Exploring the Molecular Level Interactions of Molnupiravir with Serum Albumin- An Analytical Approach

Authors

  • Shaheen Begum
  • Usha Rani D
  • Nithya Somanjeri
  • S. Naveen Taj

DOI:

https://doi.org/10.52783/jns.v14.2501

Keywords:

BSA, Spectroscopy, Thermodynamic Analysis, Quenching, Binding Affinity

Abstract

Molnupiravir is an antiviral agent used to treat mild coronavirus infection. The drug has good oral bioavailability and safety profile. The protein binding profile of molnupiravir with albumin protein is not well characterized. Therefore, to provide deeper insights, the binding characteristics of molnupiravir to bovine albumin serum were explored using spectral techniques and thermodynamic analysis. The Uv-vis spectral analysis revealed moderate affinity between molnupiravir and BSA with a binding constant value of 1.84 x 104 M-1. Molnupiravir quenched the fluorescence spectrum of BSA via a static quenching mechanism. The negative ∆G (-9.53 kJ.mol-1, -11.77 kJ.mol-1, -14.28 kJ.mol-1) for the molnupiravir-BSA complex confirmed spontaneous and exergonic interactions between the molecules.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Santani, B. G., LeBlanc, B. W., & Thakare, R. P. (2022). Molnupiravir for the treatment of COVID-19. Drugs Today (Barc), 58(7), 335-50.

Tian, L., Pang, Z., Li, M., Lou, F., An, X., Zhu, S., ... & Fan, J. (2022). Molnupiravir and its antiviral activity against COVID-19. Frontiers in immunology, 13, 855496.

Afni, N., & Suharjono, S. Molnupiravir-the First Oral Antiviral for COVID-19: A Literature Review. Pharmacon: Jurnal Farmasi Indonesia, 19(1), 45-61.

World Health Organization. (2022, March 3). WHO updates its living guidelines to include molnupiravir for COVID-19 treatment. https://www.who.int/news/item/03-03-2022-who-updates-its-living-guidelines-to-include-molnupiravir

Dufour, I., Devresse, A., Scohy, A., Briquet, C., Georgery, H., Delaey, P., ... & Labriola, L. (2023). Safety and efficiency of molnupiravir for COVID-19 patients with advanced chronic kidney disease. Kidney research and clinical practice, 42(2), 275.

Marikawa, Y., & Alarcon, V. B. (2023). An active metabolite of the anti-COVID-19 drug molnupiravir impairs mouse preimplantation embryos at clinically relevant concentrations. Reproductive Toxicology, 121, 108475.

Mizutani, H., Koide, T., Omura, T., & Ito, K. (2022). Interaction between warfarin and molnupiravir in a patient with coronavirus disease 2019 infection. Journal of family medicine and primary care, 11(11), 7463–7465.

Moman, R. N., Gupta, N., & Varacallo, M. (2017). Physiology, albumin.

Galantini, L., Leggio, C., Konarev, P. V., & Pavel, N. V. (2010). Human serum albumin binding ibuprofen: a 3D description of the unfolding pathway in urea. Biophysical chemistry, 147(3), 111-122.

Kannan, S., Krishnankutty, R., & Souchelnytskyi, S. (2022). Novel post-translational modifications in human serum albumin. Protein and Peptide Letters, 29(5), 473-484.

Mishra, V., & Heath, R. J. (2021). Structural and biochemical features of human serum albumin essential for eukaryotic cell culture. International journal of molecular sciences, 22(16), 8411.

Catalano, C., Lucier, K. W., To, D., Senko, S., Tran, N. L., Farwell, A. C., ... & Scapin, G. (2024). The CryoEM structure of human serum albumin in complex with ligands. Journal of Structural Biology, 216(3), 108105.

Rabbani, G., & Ahn, S. N. (2019). Structure, enzymatic activities, glycation and therapeutic potential of human serum albumin: A natural cargo. International journal of biological macromolecules, 123, 979–990.

Czub, M. P., Handing, K. B., Venkataramany, B. S., Cooper, D. R., Shabalin, I. G., & Minor, W. (2020). Albumin-based transport of nonsteroidal anti-inflammatory drugs in mammalian blood plasma. Journal of medicinal chemistry, 63(13), 6847-6862.

Maciążek-Jurczyk, M., Morak-Młodawska, B., Jeleń, M., Kopeć, W., Szkudlarek, A., Owczarzy, A., ... & Pożycka, J. (2021). The influence of oxidative stress on serum albumin structure as a carrier of selected diazaphenothiazine with potential anticancer activity. Pharmaceuticals, 14(3), 285.

Han, X. L., Tian, F. F., Ge, Y. S., Jiang, F. L., Lai, L., Li, D. W., ... & Liu, Y. (2012). Spectroscopic, structural and thermodynamic properties of chlorpyrifos bound to serum albumin: A comparative study between BSA and HSA. Journal of photochemistry and photobiology B: biology, 109, 1-11.

Zhang, H. X., Zhou, D., & Xia, Q. H. (2018). Study on the molecular recognition action of lamivudine by human serum albumin. Journal of Molecular Recognition, 31(7), e2705.

Sandhya, B., Hegde, A. H., & Seetharamappa, J. (2013). Elucidation of binding mechanism and identification of binding site for an anti HIV drug, stavudine on human blood proteins. Molecular biology reports, 40, 3817-3827.

Dömötör, O., & Enyedy, É. A. (2023). Evaluation of in vitro distribution and plasma protein binding of selected antiviral drugs (favipiravir, molnupiravir and imatinib) against SARS-CoV-2. International Journal of Molecular Sciences, 24(3), 2849.

Thakkar, S. V., Allegre, K. M., Joshi, S. B., Volkin, D. B., & Middaugh, C. R. (2012). An application of ultraviolet spectroscopy to study interactions in proteins solutions at high concentrations. Journal of Pharmaceutical Sciences, 101(9), 3051-3061.

Bratty, M. A. Spectroscopic and molecular docking studies for characterizing binding

mechanism and conformational changes of human serum albumin upon interaction with

Telmisartan. Saudi Pharm J. 2020, 28(6), 729-736.

Copeland, R. A. (2013). Evaluation of enzyme inhibitors in drug discovery: a guide for medicinal chemists and pharmacologists. John Wiley & Sons.

Jahanban-Esfahlan, A., Davaran, S., Moosavi-Movahedi, A. A., & Dastmalchi, S. (2017). Investigating the interaction of juglone (5-hydroxy-1, 4-naphthoquinone) with serum albumins using spectroscopic and in silico methods. Journal of the Iranian Chemical Society, 14, 1527-1540.

Lam, B. C., Wong, H. N., & Yeung, C. Y. (1990). Effect of indomethacin on binding of bilirubin to albumin. Archives of Disease in Childhood, 65(7 Spec No), 690-691.

Wang, Z. M., Ho, J. X., Ruble, J. R., Rose, J., Rüker, F., Ellenburg, M., ... & Carter, D. C. (2013). Structural studies of several clinically important oncology drugs in complex with human serum albumin. Biochimica et Biophysica Acta (BBA)-General Subjects, 1830(12), 5356-5374.

Cooper, E. A., & Knutson, K. (1995). Fourier transform infrared spectroscopy investigations of protein structure. Physical methods to characterize pharmaceutical proteins, 101-143.

Eskew, M. W., & Benight, A. S. (2021). Ligand binding constants for human serum albumin evaluated by ratiometric analysis of DSC thermograms. Analytical Biochemistry, 628, 114293.

Downloads

Published

2025-03-23

How to Cite

1.
Begum S, Rani D U, Somanjeri N, Taj SN. Exploring the Molecular Level Interactions of Molnupiravir with Serum Albumin- An Analytical Approach. J Neonatal Surg [Internet]. 2025Mar.23 [cited 2025Sep.23];14(8S):101-7. Available from: https://www.jneonatalsurg.com/index.php/jns/article/view/2501