainable agriculture. Int. J. Biol. Macromol. 77, 36–51. doi: 10.1016/j.ijbiomac.2015.02.039
Kaveh, R., Li, Y.S., Ranjbar, S., Tehrani, R., Brueck, C.L., Van Aken, B., 2013. Changes in Arabidopsis thaliana gene expression in response to silver nanoparticles and silver
Khan, I., Awan, S.A., Rizwan, M., Hassan, Z.U.I., Akram, M.A., Tariq, R., Brestic, M., Xie, W., 2022. Nanoparticle’s uptake and translocation mechanisms in plants via seed priming, foliar treatment, and root exposure: a review. Environ. Sci. Pollut. Res. 29, 89823–89833. https://doi.org/10.1007/s11356-022-23945-2, 2022.
Khan, I., Seleiman, M. F., Chattha, M. U., Jalal, R. S., Mahmood, F., Hassan, F. A., et al. (2021). Enhancing antioxidant defense system of mung bean with a salicylic acid exogenous application to mitigate cadmium toxicity. Not. Bot. Horti. Agrobot. Cluj Napoca 49:12303.
Khan, S., Akhtar, N., Rehman, S.U., Shujah, S., Rha, E.S., Jamil, M., 2020. Biosynthesized iron oxide nanoparticles (Fe3O4 NPs) mitigate arsenic toxicity in rice seedlings.
Khodakovskaya, M. ∙ Dervishi, E. ∙ Mahmood, M., 2019. Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth
Khoshbakht, K., and Hammer, K. (2008). How many plant species are cultivated? Genet. Resour. Crop Evol. 55, 925–928. doi: 10.1007/s10722-008-9368-0CrossRef Full Text | Google Scholar
Khota, L.R. ∙ Sankarana, S. ∙ Majaa, J.M., 2012. Applications of nanomaterials in agricultural production and crop protection: a review, Crop Protect. 2012; 35:64-70
Kim, J.Y. ∙ Han, S. ∙ Hong, S., 2008. Effect of modified carbon nanotube on the properties of aromatic polyester nanocomposites, Polymer. 2008; 49:3335-3345
Kolesnikov, S., Timoshenko, A., Minnikova, T., Tsepina, N., Kazeev, K., Akimenko, Y., Zhadobin, A., Shuvaeva, V., Rajput, V.D., Mandzhieva, S., Sushkova, S., Minkina, T., Dudnikova, T., Mazarji, M., Alamri, S., Siddiqui, M.H., Singh, R.K., 2021a. Impact of metal-based nanoparticles on Cambisol microbial functionality, enzyme activity, and plant growth. Plants 10 (10), 2080. https://doi.org/10.3390/plants10102080.
Konate, A., He, X., Zhang, Z., Ma, Y., Zhang, P., Alugongo, G. M., et al. (2017). Magnetic (Fe3O4) nanoparticles reduce heavy metals uptake and mitigate their toxicity in wheat seedling. Sustainability 9:790. doi: 10.3390/su9050790
Koo, Y., Wang, J., Zhang, Q., Zhu, H., Chehab, E. W., Colvin, V. L., et al. (2015). Fluorescence reports intact quantum dot uptake into roots and translocation to leaves of Arabidopsis thaliana and subsequent ingestion by insect herbivores. Environ. Sci. Technol. 49, 626–632. doi: 10.1021/es5050562PubMed Abstract | CrossRef Full Text | Google Scholar
Krishna, V. ∙ Pumprueg, S. ∙ Lee, S.-H., 2005. Photocatalytic disinfection with titanium dioxide coated multi-wall carbon nanotubes Process Saf. Environ. Protect. 2005; 83:393-397
Kwak, J. M., Nguyen, V., and Schroeder, J. I. (2006). The role of reactive oxygen species in hormonal responses. Plant Physiol. 141, 323–329. doi: 10.1104/pp.106.079004
Landa, P., 2021. Positive effects of metallic nanoparticles on plants: overview of involved mechanisms. Plant Physiol. Biochem. 161, 12–24. https://doi.org/10.1016/j.plaphy.2021.01.039.
Larue, C., Khodja, H.A., Herlin-Boime, N., Brisset, F., Flank, A.M., Fayard, B., Chaillou, S., Carrie`re, M., 2011. Investigation of titanium dioxide nanoparticles toxicity and uptake by plants. J. Phys. Conf. Ser. 304, 012057 https://doi.org/10.1088/1742-6596/304/1/012057.
Larue, C., Veronesi, G., Flank, A. M., Surble, S., Herlin-Boime, N., and Carrière, M. (2012). Comparative uptake and impact of TiO2 nanoparticles in wheat and rapeseed. J. Toxicol. Environ. Health A 75, 722–734. doi: 10.1080/15287394.2012.689800PubMed Abstract | CrossRef Full Text | Google Scholar
Levy-Sakin, M. ∙ Ebenstein, Y., 2013. Beyond sequencing: optical mapping of DNA in the age of nanotechnology and nanoscopy, Curr. Opin. Biotechnol. 2013; 24:690-698
Lin, S., Reppert, J., Hu, Q., Hudson, J. S., Reid, M. L., Ratnikova, T. A., et al. (2009). Uptake, translocation, and transmission of carbon nanomaterials in rice plants. Small 5, 1128–1132. doi: 10.1002/smll.200801556PubMed Abstract | CrossRef Full Text | Google Scholar
Liu, H., Ren, M., Qu, J., Feng, Y., Song, X., Zhang, Q., et al. (2017). A cost-effective method for recycling carbon and metals in plants: synthesizing nanomaterials. Environ. Sci.: Nano 4, 461–469. doi: 10.1039/C6EN00287KCrossRef Full Text | Google Scholar
Liu, R., and Lal, R. (2015). Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Sci. Total Environ. 514, 131–139. doi: 10.1016/j.scitotenv.2015.01.104
Lo´pez-Moreno, M.L., Rosa, G.D., Cruz-Jim´enez, G., Castellano, L.E., Peralta-Videa, J.R., Gardea-Torresdey, J.L., 2017. Effect of ZnO nanoparticles on corn seedlings at different temperatures; X-ray absorption spectroscopy and ICP/OES studies.
Lo´pez-Vargas, E.R., Ortega-Ortíz, H., Cadenas-Pliego, G., De Alba Romenus, K., Cabrerade la Fuente, M., Benavides-Mendoza, A., Ju´arez-Maldonado, A., 2018. Foliar Application of Copper Nanoparticles Increases the Fruit Quality and the Content of Bioactive Compounds in Tomatoes. Appl. Sci. 8, 1020. https://doi.org/10.3390/app8071020.
Lv, J., Zhang, S., Luo, L., Zhang, J., Yangc, K., and Christie, P. (2015). Accumulation, speciation and uptake pathway of ZnO nanoparticles in maize. Environ. Sci. Nano 2, 68–77. doi: 10.1039/c4en00064aCrossRef Full Text | Google Scholar
Ma, X., Geisler-Lee, J., Deng, Y., and Kolmakov, A. (2010). Interactions between engineered nanoparticles (ENPs) and plants: phytotoxicity, uptake and accumulation. Sci. Total Environ. 408, 3053–3061. doi: 10.1016/j.scitotenv.2010.03.031PubMed Abstract | CrossRef Full Text | Google Scholar
Mahajan, S., Kadam, J., Dhawai, P., Barve, S., Kakodkar, S., 2022. Application of silver nanoparticles in in-vitro plant growth and metabolite production: revisiting its scope and feasibility. Plant Cell Tissue Organ Cult. 150, 15–39. https://doi.org/10.1007/s11240-022-02249-w.
Mahapatra, D.M., Satapathy, K.C., Panda, B., 2022. Biofertilizers and nanofertilizers for sustainable agriculture: phycoprospects and challenges. Sci. Total Environ. 803, 149990 https://doi.org/10.1016/j.scitotenv.2021.149990.
Mali, S.C. ∙ Raj, S. ∙ Trivedi, R., 2020. Nanotechnology a novel approach to enhance crop productivity, Biochem. Biophys. Rep. 2020; 24:100821
Maruyama, C. R., Guilger, M., Pascoli, M., Bileshy-José, N., Abhilash, P. C., Fraceto, L. F., et al. (2016). Nanoparticles based on chitosan as carriers for the combined herbicides imazapic and imazapyr. Sci. Rep. 6:19768. doi: 10.1038/srep19768PubMed Abstract | CrossRef Full Text | Google Scholar
Mastronardi, E. ∙ Tsae, P. ∙ Zhang, X., 2015. Strategic role of nanotechnology in fertilizers: potential and limitations, Nanotechnologies in Food and Agriculture
Matras, E., Gorczyca, A., Pociecha, E., Wojciech Przemieniecki, S., 2022. Phytotoxicity of silver nanoparticles with different Surface properties on monocots and dicots model plants. J. Soil Sci. Plant Nutr. 22, 1647–1664. https://doi.org/10.1007/s42729-022-00760-9.
Mazloomi, F. ∙ Jalali, M., 2019. Effects of vermiculite, nanoclay and zeolite on ammonium transport through saturated sandy loam soil: column experiments and modeling approaches, Catena. 2019; 176:170-180
Medeiros, B.G.D.S. ∙ Souza, M.P. ∙ Pinheiro, A.C., 2014. Physical characterisation of an alginate/lysozyme nano-laminate coating and its evaluation on ‘Coalho’cheese shelf life, Food Bioprocess Technol. 2014; 7:1088-1098
Mengiste, T., Laluk, K., and AbuQamar, S. (2010). “Mechanisms of induced resistance against B. cinerea,” in Post-harvest Pathology, Plant Pathology in the 21st Century, eds D. Prusky and M. L. Gullino (Dordrecht: Springer), 13–30.
Moustafa, H. ∙ Youssef, A.M. ∙ Darwish, N.A., 2019. Eco-friendly polymer composites for green packaging: future vision and challenges, Compos. B Eng. 2019; 172:16-25
Mozafari, M.R., Johnson, C. and Hatziantoniou, S., 2008. Nanoliposomes and their applications in food nanotechnology. Journal of liposome research, 18(4), pp.309-327.
Murugadoss, G., Rajesh Kumar, M., Murugan, D., Koutavarapu, R., M Al-Ansari, M., Aldawsari, M., 2023. Ultra-fast photocatalytic degradation and seed germination of band gap tunable nickel doping ceria nanoparticles. Chemosphere 333, 138934. https://doi.org/10.1016/j.chemosphere.2023.138934.
Mustafa, F. ∙ Andreescu, S., 2020. Nanotechnology-based approaches for food sensing and packaging applications, RSC Adv. 2020; 10:19309-19336
Naderi, M. ∙ Danesh-Shahraki, A., 2013. Nanofertilizers and their roles in sustainable agriculture, Intl. J. Agric. Crop Sci. 2013; 5:2229
Naidu, S., Pandey, J., Mishra, L.C., Chakraborty, A., Roy, A., Singh, I.K., Singh, A., 2023. Silicon nanoparticles: synthesis, uptake and their role in mitigation of biotic stress. Ecotoxicol. Environ. Saf. 255, 114783 https://doi.org/10.1016/j.ecoenv.2023.114783.
Nair, P. M. G., and Chung, I. M. (2014). Impact of copper oxide nanoparticles exposure on Arabidopsis thaliana growth, root system development, root lignificaion, and molecular level changes. Environ. Sci. Pollut. Res. 21, 12709–12722. doi: 10.1007/s11356-014-3210-3
Navarro, E., Baun, A., Behra, R., Hartmann, N. B., Filser, J., Miao, A. J., et al. (2008). Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology 17, 372–386. doi: 10.1007/s10646-008-0214-0PubMed Abstract | CrossRef Full Text | Google Scholar
Neethirajan, S. ∙ Jayas, D.S., 2011. Nanotech nology for the food and bioprocessing industries, Food Bioprocess Technol. 2011; 4:39-47
Nejatzadeh, F. (2021). Effect of silver nanoparticles on salt tolerance of Satureja hortensis L. during in vitro and in vivo germination tests. Heliyon 7: e05981. doi: 10.1016/j.heliyon. 2021.e05981
Nel, A. E., Mädler, L., Velegol, D., Xia, T., Hoek, E. M., Somasundaran, P., et al. (2009). Understanding biophysicochemical interactions at the nano-bio interface. Nat. Mater. 8, 543–557. doi: 10.1038/nmat2442PubMed Abstract | CrossRef Full Text | Google Scholar
Noman, M., Shahid, M., Ahmed, T., Tahir, M., Naqqash, T., Muhammad, S., et al. (2020). Green copper nanoparticles from a native Klebsiella pneumoniae strain alleviated oxidative stress impairment of wheat plants by reducing the chromium bioavailability and increasing the growth. Ecotoxicol. Environ. Saf. 192:110303. doi: 10.1016/j.ecoenv.2020.110303
O’Brien, J. A., and Benková, E. (2013). Cytokinin cross-talking during biotic and abiotic stress responses. Front. Plant Sci. 4:451. doi: 10.3389/fpls.2013.00451
Pakrashi, S., Jain, N., Dalai, S., Jayakumar, J., Chandrasekaran, P. T., Raichur, A. M., et al. (2014). In vivo genotoxicity assessment of titanium dioxide nanoparticles by Allium cepa root tip assay at high exposure concentrations. PLoS One 9:e87789. doi: 10.1371/journal.pone.0087789
Pate, J. S. (1975). “Exchange of solutes between phloem and xylem and circulation in the whole plant,” in Transport in Plants I, eds M. H. Zimmermann and J. A. Milburn (Berlin; Heidelberg: Springer), 451–473.Google Scholar
Pedruzzi, D.P., Pedruzzi, D.P., Araujo, L.O., Falco, W.F., Machado, G., Casagrande, G.A., Colbeck, I., Lawson, T., Oliveira, S.L., Caires, A.R., 2020. ZnO nanoparticles impact on the photosynthetic activity of Vicia faba: effect of particle size and concentration. NanoImpact 19, 100246. https://doi.org/10.1016/j.impact.2020.100246.
Pérez-de-Luque, A., and Hermosín, C. (2013). “Nanotechnology and its use in agriculture,” in Bio-Nanotechnology: A Revolution in Food, Biomedical and Health Sciences, eds D. Bagchi, M. Bagchi, H. Moriyama, and F. Shahidi (Oxford: Blackwell Publishing Ltd.), 383–398.Google Scholar
Pérez-de-Luque, A., and Rubiales, D. (2009). Nanotechnology for parasitic plant control. Pest Man. Sci. 65, 540–545. doi: 10.1002/ps.1732PubMed Abstract | CrossRef Full Text | Google Scholar
Pérez-de-Luque, A., Cifuentes, Z., Beckstead, J. A., Sillero, J. C., Avila, C., Rubio, J., et al. (2012). Effect of amphotericin B nanodisks on plant fungal diseases. Pest Manag. Sci. 68, 67–74. doi: 10.1002/ps.2222PubMed Abstract | CrossRef Full Text | Google Scholar
Perreault, F., Samadani, M., and Dewez, D. (2014). Effect of soluble copper released from copper oxide nanoparticles solubilisation on growth and photosynthetic processes of Lemna gibba L. Nanotoxicology 8, 374–382. doi: 10.3109/17435390.2013.789936
Peters, R.J., Bouwmeester, H., Gottardo, S., Amenta, V., Arena, M., Brandhoff, P., Marvin, H.J., Mech, A., Moniz, F.B., Pesudo, L.Q. and Rauscher, H., 2016. Nanomaterials for products and application in agriculture, feed and food. Trends in Food Science & Technology, 54, pp.155-164.
Prasad, R., Bhattacharyya, A., and Nguyen, Q. D. (2017a). Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Front. Microbiol. 8:1014. doi: 10.3389/fmicb.2017.01014.
Rahimi, D., Kartoolinejad, D., Nourmohammadi, K., Naghdi, R., 2016. Increasing drought resistance of Alnus subcordata C.A. Mey. seeds using a nano priming technique with multi-walled carbon nanotubes. J. For. Sci. 62 (6), 269–278. https://doi.org/10.17221/15/2016-JFS.
Rahmatizadeh, R., Javad Arvin, S. M., Jamei, R., Mozaffari, H., and Nejhad, F. R. (2019). Response of tomato plants to interaction effects of magnetic (Fe3O4) nanoparticles and cadmium stress. J. Plant Interact. 14, 474–481. doi: 10.1080/17429145.2019.1626922
Rai, M., Yadav, A., Gasde, A., 2009. Silver nanoparticles as a new generation of antiomicrobials. Biotechnol. Adv. 27, 76–83. https://doi.org/10.1016/j.biotechadv.2008.09.002.
Rai, V. ∙ Acharya, S. ∙ Dey, N., 2012. Implications of nanobiosensors in agriculture, J. Biomater. Nanobiotechnol. 2012; 3:315
Rajput, V. D., Minkina, T., Kumari, A., Singh, V. K., Verma, K. K., Mandzhieva, S., et al. (2021). Coping with the challenges of abiotic stress in plants: new dimensions in the field application of nanoparticles. Plants 10:1221. doi: 10.3390/plants10061221
Rajput, V., Minkina, T., Fedorenko, A., Sushkova, S., Mandzhieva, S., Lysenko, V., et al. (2018). Toxicity of copper oxide nanoparticles on spring barley (Hordeum sativum distichum). Sci. Total Environ. 645, 1103–1113.
Raliya, R., Franke, C., Chavalmane, S., Nair, R., Reed, N., and Biswas, P. (2016). Quantitative understanding of nanoparticle uptake in watermelon plants. Front. Plant Sci. 7:1288. doi: 10.3389/fpls.2016.01288PubMed Abstract | CrossRef Full Text | Google Scholar
Ramírez-Olvera, S.M., Trejo-Te´llez, L.I., García-Morales, S., Pe´rez-Sato, J.A., Go´mez- Merino, F.C., 2018. Cerium enhances germination and shoot growth, and alters mineral nutrient concentration in rice. PLoS One 13 (3), e0194691. https://doi.org/10.1371/journal.pone.019469.
Rashidi, L. ∙ Khosravi-Darani, K., 2011. The applications of nanotechnology in food industry, Crit. Rev. Food Sci. Nutr. 2011; 51:723-730
Ravichandran, R., 2010. Nanotechnology applications in food and food processing: innovative green approaches, opportunities and uncertainties for global market, Int. J. Green Nanotechnol. Phys. Chem. 2010; 1:P72-P96
Reddy Pullagurala, V.L., Adisa, I.O., Rawat, S.S., Kalagara, S., Hernandez-Viezcas, J.A., Peralta-Videa, J.R., Gardea-Torresdey, J.L., 2018. ZnO nanoparticles increase photosynthetic pigments and decrease lipid peroxidation in soil grown cilantro (Coriandrum sativum). Plant Physiol. Biochem. 132, 120–127. https://doi.org/10.1016/j.plaphy.2018.08.037.
Rehman, H.U., Aziz, T., Farooq, M., Wakeel, A., Rengel, Z., 2012. Zinc nutrition in rice production systems: a review. Plant Soil 361, 203–226. https://doi.org/10.1007/s11104-012-1346-9
Rhaman, M.S., Tania, S.S., Imran, S., Rauf, F., Kibria, M.G., Ye, W., Hasanuzzaman, M., Murata, Y., 2022. Seed priming with nanoparticles: an emerging technique for improving plant growth, development, and abiotic stress tolerance. J. Soil Sci. Plant Nutr. 22, 4047–4062. https://doi.org/10.1007/s42729-022-01007-3.
Rico, C. M., Majumdar, S., Duarte-Gardea, M., Peralta-Videa, J. R., and Gardea-Torresdey, J. L. (2011). Interaction of nanoparticles with edible plants and their possible implications in the food chain. J. Agric. Food Chem. 59, 3485–3498. doi: 10.1021/jf104517jPubMed Abstract | CrossRef Full Text | Google Scholar
Rispail, N., De Matteis, L., Santos, R., Miguel, A. S., Custardoy, L., Testillano, P., et al. (2014). Quantum dots and superparamagnetic nanoparticles interaction with pathogenic fungi: internalization and toxicity profile. ACS Appl. Mater. Interfaces 6, 9100–9110. doi: 10.1021/am501029gPubMed Abstract | CrossRef Full Text | Google Scholar
Rizwan, M., Ali, S., Zia Ur Rehman, M., Adrees, M., Arshad, M., Qayyum, M. F., et al. (2019a). Alleviation of cadmium accumulation in maize (Zea mays L.) by foliar spray of zinc oxide nanoparticles and biochar to contaminated soil. Environ. Pollut. 248, 358–367. doi: 10.1016/j.envpol.2019.02.031 Pu Med Abstract | CrossRef Full Text | Google Scholar
Robards, A. W., and Robb, M. E. (1972). Uptake and binding of uranyl ions by barley roots. Science 178, 980–982. doi: 10.1126/science.178.4064.980PubMed Abstract | CrossRef Full Text | Google Scholar
Roberts, A. G., and Oparka, K. J. (2003). Plasmodesmata and the control of symplastic transport. Plant Cell Environ. 26, 103–124. doi: 10.1046/j.1365-3040.2003.00950.xCrossRef Full Text | Google Scholar
Rossi, L., Zhang, W., Lombardini, L., and Ma, X. (2016). The impact of cerium oxide nanoparticles on the salt stress responses of Brassica napus L. Environ. Pollut. 219, 28–36. doi: 10.1016/j.envpol.2016.09.060
Rossi, M., Passeri, D., Sinibaldi, A., Angjellari, M., Tamburri, E., Sorbo, A., Carata, E. and Dini, L., 2017. Nanotechnology for food packaging and food quality assessment. Advances in food and nutrition research, 82, pp.149-204.
Rui, M., Ma, C., Hao, Y., Guo, J., Rui, Y., Tang, X., Zhao, Q., Fan, X., Zhang, Z., Hou, T., Zhu, S., 2016. Iron oxide nanoparticles as a potential iron fertilizer for peanut (Arachis hypogaea). Front. Plant Sci. 7, 815. https://doi.org/10.3389/fpls.2016.00815.
Rui, Y. (2021). Nanoparticles Alleviate Heavy Metals Stress. Available online at: https://encyclopedia.pub/7093, (accessed June 2, 2021).
Rutkowski, M., Krzemin´ska-Fiedorowicz, L., Khachatryan, G., Bulski, K., Kołton, A., Khachatryan, K., 2022. Biodegradable silver nanoparticles gel and its impact on tomato seed germination rate in in vitro cultures. Appl. Sci. 12 (5), 2722. https://doi.org/10.3390/app12052722.
Sabo-Attwood, T., Unrine, J. M., Stone, J. W., Murphy, C. J., Ghoshroy, S., Blom, D., et al. (2012). Uptake, distribution and toxicity of gold nanoparticles in tobacco (Nicotiana xanthi) seedlings. Nanotoxicology 6, 353–360. doi: 10.3109/17435390.2011.579631PubMed Abstract | CrossRef Full Text | Google Scholar
Sadeghi, R. ∙ Rodriguez, R.J. ∙ Yao, Y., 2017. Advances in nanotechnology as they pertain to food and agriculture: benefits and risks, Annu. Rev. Food Sci. Technol. 8:467-492
Safari, J. and Zarnegar, Z., 2014. Advanced drug delivery systems: Nanotechnology of health design A review. Journal of Saudi Chemical Society, 18(2), pp.85-99.
Saha, N., and Dutta Gupta, S. (2017). Low-dose toxicity of biogenic silver nanoparticles fabricated by Swertia chirata on root tips and flower buds of Allium cepa. J. Hazard. Mater. 330, 18–28. doi: 10.1016/j.jhazmat.2017.01.021
Salam, A., Afridi, M.S., Javed, M.A., Saleem, A., Hafeez, A., Khan, A.R., Zeeshan, M., Ali, B., Azhar, W., Sumaira, Ulhassan, Z., Gan, Y., 2022a. Nano-priming against abiotic stress: a way forward towards sustainable agriculture. Sustainability 14, 14880. https://doi.org/10.3390/su142214880.
Salam, A., Khan, A.R., Liu, L., Yang, S., Azhar, W., Ulhassan, Z., Zeeshan, M., Wu, J., Fan, X., Gan, Y., 2022b. Seed priming with zinc oxide nanoparticles downplayed ultrastructural damage and improved photosynthetic apparatus in maize under cobalt stress. J. Hazard Mater. 423, 127021 https://doi.org/10.1016/j.jhazmat.2021.127021.
Santana, I., Wu, H., Hu, P., and Giraldo, J. P. (2020). Targeted delivery of nanomaterials with chemical cargoes in plants enabled by a biorecognition motif. Nat. Commun. 11:2045.
Sastry, K. ∙ Rashmi, H. ∙ Rao, N., 2010. Nanotechnology patents as R&D indicators for disease management strategies in agriculture, J. Intellec. Prop. Rights. 2010; 15:197-205
Sastry, R.K. ∙ Rashmi, H. ∙ Rao, N., 2011. Nanotechnology for enhancing food security in India. Food Policy, 36(3), pp.391-400.
Sattelmacher, B. (2001). The apoplast and its significance for plant mineral nutrition. New Phytol. 149, 167–192. doi: 10.1046/j.1469-8137.2001.00034.xCrossRef Full Text | Google Scholar
Schönherr, J. (2002). A mechanistic analysis of penetration of glyphosate salts across astomatous cuticular membranes. Pest Manag. Sci. 58, 343–351. doi: 10.1002/ps.462PubMed Abstract | CrossRef Full Text | Google Scholar
Schwab, F., Zhai, G., Kern, M., Turner, A., Schnoor, J. L., and Wiesner, M. R. (2015). Barriers, pathways and processes for uptake, translocation and accumulation of nanomaterials in plants-Critical review. Nanotoxicology 10, 257–278. doi: 10.3109/17435390.2015.1048326PubMed Abstract | CrossRef Full Text | Google Scholar
Sedghi, M., Mitra, H., and Sahar, T. (2013). Effect of nano zinc oxide on the germination of soybean seeds under drought stress. Ann. West Univ. Timiş. Ser. Biol. 16, 73–78.
Sekhon, B.S., 2010. Food nanotechnology–an overview, Nanotechnol. Sci. Appl. 2010; 3:1-15
Sekhon, B.S., 2014. Nanotechnology in agri-food production: an overview, Nanotechnol. Sci. Appl. 2014; 7:31-53
Semida, W. M., Abdelkhalik, A., Mohamed, G. F., Abd El-Mageed, T. A., Abd El-Mageed, S. A., Rady, M. M., et al. (2021). Foliar application of zinc oxide nanoparticles promotes drought stress tolerance in eggplant (Solanum melongena L.). Plants 10:421. doi: 10.3390/plants10020421
Serag, M. F., Kaji, N., Gaillard, C., Okamoto, Y., Terasaka, K., Jabasini, M., et al. (2011). Trafficking and subcellular localization of multiwalled carbon nanotubes in plant cells. ACS Nano 5, 493–499. doi: 10.1021/nn102344tPubMed Abstract | CrossRef Full Text | Google Scholar
Servin, A. D., Morales, M. I., Castillo-Michel, H., Hernandez-Viezcas, J. A., Munoz, B., Zhao, L., et al. (2013). Synchrotron verification of TiO2 accumulation in cucumber fruit: a possible pathway of TiO2 nanoparticle transfer from soil into the food chain. Environ. Sci. Technol. 47, 11592–11598. doi: 10.1021/es403368jPubMed Abstract | CrossRef Full Text | Google Scholar
Sham, A., Al-Ashram, H., Whitely, K., El-Tarabily, K. A., Iratni, R., and AbuQamar, S. F. (2019). Metatranscriptomic analysis of multiple environmental stresses identifies RAP2.4 gene associated with Arabidopsis immunity to Botrytis cinerea. Sci. Rep. 9:17010. doi: 10.1038/s41598-019-53694-1
Sharma, C. ∙ Dhiman, R. ∙ Rokana, N., 2017. Nanotechnology: an untapped resource for food packaging, Front. Microbiol. 2017; 8:1735
Sharma, P., Bhatt, D., Zaidi, M. G. H., Saradhi, P. P., Khanna, P. K., and Arora, S. (2012a). Silver nanoparticle-mediated enhancement in growth and antioxidant status of Brassica juncea. Appl. Biochem. Biotechnol. 167, 2225–2233. doi: 10.1007/s12010-012-9759-8
Sharma, P., Bhatt, D., Zaidi, M.G., Saradhi, P.P., Khanna, P.K., Arora, S., 2012. Silver nanoparticle-mediated enhancement in growth and antioxidant status of Brassica juncea. Appl. Biochem. Biotechnol. 167 (8), 2225–2233. https://doi.org/10.1007/s12010-012-9759-8.
Sharma, P., Jha, A. B., Dubey, R. S., and Pessarakli, M. (2012b). Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J. Bot. 2012:217037. doi: 10.1155/2012/217037
Sharon, M. ∙ Choudhary, A.K. ∙ Kumar, R., 2010. Nanotechnology in agricultural diseases and food safety, J. Phytol. 2010; 2:83-92
Shi, S. ∙ Wang, W. ∙ Liu, L., 2013. Effect of chitosan/nano-silica coating on the physicochemical characteristics of longan fruit under ambient temperature, J. Food Eng. 2013; 118:125-131
Shi, Y., Zhang, Y., Han, W., Feng, R., Hu, Y., Guo, J., et al. (2016). Silicon enhances water stress tolerance by improving root hydraulic conductance in Solanum lycopersicum L. Front. Plant Sci. 7:196. doi: 10.3389/fpls.2016.00196
Silva, M. S., Cocenza, D. S., de Melo, N. F. S., Grillo, R., Rosa, A. H., and Fraceto, L. F. (2010). Alginate nanoparticles as a controlled release system for clomazone herbicide. Quim. Nova 33, 1868–1873. doi: 10.1590/S0100-40422010000900009CrossRef Full Text | Google Scholar
Singh, A., Singh, N.B., Hussain, I., Singh, H., Yadav, V., Singh, S.C., 2016. Green synthesis of nano zinc oxide and evaluation of its impact on germination and metabolic activity of Solanum lycopersicum. J. Biotechnol. 233, 84–94. https://doi.org/10.1016/j.jbiotec.2016.07.010.
Singh, H. ∙ Sharma, A. ∙ Kumar, S., 2021. Recent Advances in Applications of Nano-Agrochemicals for Sustainable Agricultural Development, Environ. Sci. Process. Impact. 2021;
Singh, J., and Lee, B. K. (2016). Influence of nano-TiO2 particles on the bioaccumulation of Cd in soybean plants (Glycine max): a possible mechanism for the removal of Cd from the contaminated soil. J. Environ. Manage. 170, 88–96. doi: 10.1016/j.jenvman.2016.01.015
Singh, M. D., Jayadeva, H. M., and Chirag Gautam Mohan, M. H. (2017). Effects of nano zinc oxide particles on seedling growth of maize (Zea mays L.) in germinating paper test. Int. J. Microbiol. Res. 9, 897–898.
Sivarethinamohan, R. and Sujatha, S., 2021. Unlocking the potentials of using nanotechnology to stabilize agriculture and food production, AIP Publishing LLC, in: AIP Conference Proceedings. vol. 2327. 2021;20022, No.1
Sogvar, O.B. ∙ Saba, M.K. ∙ Emamifar, A., 2016. Influence of nano-ZnO on microbial growth, bioactive content and postharvest quality of strawberries during storage, Innovat. Food Sci. Emerg. Technol. 2016; 35:168-176
Song, U., Jun, H., Waldman, B., Roh, J., Kim, Y., Yi, J., Lee, G., Lee, E.J., 2013b. Functional analyses of nanoparticle toxicity: a comparative study of the effects of TiO2 and Ag on tomatoes (Lycopersicon esculentum). Ecotoxicol. Environ. Saf. 93. 60–67. https://doi.org/10.1016/j.ecoenv.2013.03.033.
Song, U., Shin, M., Lee, G., Roh, J., Kim, Y., Lee, E.J., 2013a. Functional analysis of TiO2 nanoparticle toxicity in three plant species. Biol. Trace Elem. Res. 155, 93–103. https://doi.org/10.1007/s12011-013-9765-x.
Sozer, N. and Kokini, J.L., 2009. Nanotechnology and its applications in the food sector. Trends in biotechnology, 27(2), pp.82-89.
Sun, D., Hussain, H. I., Yi, Z., Siegele, R., Cresswell, T., Kong, L., et al. (2014). Uptake and cellular distribution, in four plant species, of fluorescently labeled mesoporous silica nanoparticles. Plant Cell Rep. 33, 1389–1402. doi: 10.1007/s00299-014-1624-5PubMed Abstract | CrossRef Full Text | Google Scholar
Taran, N., Storozhenko, V., Svietlova, N., Batsmanova, L., Shvartau, V., and Kovalenko, M. (2017). Effect of zinc and copper nanoparticles on drought resistance of wheat seedlings. Nanoscale Res. Lett. 12:60. doi: 10.1186/s11671-017-1839-9
Taylor, A. F., Rylott, E. L., Anderson, C. W., and Bruce, N. C. (2014). Investigating the toxicity, uptake, nanoparticle formation and genetic response of plants to gold. PLoS ONE 9:e93793. doi: 10.1371/journal.pone.0093793PubMed Abstract | CrossRef Full Text | Google Scholar
Torabian, S., Zahedi, M., and Khoshgoftar, A. H. (2016). Effects of foliar spray of two kinds of zinc oxide on the growth and ion concentration of sunflower cultivars under salt stress. J. Plant Nutr. 39, 172–180. doi: 10.1080/01904167.2015.1009107
Torney, F. ∙ Trewyn, B.G. ∙ Lin, V.S.-Y., 2007. Mesoporous silica nanoparticles deliver DNA and chemicals into plants, Nat. Nanotechnol. 2007; 2:295
Tripathi, D. K., Singh, S., Singh, S., Mishra, S., Chauhan, D. K., and Dubey, N. K. (2015a). Micronutrients and their diverse role in agricultural crops: advances and future prospective. Acta Physiol. Plant. 37:139. doi: 10.1007/s11738-015-1870-3
Tripathi, D. K., Singh, S., Singh, S., Srivastava, P. K., Singh, V. P., Singh, S., et al. (2017c). Nitric oxide alleviates silver nanoparticles (AgNps)-induced phytotoxicity in Pisum sativum seedlings. Plant Physiol. Biochem. 110, 167–177. doi: 10.1016/j.plaphy.2016.06.015
Tripathi, D. K., Singh, S., Singh, V. P., Prasad, S. M., Chauhan, D. K., and Dubey, N. K. (2016). Silicon nanoparticles more efficiently alleviate arsenate toxicity than silicon in maize cultiver and hybrid differing in arsenate tolerance. Front. Environ. Sci. 4:46. doi: 10.3389/fenvs.2016.00046
Turgeon, R. (2010). The puzzle of phloem pressure. Plant Physiol. 154, 578–581. doi: 10.1104/pp.110.161679
Upadhayay VK, Chitara MK, Mishra D, Jha MN, Jaiswal A, Kumari G, Ghosh S, Patel VK, Naitam MG, Singh AK, Pareek N, Taj G, Maithani D, Kumar A, Dasila H and Sharma A (2023) Synergistic impact of nanomaterials and plant probiotics in agriculture: A tale of two-way strategy for long-term sustainability. Front. Microbiol. 14:1133968. doi: 10.3389/fmicb.2023.1133968
Va´zquez-Blanco, R., Gonza´lez-Feijoo, R., Campillo-Cora, C., Ferna´ndez-Calvin˜o, D., Arenas-Lago, D., 2023. Risk assessment and limiting soil factors for vine production—Cu and Zn contents in vineyard soils in Galicia (rías baixas D.O.). Agronomy 13 (2), 309. https://doi.org/10.3390/agronomy13020309.
Van Breusegem, F., and Dat, J. F. (2006). Reactive oxygen species in plant cell death. Plant Physiol. 141, 384–390. doi: 10.1104/pp.106.078295
Vanti, G.L., Masaphy, S., Kurjogi, M., Chakrasali, S., Nargund, V.B., 2020. Synthesis and application of chitosan-copper nanoparticles on damping off causing plant pathogenic fungi. Int. J. Biol. Macromol. 156, 1387–1395. https://doi.org/10.1016/j.ijbiomac.2019.11.179.
Varna, M., Ratajczak, P., Ferreira, I., Leboeuf, C., Bousquet, G., and Janin, A. (2012). In vivo distribution of inorganic nanoparticles in preclinical models. J. Biomater. Nanobiotechnol. 3, 269–279. doi: 10.4236/jbnb.2012.322033CrossRef Full Text | Google Scholar
Wang, F., Liu, X., Shi, Z., Tong, R., Adams, C. A., and Shi, X. (2016). Arbuscular mycorrhizae alleviate negative effects of zinc oxide nanoparticle and zinc accumulation in maize plants-A soil microcosm experiment. Chemosphere 147, 88–97. doi: 10.1016/j.chemosphere.2015.12.076PubMed Abstract | CrossRef Full Text | Google Scholar
Wang, Y. ∙ Deng, C. ∙ Rawat, S., 2021. Evaluation of the effects of nanomaterials on rice (oryza sativa L.) responses: underlining the benefits of nanotechnology for agricultural applications, ACS Agri. Sci. Technol. 2021; 1:44-54
Wang, Z., Xie, X., Zhao, J., Liu, X., Feng, W., White, J. C., et al. (2012). Xylem- and phloem-based transport of CuO nanoparticles in maize (Zea mays L.). Environ. Sci. Technol. 46, 4434–4441. doi: 10.1021/es204212zPubMed Abstract | CrossRef Full Text | Google Scholar
Wijnhoven, S.W.P., Peijnenburg, W.J.G.M., Herbets, C.A., Hagens, W.I., Oomen, A.G., Heugens, E.H.W., Roszek, B., Bisschops, J., Gosens, I., Vand de Meent, D., 2009.Nano-silver- a review of available data and knowledge gaps in human and environmental risk assessment. Nanotoxicology 3, 109–138. https://doi.org/10.1080/17435390902725914.
Wong, M. H., Misra, R. P., Giraldo, J. P., Kwak, S. Y., Son, Y., Landry, M. P., et al. (2016). Lipid exchange envelope penetration (LEEP) of nanoparticles for plant engineering: a universal localization mechanism. Nano Lett. 16, 1161–1172. doi: 10.1021/acs.nanolett.5b04467PubMed Abstract | CrossRef Full Text | Google Scholar
Worrall, E.A. ∙ Hamid, A. ∙ Mody, K.T, 2018. Nanotechnology for plant disease management
Wu, B., and Beitz, E. (2007). Aquaporins with selectivity for unconventional permeants. Cell Mol Life Sci. 64, 2413–2421. doi: 10.1007/s00018-007-7163-2PubMed Abstract | CrossRef Full Text | Google Scholar
Wu, H., and Li, Z. (2022). Recent advances in nano-enabled agriculture for improving plant performance. Crop J. 10, 1–12.
Wu, H., Tito, N., Giraldo, J.P., 2017. Anionic cerium oxide nanoparticles protect plant photosynthesis from abiotic stress by scavenging reactive oxygen species. ACS Nano 11 (11), 11283–11297. https://doi.org/10.1021/acsnano.7b05723.
Yadollahi, A., Arzani, K., & Khoshghalb, H. (2010). The role of nanotechnology in horticultural crops postharvest management. In Southeast Asia Symposium on Quality and Safety of Fresh and Fresh-Cut Produce 875 (pp. 49-56).
Yang, Z., Chen, J., Dou, R., Gao, X., Mao, C., Wang, L., 2015. Assessment of the phytotoxicity of metal oxide nanoparticles on two crop plants, maize (Zea mays L.) and rice (Oryza sativa L.). Int. J. Environ. Res. Publ. Health 12 (12), 15100–15109., https://doi.org/10.3390/ijerph121214963.
Yu, Y. ∙ Zhang, S. ∙ Ren, Y., 2012. Jujube preservation using chitosan film with nano-silicon dioxide, J. Food Eng. 2012; 113:408-414
Zambrano-Zaragoza, M.L.2018. González-Reza, R. ∙ Mendoza-Muñoz, N. Nanosystems in edible coatings: a novel strategy for food preservation, Int. J. Mol. Sci. 2018; 19:705
Zhai, G., Walters, K. S., Peate, D. W., Alvarez, P. J., and Schnoor, J. L. (2014). Transport of gold nanoparticles through plasmodesmata and precipitation of gold ions in woody poplar. Environ. Sci. Technol. Lett. 1, 146–151. doi: 10.1021/ez400202bPubMed Abstract | CrossRef Full Text | Google Scholar
Zhang, P., Ma, Y., Zhang, Z., He, X., Zhang, J., Guo, Z., et al. (2012). Biotransformation of ceria nanoparticles in cucumber plants. ACS Nano 6, 9943–9950. doi: 10.1021/nn303543nPubMed Abstract | CrossRef Full Text | Google Scholar
Zhang, S. (2019). Mechanism of Migration and Transformation of Nano Selenium and Mitigates Cadmium Stress in Plants. [Master’s thesis]. Jinan: Shandong University.
Zhao, L., Peralta-Videa, J. R., Ren, M., Varela-Ramirez, A., Li, C., Hernandez-Viezcas, J. A., et al. (2012). Transport of Zn in a sandy loam soil treated with ZnO NPs and uptake by corn plants: electron microprobe and confocal microscopy studies. Chem. Eng. J. 184, 1–8. doi: 10.1016/j.cej.2012.01.041CrossRef Full Text | Google Scholar
Zhu, Z. J., Wang, H., Yan, B., Zheng, H., Jiang, Y., Miranda, O. R., et al. (2012). Effect of surface charge on the uptake and distribution of gold nanoparticles in four plant species. Environ. Sci. Technol. 46, 12391–12398. doi: 10.1021/es301977wPubMed Abstract | CrossRef Full Text | Google Scholar
Zohri, M., Alavidjeh, M. S., Haririan, I., Ardestani, M. S., Ebrahimi, S. E., Sani, H. T., et al. (2010). A comparative study between the antibacteria effect of nisin and nisin-loaded chitosan/alginate nanoparticles on the growthl of Staphylococcus aureus in raw and pasteurized milk samples. Probiotics Antimicrob. Proteins. 2, 258–266. doi: 10.1007/s12602-010-9047-2PubMed Abstract | CrossRef Full Text | Google Scholar
Roohinejad, S. et al. (2015) Formulation of oil-in-water β-carotene microemulsions: effect of oil type and fatty acid chain length. Food Chem., 174 (0), 270–278.
Han, C. ∙ Zhao, A. ∙ Varughese, E., 2018. Evaluating weathering of food packaging polyethylene-nano-clay composites: release of nanoparticles and their impacts, NanoImpact. 9:61-71
Rajput, V. ∙ Minkina, T. ∙ Mazarji, M.2020. Accumulation of nanoparticles in the soil-plant systems and their effects on human health, Ann. Agric. Sci. 2020; 65:137-143
Alejandro Pérez-de-Luque, Interaction of Nanomaterials with Plants: What Do We Need for Real Applications in Agriculture, Front. Environ. Sci,10 April 2017, Sec. Green and Sustainable Chemistry, Volume 5 - 2017 | https://doi.org/10.3389/fenvs.2017.00012
Paramo LA, Feregrino-Pérez AA, Guevara R, Mendoza S, Esquivel K. Nanoparticles in Agroindustry: Applications, Toxicity, Challenges, and Trends. Nanomaterials. 2020; 10(9):1654. https://doi.org/10.3390/nano10091654
Ruixuan Wang, Waylon J. Hastings, Julian G. Saliba, Duran Bao, Yuanyu Huang. December 20, 2024. Applications of Nanotechnology for Spatial Omics: Biological Structures and Functions at Nanoscale Resolution. ACS Nano, Vol 19/Issue 1, 73-100. https://doi.org/10.1021/acsnano.4c11505
Duan L, Ouyang K, Xu X, Xu L, Wen C, Zhou X, Qin Z, Xu Z, Sun W and Liang Y (2021) Nanoparticle Delivery of CRISPR/Cas9 for Genome Editing. Front. Genet. 12:673286. doi: 10.3389/fgene.2021.673286
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Ashok Kumara, Jagdish Grovera, S.R. Singh, Priyanka Sharma, Rajni Chaudhary, Arvinder Singh Channi, Arjun chouria, Navneet Kumar, Himansu Dall, Tamanna Nazir

This work is licensed under a Creative Commons Attribution 4.0 International License.
You are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
Terms:
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.