Biochemical Pathways in Neonatal Intestinal Atresia: Vascular and Genetic Perspectives
DOI:
https://doi.org/10.52783/jns.v14.2475Keywords:
Neonatal intestinal atresia, vascular disruption, genetic mutations, Notch signaling, Wnt pathway, Hedgehog signaling, epigenetics, extracellular matrix, molecular therapies, CRISPR, tissue engineeringAbstract
Neonatal intestinal atresia (NIA) is a congenital condition characterized by the obstruction or absence of a segment of the intestine, leading to life-threatening complications in neonates. The etiology of NIA is multifactorial, involving both vascular and genetic factors. Vascular disruptions during fetal development may lead to ischemic necrosis and resorption of intestinal segments, while genetic mutations affecting developmental pathways contribute to structural anomalies. The involvement of key signaling pathways, including Notch, Wnt, and Hedgehog, suggests that molecular disruptions play a crucial role in intestinal morphogenesis. Additionally, epigenetic modifications and extracellular matrix defects have been implicated in the pathophysiology of NIA, further highlighting the complexity of its developmental origins.
Despite advances in prenatal imaging and neonatal surgery, NIA remains a significant cause of morbidity, often requiring extensive surgical intervention and long-term nutritional support. Early genetic screening and fetal Doppler studies may provide better risk stratification and earlier diagnosis, improving perinatal outcomes. Furthermore, emerging research on targeted molecular therapies and gene-editing technologies, such as CRISPR-Cas9, offers promising avenues for future intervention. Current studies suggest that gene-environment interactions, particularly maternal health factors and in utero exposures, may influence the severity and manifestation of NIA.
Given the multifaceted nature of this disorder, a comprehensive understanding of its biochemical pathways is crucial for developing effective treatment strategies. This literature review explores the vascular and genetic mechanisms implicated in NIA, with an emphasis on their molecular underpinnings and clinical implications. Advances in stem cell research and tissue engineering may provide alternative therapeutic options in the future, potentially reducing dependence on surgical interventions. By elucidating the intricate interactions between genetic and environmental factors, novel approaches in diagnosis, prevention, and treatment can be developed to improve patient outcomes and quality of life.
Downloads
Metrics
References
Singh V, Pathak M. Congenital neonatal intestinal obstruction: retrospective analysis at tertiary care hospital. J Neonatal Surg. 2016;5(4):49. doi:10.21699/jns.v5i4.393.
Chen D, Tam KH, Zhang Y, Xiao S, Yang C, Tang X. Prenatal diagnosis of midgut volvulus with jejunal atresia by ultrasonography. J Obstet Gynaecol Res. 2020;46(7):1203-1206. doi:10.1111/jog.14296.
Kayima P, Ssewanyana Y, Ozgediz D, Sekabira J. Efforts to improve outcomes among neonates with complex intestinal atresia in a low-income country: a retrospective cohort study. Pediatr Surg Int. 2024;40(5):567-574. doi:10.1007/s00383-024-05639-7.
Kamal A, Khan K, Inayat ur R, Khan A. Small gut atresia in neonates. J Ayub Med Coll Abbottabad. 2010;22(2):64-66.
Alam MS, Elghote SE, Kamel SMM, Kumar C, Shedabale DS. Intestinal atresia leading to intussusception: an unconventional submission. Cureus. 2024;16(9):e69723. doi:10.7759/cureus.69723.
Basak A, Sil A, Sarkar M. Intestinal atresia: a retrospective study of 36 neonates and risk factors to mortality in a tertiary care center, Tripura. Int J Contemp Pediatr. 2025;12(2):215-220. doi:10.18203/2349-3291.ijcp20250087.
Virgone C, D'Antonio F, Khalil A, Jonh R, Manzoli L, Giuliani S. Accuracy of prenatal ultrasound in detecting jejunal and ileal atresia: systematic review and meta-analysis. Ultrasound Obstet Gynecol. 2015 May;45(5):523-529. doi:10.1002/uog.14651.
Saha H, Halder A, Chatterjee U, Saha K. Clinicopathological study of intestinal smooth muscles, interstitial cells of Cajal, and enteric neurons in neonatal jejuno-ileal atresia with special reference to muscle morphometry. J Pediatr Surg. 2019 Nov;54(11):2291-2299. doi: 10.1016/j.jpedsurg.2019.06.003.
Exome sequencing identifies mutations in the gene TTC7A in French-Canadian cases with hereditary multiple intestinal atresia. J Med Genet. 2013;50(5):324-329. doi: 10.1136/jmedgenet-2012-101483.
Avitzur Y, Guo C, Mastropaolo LA, Bahrami E, Chen H, Zhao Z, et al. Mutations in tetratricopeptide repeat domain 7A result in a severe form of very early onset inflammatory bowel disease. Gastroenterology. 2014 Apr;146(4):1028-39. doi: 10.1053/j.gastro.2014.01.015.
Nusinovich Y, Revenis M, Torres C. Long-term outcomes for infants with intestinal atresia studied at Children's National Medical Center. J Pediatr Gastroenterol Nutr. 2013 Sep;57(3):324-9. doi: 10.1097/MPG.0b013e318299fd9f.
Wilasco MI, Uribe-Cruz C, Santetti D, et al. IL-6, TNF-α, IL-10, and nutritional status in pediatric patients with biliary atresia. J Pediatr (Rio J). 2017;93(5):517-524. doi:10.1016/j.jped.2016.11.009.
Goelz R, Hamprecht K, Klingel K, Poets CF. Intestinal manifestations of postnatal and congenital cytomegalovirus infection in term and preterm infants. J Clin Virol. 2016;83:29-36. doi:10.1016/j.jcv.2016.08.289.
Schleiss MR. Cytomegalovirus infection in the neonate and premature infant. Infect Disord Drug Targets. 2011;11(5):449-465. doi: 10.2174/187152611797636721.
Zhou J, Zhang H, Gu P, et al. Hypoxia-inducible factor 1α regulates autophagy to affect apoptosis in trophoblast cells. J Matern Fetal Neonatal Med. 2017;30(3):362-371.
Ietta F, Wu Y, Winter J, et al. Dynamic HIF1A regulation during human placental development. Biol Reprod. 2006;75(1):112-121. doi: 10.1095/biolreprod.106.051557.
Tempfer CB, Brunner A, Bentz EK, Langer M, Reinthaller A, Hefler LA. Intrauterine fetal death and delivery complications associated with coagulopathy: a retrospective analysis of 104 cases. J Womens Health (Larchmt). 2009;18(4):469-74. doi:10.1089/jwh.2008.0938.
Maslow AD, Breen TW, Sarna MC, Soni AK, Watkins J, Oriol NE. Prevalence of coagulation abnormalities associated with intrauterine fetal death. Can J Anaesth. 1996;43(12):1237-43. doi:10.1007/BF03013432.
Bracher I, Padrutt M, Bonassin F, Santos Lopes B, Gruner C, Stampfli SF, et al. Burden and impact of congenital syndromes and comorbidities among adults with congenital heart disease. Int J Cardiol. 2017;240:159-164. doi:10.1016/j.ijcard.2017.02.118.
Li Y, Liu Y, Shi Y, et al. Melatonin attenuates intestinal injury and inhibits TLR4/MyD88/NF-κB signaling pathway in a neonatal necrotizing enterocolitis rat model. Int J Clin Exp Med. 2017;10(3):5112-5120. doi:10.1155/2022/6920577.
Jung E, Romero R, Yeo L, Diaz-Primera R, Marin-Concha J. The fetal inflammatory response syndrome: the origins of a concept, pathophysiology, diagnosis, and obstetrical implications. Semin Fetal Neonatal Med. 2020;25(4):101146. doi:10.1016/j.siny.2020.101146.
Schoots MH, Gordijn SJ, Scherjon SA, van Goor H, Hillebrands JL. Oxidative stress in placental pathology. Placenta. 2018;69:153-161. doi:10.1016/j.placenta.2018.03.003.
Sultana Z, Maiti K, Aitken J, Morris J, Dedman L, Smith R. Oxidative stress, placental ageing-related pathologies and adverse pregnancy outcomes. Am J Reprod Immunol. 2017;77(5):e12653. doi:10.1111/aji.12653.
Nzelu D, Dumitrascu-Biris D, Nicolaides KH, Kametas NA. Chronic hypertension: first-trimester blood pressure control and likelihood of severe hypertension, preeclampsia, and small-for-gestational-age neonates. Am J Obstet Gynecol. 2018;218(3):337.e1-337.e7. doi: 10.1016/j.ajog.2017.12.235.
Gaccioli F, Lager S. Placental nutrient transport and intrauterine growth restriction. Front Physiol. 2016;7:40. doi:10.3389/fphys.2016.00040.
Atwani R, Aziz A, Saade G, Reddy UM, Kawakita T. Maternal implications of fetal anomalies: a population-based cross-sectional study. Am J Obstet Gynecol MFM. 2024;6(1):101440. doi:10.1016/j.ajogmf.2024.101440.
Reeson P, Choi K, Brown CE. VEGF signaling regulates the fate of obstructed capillaries in mouse cortex. eLife. 2018;7:e33670. doi:10.7554/eLife.33670.
Apte RS, Chen DS, Ferrara N. VEGF in signaling and disease: beyond discovery and development. Cell. 2019;176(6):1248-1264. doi:10.1016/j.cell.2019.01.021.
Ishiguro H, Okubo T, Kuwabara Y, Kimura M, Mitsui A, Sugito N, et al. NOTCH1 activates the Wnt/β-catenin signaling pathway in colon cancer. Oncotarget. 2017;8(36):60378-60389. doi:10.18632/oncotarget.19534.
Nusse R, Clevers H. Wnt/β-catenin signaling, disease, and emerging therapeutic modalities. Cell. 2017;169(6):985-999. doi:10.1016/j.cell.2017.05.016.
Briscoe J, Thérond PP. The mechanisms of Hedgehog signalling and its roles in development and disease. Nat Rev Mol Cell Biol. 2013;14(7):416-429. doi:10.1038/nrm3598.
Andersson ER, Sandberg R, Lendahl U. Notch signaling: simplicity in design, versatility in function. Development. 2011;138(17):3593-3612. doi:10.1242/dev.063610.
Steinhart Z, Angers S. Wnt signaling in development and tissue homeostasis. Development. 2018;145(11):dev146589. doi:10.1242/dev.146589.
Lu Y, Zhu Y, Deng S, Chen Y, Li W, Sun J, et al. Targeting the Sonic Hedgehog pathway to suppress the expression of the cancer stem cell (CSC)-related transcription factors and CSC-driven thyroid tumor growth. Cancers (Basel). 2021;13(3):418. doi:10.3390/cancers13030418.
Goulet O, Olieman J, Ksiazyk J, Spolidoro J, Tibboe D, Köhler H, et al. Neonatal short bowel syndrome as a model of intestinal failure: physiological background for enteral feeding. Clin Nutr. 2013;32(2):162-171. doi:10.1016/j.clnu.2012.09.007.
Al-Zaiem MM, Alsamli RS, Alsulami EA, Mohammed RF, Almatrafi MI. Hereditary multiple intestinal atresia: a case report and review of the literature. Cureus. 2022;14(10):e30870. doi:10.7759/cureus.30870.
Jardine S, Dhingani N, Muise AM. TTC7A: steward of intestinal health. Cell Mol Gastroenterol Hepatol. 2019;7(3):555-570. doi:10.1016/j.jcmgh.2018.12.001.
Samuels ME, Majewski J, Alirezaie N, et al. Exome sequencing identifies mutations in the gene TTC7A in French-Canadian cases with hereditary multiple intestinal atresia. J Med Genet. 2013;50(5):324-329. doi:10.1136/jmedgenet-2012-101483.
Muise AM, Walters TD, Glowacka WK, et al. Polymorphisms in E-cadherin (CDH1) result in a mis-localised cytoplasmic protein that is associated with Crohn's disease. Gut. 2009;58(8):1121-1127. doi:10.1136/gut.2008.175117.
Li S, Zhu M, Pan R, Fang T, Cao Y, Chen S, et al. Functional screen of inflammatory bowel disease genes reveals key epithelial functions. Genome Med. 2021;13(1):177. doi:10.1186/s13073-021-00996-7.
Tang Q, Zou Z, Zou C, Zhang Q, Huang R, Guan X, et al. MicroRNA-93 suppresses colorectal cancer development via downregulation of the Wnt/β-catenin pathway. Tumour Biol. 2015;36(3):1701-1710. doi:10.1007/s13277-014-2771-6.
Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281-297. doi:10.1016/s0092-8674(04)00045-5.
Bindi E, Alganabi M, Biouss G, Liu J, Li B, Miyake H, et al. Hepatic oxidative injury: role of mitochondrial dysfunction in necrotizing enterocolitis. Pediatr Surg Int. 2021;37(3):325-332. doi:10.1007/s00383-020-04816-8.
Zhang Y, Yi S, Luan M. Advances in non-apoptotic regulated cell death: implications for malignant tumor treatment. Front Oncol. 2025;15:1519119. doi:10.3389/fonc.2025.1519119.
Ballouhey Q, Fourcade L, Richard L, Bellet C, El Hamel C, Vallat JM, et al. Epithelial changes of congenital intestinal obstruction in a rat model. PLoS One. 2020;15(4):e0232023. doi:10.1371/journal.pone.0232023.
Humphrey JD, Dufresne ER, Schwartz MA. Mechanotransduction and extracellular matrix homeostasis. Nat Rev Mol Cell Biol. 2014;15(12):802-812. doi:10.1038/nrm3896.
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
You are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
Terms:
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.