Detecting Abnormalities in Blood Cells by Using Different Modern Techniques: A Comprehensive Review
DOI:
https://doi.org/10.52783/jns.v14.2739Keywords:
Red Blood Cells, White Blood Cells, Platelets, Convolutional neural networks (CNN), Thalassemia, Thrombocytopenia, Hemophilia, HematologistsAbstract
Blood is the life maintaining fluid that flows through the body's blood vessels Arteries, Veins and Capillaries. Blood cell abnormalities, encompassing alterations in the size, shape, count, color, texture or functionality of red blood cells (RBCs), white blood cells (WBCs), platelets and Plasma are critical indicators of various hematological and systemic diseases. Accurate and early detection of these abnormalities plays a significant role for timely diagnosis, prognosis, and treatment of conditions such as Anemia, Leukemia, Thalassemia, Thrombocytopenia, Hemophilia, Polycythemia vera, Plasma cell myeloma and other infections. In recent years, advancements in modern diagnostic techniques have significantly enhanced our ability to identify and characterize these abnormalities with high Accuracy, Sensitivity and Precision. This review highlights contemporary methodologies employed in detecting blood cell abnormalities, emphasizing their principles, applications and clinical relevance. Fully Automated complete blood count (CBC) analyzers, Artificial intelligence and machine learning techniques and Single cell sequencing technology have revolutionized routine hematology by providing rapid and quantitative as well as qualitative insights into blood cell parameters without much necessity of Hematologists. Modern blood cell analysis techniques have significantly advanced, combining automation, precision, and novel technologies to enhance diagnostic capabilities. Automated hematology analyzers employ methods like flow cytometry, impedance technology, and optical scattering for efficient cell counting and classification. Advanced tools, such as microfluidics, Raman spectroscopy, and single-cell RNA sequencing, enable detailed molecular and cellular profiling. Emerging approaches like imaging flow cytometry, laser-induced breakdown spectroscopy, and mass cytometry further improve the detection of rare and abnormal cells. Integrating artificial intelligence and machine learning has streamlined blood smear analysis and enhanced anomaly detection. These innovations provide faster, more accurate results, paving the way for improved diagnostics and personalized medicine.
The Primary purpose of this Literature Review is to assist readers in understanding the whole body of available different modern techniques in determination of abnormal blood cells.
Downloads
Metrics
References
Immunofluorescence microscopy on the blood smear identifies patients with myeloproliferative neoplasms Carlo Zaninetti Jan Wesche 1 ,Leonard Vater 1 , Lars Kaderali2, Carl C. Crodel3, Tina M. Schnöder4,5, Jessica Fuhrmann1, Leonard Swensson1, 1,Carmen Freyer1, Andreas Greinacher1,7 and Florian H. Heide, Leukemia (2024) 38:2051–2058; https://doi.org/10.1038/s41375-024-02346-z
Analysis of red blood cells from peripheral blood smear images for anemia detection: a methodological review Navya K.T.1 · Keerthana Prasad2Brij Mohan Kumar Singh3, https://doi.org/10.1007/s11517-022-02614-z
An intelligent neural network model to detect red blood cells for various blood structure classification in microscopic medical images Riaz Ullah Khana,∗, Sultan Almakdib, Mohammed Alshehrib, Amin Ul Haqc, Aman Ullaha, Rajesh Kumara, https://doi.org/10.1016/j.heliyon.2024.e26149
A review of microscopic analysis of blood cells for disease detection with AI perspective, NilkanthMukundDeshpande1,2,ShilpaGite3,4and Rajanikanth Aluvalu5, PeerJComput.Sci.7: e460DOI10.7717/peerj-cs.460
An analysis of decipherable red blood cell abnormality detection under federated environment leveraging XAI incorporated deep learning Shakib Mahmud Dipto1, Md Tanzim Reza2, Nadia Tasnim Mim2, Amel Ksibi3, Shrooq Alsenan3, Jia Uddin4 & Md Abdus Samad5,
https://doi.org/10.1038/s41598-024-76359-0
Biophysical profiling of red blood cells from thin-film blood smears using deep learning Erik S. Lamoureuxa,b, You Chenga,b, Emel Islamzadaa,b, Kerryn Matthewsa,b, Simon P. Duffya,b,c, Hongshen Maa,b,d,e, https://doi.org/10.1016/j.heliyon.2024.e35276
Explainable Artificial Intelligence and Deep Learning Methods for the Detection of Sickle Cell by Capturing the Digital Images of Blood Smears Neelankit Gautam Goswami 1, Niranjana Sampathila 1,* , Giliyar Muralidhar Bairy 1,* , Anushree Goswami 1, Dhruva Darshan Brp Siddarama 1 1 andSushmaBelurkar2, https://doi.org/10.3390/info15070403
Optimized automated blood cells analysis using Enhanced Greywolf Optimization with integrated attention mechanism and YOLOv5 Osama R. Shahin a,b Alaeddine Mihoub f , Karim Gasmi a,* , Moez Krichen , Lassaad Ben Ammar g c,d , Meznah A. Alamro , Mohammed Abdullah Tawashi e, https://doi.org/10.1016/j.aej.2024.08.054
plink: https://research.ebsco.com/linkprocessor/plink?id=bf978147-c0c6-3596 a508-4b2c67082a25, DOI: 10.18280/ts.410318
Deep Learning for the Detection of Acute Lymphoblastic Leukemia Subtypes on Microscopic Images: A Systematic Literature Review TANZILAL MUSTAQIM , (Member, IEEE), CHASTINE FATICHAH AND NANIK SUCIATI , (Member, IEEE), Digital Object Identifier 10.1109/ACCESS.2023.3245128
An indeterminacy fusion of encoder-decoder network based on neutrosophic set for white blood cells segmentation Yanhui Guo a a , 1 , * , Ahmed I. Shahin b , 2 , Harish Garg c , 3, https://doi.org/10.1016/j.eswa.2024.123156
A review on computer aided detection and classification of leukemia K. K. Anilkumar1 · V. J. Manoj1 · T. M. Sagi2, Multimedia Tools and Applications (2024) 83:17961–17981 https://doi.org/10.1007/s11042-023-16228-6
Flow Cytometry as a New Accessible Method to Evaluate Diagnostic Osmotic Changes in Patients with Red Blood Cell Membrane Defects Asunción Beltrán 1,*, María Sánchez-Villalobos 2,*, Eduardo Salido 2, Carmen Algueró 2, Eulalia Campos 1, AnaBelén Pérez-Oliva 1 , Miguel Blanquer 2 and José M. Moraleda 1,3, https://doi.org/10.3390/ biomedicines12071607
Flow cytometry-based peripheral blood analysis as an easily friendly tool for prognostic monitoring of acute ischemic stroke: a multicenter study, Kang Lu1†, Wanmao Ni2†, Juanqing Yue3†, Yongran Cheng4, Jing Du5, Yanchun Li6, Xiangmin Tong7*†, Guo-Bo Chen2*† and Ying Wang6, Volume 15 - 2024 | https://doi.org/10.3389/fimmu.2024.1402724
Flow cytometry in acute myeloid leukemia and detection of minimal residual disease Qihui Cai a,1 , Haiqiang Lan Zhaohong Liao a a,b,*, https://doi.org/10.1016/j.cca.2024.119945
Prognostic value of circulating plasma cells detected by flow cytometry in newly diagnosed multiple myeloma patients: a systematic review and meta- analysis Xiaoyan Liu,1 Feifei Wu,1 Wu Ye,2 Jili Deng,3 Mengmeng Zhang,1 Congli Zhang,1 Qingfeng Yu,1 Li Cao,1 Silin Gan,1 Jie Ma, http://dx.doi.org/10.1136/ bmjopen-2022-071548
Imaging Flow Cytometry: Development, Present Applications, and Future Challenges Savvas Dimitriadis 1,†, Lefkothea Dova 1,†, Ioannis Kotsianidis 2 , Eleftheria Hatzimichael 3 and Georgios S. Markopoulos 1,4,*, https://doi.org/10.3390/mps7020028
Advances in Microflow Cytometry-Based Molecular Detection Methods for Improved Future MDS Cancer Diagnosis Marc Gonsalves 1,2, Andres Escobar 3, Ahmad Diaa Altarabishi 3 and Chang-Qing Xu 1,3,*, https://doi.org/10.3390/cimb46080476
Iron overload impact on peripheral blood cells, lymphocytes and karyotypes in newly diagnosed myelodysplastic syndromes (MDS) patients: a single-center retrospective analysis Lixiang Duan, Wenjun Yu, Xiaolin Jiao, Ying Sun, Yao Fang Ma, Le Li, Zeqiang Nie & Dan Zhao, https://doi.org/10.1080/26895293.2024.2406558
Comparative analysis of feature based ML and CNN for binucleated erythroblast quantification in myelodysplastic syndrome patients using imaging f low cytometry data Carina A. Rosenberg 1*, Matthew A. Rodrigues 2, Marie Bill 1,3 & Maja Ludvigsen 1,3, (2024) 14:9349 | https://doi.org/10.1038/s41598-024-59875-x
A differential diagnosis method for systemic CAEBV and the prospect of EBV-related immune cell markers via flow cytometry Jie Jin, Xia Mao & Donghua Zhang, 2024, https://doi.org/10.1080/07853890.2024.2329136
Comprehensive mapping of immune perturbations associated with aplastic anemia Huijuan Wang · Yinchun Chen · Haimei Deng · Jie Zhang · Xiaotao Jiang · Wenjian Mo · Shunqing Wang · Ruiqing Zhou · Yufeng Liu, Cell Biol Toxicol (2024) 40:75 https://doi.org/10.1007/s10565-024-09914-0
Dual T-cell constant β chain (TRBC)1 and TRBC2 staining for the identification of T-cell neoplasms by flow cytometry 1✉ , Matthew J. Weybright Pedro Horna Gregory E. Otteson1, Jansen N. Seheult1, Janosch Ortmann Horatiu Olteanu 1, Mathieu Ferrari 1 © The Author(s) 2024, Blood Cancer Journal (2024) 14:34 ; https://doi.org/10.1038/s41408-024-01002-0
Developmentofa43colorpanelforthecharacterizationof conventionalandunconventionalT-cellsubsets,Bcells,NK cells,monocytes,dendriticcells,andinnatelymphoidcells usingspectral flow cytometry FairoozSahir1 | JerichaMilesMateo1 | MartinSteinhoff2,3,4,5,6,7 | KodappullySivaramanSiveen1, DOI:10.1002/cyto.a.24288
Quantification of Measurable Residual Disease Detection by Next-Generation Sequencinge Based Clonality Testing in B-Cell and Plasma Cell Neoplasms Ying Liu,*y Caleb Ho,z Wayne Yu,* Ying Huang,x Jeffrey Miller,x Qi Gao,y Mustafa Syed,* Yuanyuan Ma,* Meiyi Wang,* Lidia Maciag,* Kseniya Petrova-Drus,*y Menglei Zhu,*y JinJuan Yao,* Chad Vanderbilt,* Benjamin Durham,* Jamal Benhamida,* Mark D. Ewalt,*y Ahmet Dogan,y Mikhail Roshal,y Khedoudja Nafa,* and Maria E. Arcila, https://doi.org/10.1016/j.jmoldx.2023.11.009
Innovative Hematology Analysis Using Menstrual Blood Endah Wulandari & Rr Ayu Fitri Hapsari To cite this article: Endah Wulandari & Rr Ayu Fitri Hapsari (2024) Innovative Hematology Analysis Using Menstrual Blood, Medical Devices: Evidence and Research, , 285-293, DOI: 10.2147/MDER.S468500
Fluorescent Aerolysin (FLAER) Binding Is Abnormally Low in the Clonal Precursors of Acute Leukemias, with Binding Particularly Low or Absent in Acute Promyelocytic Leukemia María Beatriz Álvarez Flores 1,* , María Sopeña Corvinos 2, Raquel Guillén Santos 2 and Fernando Cava Valenciano, Int. J. Mol. Sci. 2024, 25(22), 11898; https://doi.org/10.3390/ijms252211898
Minimal Residual Disease Detection in Acute Lymphoblastic Leukemia Aaron Kruse 1, Nour Abdel-Azim 1, Hye Na Kim 1, Yongsheng Ruan 1, Valerie Phan 1, Heather Ogana 1, William Wang 1, Rachel Lee 1, Eun Ji Gang 1, Sajad Khazal 2 and Yong-Mi Kim 1,*, Int. J. Mol. Sci. 2020, 21, 1054; doi:10.3390/ijms21031054 www.mdpi.com/journal/ijms
CD56 bri CD38 + as a novel neutrophil-specific marker in chronic myeloid leukemia Panpan Huang Chaojie Hu a,b,1 a,b,** , Cuiping Zhang , Huaiping Zhu, Volume 10, Issue 21, 15 November 2024, e39465https://doi.org/10.1016/j.heliyon.2024.e39465
Prognostic significance of multiparametric flow cytometry minimal residual disease at two time points after induction in pediatric acute myeloid leukemia Yongzhi Zheng1†, Lili Pan1†, Jian Li1, Xiaoqin Feng2, Chunfu Li3, Mincui Zheng4, Huirong Mai5, Lihua Yang6, Yingyi He7, Xiangling He8, Honggui Xu9, Hong Wen10 and Shaohua Le1*, Zheng et al. BMC Cancer 22 2 https://doi.org/10.1186/s12885-023-11784-4
Automated hematology analyzers: Recent trends and applications, Website: www.jlponline.org DOI: 10.4103/JLP.JLP_124_17
Automated Detection of Dysplasia: Data Mining from Our Hematology Analyzers Jaja Zhu 1 ,Sylvain Clauser 1, Nicolas Freynet 2 and Valérie Bardet 1, Detection of Dysplasia: Data Mining from Our Hematology Analyzers. Diagnostics 2022, 12, 1556. https://doi.org/10.3390/ diagnostics12071556
Study of automated hematology analyzer’s scatterplot patterns in white blood cell disorders Tanvi Tailor, Toral Jivani*, Ami Jagirdar, Shilpa Patel, DOI: https://dx.doi.org/10.18203/2320-6012.ijrms20240524
Clinical value of smear review of flagged samples analyzed with the Sysmex XN hematology analyzer, https://doi.org/10.1515/cclm-2024-0973
Nonleukemic T/B mixed phenotype acute leukemia with PHF6 and NOTCH1 mutations by Oscar Silva, Allison Shaw https://doi.org/10.1182/blood.2021012538
Glial Fibrillary Acidic Protein’s Usefulness as an Astrocyte Biomarker Using the Fully Automated LUMIPULSE® System Jo Kamada, Tomohiro Hamanaka, Aya Oshimo, Hideo Sato, Tomonori Nishii, Marika Fujita, Yoshiharu Makiguchi, Miki Tanaka, Katsumi Aoyagi and Hisashi Nojima, Diagnostics 2024, 14, 2520. https://doi.org/ 10.3390/diagnostics14222520
2024 International Conference on Data Science and Network Security (ICDSNS) Automated Intracranial Hemorrhage Detection Using Deep Learning in Medical Image Analysis, 2024 International Conference on Data Science and Network Security (ICDSNS) | 979-8-3503-7311-0/24/$31.00 ©2024 IEEE | DOI: 10.1109/ICDSNS62112.2024.10691276
The fully automated Sysmex XN-31 hematology analyzer can detect bloodstream form Trypanosoma brucei Tania Khartabil a , Ron HN van Schaik Jaap J. van Hellemond a c , *, https://doi.org/10.1016/j.diagmicrobio.2024.116193
A Convolutional Neural Network- Based Deep Learning To Detect Reticulocytes From Human Peripheral Blood Keerthy Reghunandanan a,1 Rajesh Chandramohanadas a , V.S. Lakshmi a, Intelligence-Based Medicine 10 (2024) 100175, https://doi.org/10.1016/j.ibmed.2024.100175
Microfluidic Affinity Selection of B-Lineage Cells from Peripheral Blood for Minimal Residual Disease Monitoring in Pediatric B-Type Acute Lymphoblastic Leukemia Patients Malgorzata A. Witek 1,2, Nicholas E. Larkey 2,3, Alena Bartakova 4, Mateusz L. Hupert 4, Shalee Mog 2, Jami K. Cronin 5, Judy Vun 5, Keith J. August 5,* and Steven A. Soper 1,2,3,4,6,7, e Acute Lymphoblastic Leukemia Patients. Int. J. Mol. Sci. 2024, 25, 10619. https://doi.org/ 10.3390/ijms251910619
Neelankit Gautam Goswami, Anushree Goswami, Niranjana Sampathila*, Muralidhar G. Bairy*, Krishnaraj Chadaga, and Sushma Belurkar Detection of sickle cell disease using deep neural networks and explainable artificial intelligence, Journal of Intelligent Systems 2024; 33: 20230179, https://doi.org/10.1515/jisys-2023-0179
FAS-Incept-HR: a fully automated system based on optimized inception model for hypertensive retinopathy classification MuhammadZaheerSajid1 ·ImranQureshi1,2 NaumanAliKhan1, Multimedia Tools and Applications (2024) 83:14281–14303 https://doi.org/10.1007/s11042-023-15556-x
Clinical Performance of Semi-Automated Spectral-Domain Optical Coherence Tomography Angiography A. Yasin Alibhai 1, Mary K. Durbin 2 , Huiyuan Hou 2,* , Srinivas R. Sadda 3, Dennis M. Marcus 4,5, Timothy T. You 6, Nevin W. El-Nimri 2, Lukas Huebschmann 2 and Nadia K. Waheed 7, J. Clin. Med. 2024, 13, 6301. https://doi.org/10.3390/jcm13216301
An intelligent white blood cell detection and multi class classification using fine optimal DCRNet P. R. Krishna Prasad1 · Edara Sreenivasa Reddy2 · K. Chandra Sekharaiah3, Multimedia Tools and Applications (2024) 83:75825–75853 https://doi.org/10.1007/s11042-024-18455-x
Emerging multimodality imaging techniques for the pulmonary circulation Sudarshan Rajagopal1,HarmJ.Bogaard2,MohammedS.M.Elbaz3,BenjaminH.Freed4, MartineRemy-Jardin5,EdwinJ.R.vanBeek6, Deepa Gopalan 7andDavidG.Kiely 8, EUROPEAN RESPIRATORY JOURNAL TASK FOR CERE PORT S.RAJAGOPALETAL, DOI: https://doi.org/10.1183/13993003.01222-2024
The role of next-generation sequencing in hematologic malignancies Young Uk Cho1, Cho Blood Research 22 :11 https://doi.org/10.1007/s44313-024-00010-0
Association Between Anticoagulant-Related Bleeding and Mortality in Patients With Solid Tumors and Cancer-Associated Venous Thromboembolism by Amir Mahmoud1 | Suhong Luo1,2 | Brian F. Gage1 | Amber Afzal1 | Kenneth Carson3 | Su-Hsin Chang1 | Martin Schoen2,4 | Tzu-Fei Wang5 | Kristen M. Sanfilippo1,2, American Journal of Hematology, 2025; 0:1–4 https://doi.org/10.1002/ajh.27588.
Measurable (Minimal) Residual Disease in Myelodysplastic Neoplasms (MDS): Current State and Perspectives Linsheng Zhang 1 , George Deeb 1, Kristin K. Deeb 1, Colin Vale 2, Deniz Peker Barclift 1 and Nikolaos Papadantonakis 2, Myelodysplastic Neoplasms (MDS): Current State and Perspectives. Cancers 2024, 16, 1503. https:// doi.org/10.3390/cancers16081503
Next-Generation Sequencing (NGS) and Third-Generation Sequencing (TGS) for the Diagnosis of Thalassemia Syahzuwan Hassan 1,2, Rosnah Bahar 1, Muhammad Farid Johan 1 , Ezzeddin Kamil Mohamed Hashim 3, WanZaidah Abdullah 1, Ezalia Esa 2, Faidatul Syazlin Abdul Hamid 2 and Zefarina Zulkafli 1, https://doi.org/10.3390/diagnostics13030373
Current and Emerging Techniques for Diagnosis and MRD Detection in AML: A Comprehensive Narrative Review Alexandra Teixeira 1,2,3 , Luís Carreira 1, Sara Abalde-Cela 1 Anabela C. Areias 2,3 , Paula Ludovico 2,3,* 1 , Belém Sampaio-Marques 2,3 andLorenaDiéguez1, Cancers 2023, 15(5), 1362; https://doi.org/10.3390/cancers15051362
Itziar Salaverria1,2, Reiner Siebert3, Krzysztof Mrózek4* Appraisal of current technologies for the study of genetic alterations in hematologic malignancies with a focus on chromosome analysis and structural variants, medizinische genetik 2024; 36(1): 13–20, https://doi.org/10.1515/medgen-2024-2001
Detection of minimal residual disease in acute myeloid leukemia: evaluating utility and challenges, Volume 15 - 2024 , https://doi.org/10.3389/fimmu.2024.1252258
Latest Research Progress of Liquid Biopsy in Tumor—A Narrative Review, 2024- Hua Jiang, : https://doi.org/10.2147/CMAR.S479338
Antigen Receptors Gene Analysis for Minimal Residual Disease Detection in Acute Lymphoblastic Leukemia: The Role of High Throughput Sequencing Pier Paolo Piccaluga 1,2,3,*, Stefania Paolini 1 and Giuseppe Visani, e Lymphoblastic Leukemia: The Role of High Throughput Sequencing. Hemato 2023, 4, 42–55. https:// doi.org/10.3390/hemato4010004
An Overview of Mutation Detection Methods in Genetic Disorders Nejat Mahdieh1, PhD; Bahareh Rabbani*2,3, PhD, Iran J Pediatr; Vol 23 (No 4), Aug 2013 Published by: Tehran University of Medical Sciences (http://ijp.tums.ac.ir)
A case of chronic wounds caused by Sporothrix schenckii infection was rapidly detected by metagenomic next generation sequencing Wenxiang Jina,1, Yong Liua,1, Qiuyue Ningb, Shuwen Wua, Sibiao Suc, Dongyan Zhengd, Shasha Mab, Jun Zoue, Min Yangb,***, Diefei Hub,**, Huarong Dingf,* https://doi.org/10.1016/j.heliyon.2024.e24420
The clinical application of metagenomic next-generation sequencing in immunocompromised patients with severe respiratory infections in the ICU Junjie Zhao1, Yong Sun1, Jing Tang1, Kai Guo1, Kaiyu Wang2, Jiancheng Zhuge3 and Honglong Fang2, https://doi.org/10.1186/s12931-024-02991-z
Parathyroid Imaging: Technique and Role in the Preoperative Evaluation of Primary Hyperparathyroidism, Nathan A. Johnson1 Mitchell E. Tublin1 Jennifer B. Ogilvie, 2024, DOI:10.2214/AJR.06.0938
Recent trend in medical imaging modalities and their applications in disease diagnosis: a review Barsha Abhisheka1 · Saroj Kumar Biswas1 · Biswajit Purkayastha1 · Dolly Das1 · Alexandre Escargueil, Multimedia Tools and Applications (2024) 83:43035–43070 https://doi.org/10.1007/s11042-023-17326-1
Imaging Techniques for Meniscal Vasculature: A Systematic Review of Clinical and Translational Applications Federica Orellana 1,2 , Raluca-Ana-Maria Barna 1,3,4 1 , Camilla Giulia Calastra 1 , Annapaola Parrilli 1, ASystematic Review of Clinical and Translational Applications. J. Clin. Med. 2024, 13, 6787. https:// doi.org/10.3390/jcm13226787
Enhanced non-alcoholic fatty liver detection: Computed tomography scan image analysis and noise reduction with mhttps://doi.org/10.1016/j.ajg.2023.07.005orphological dilation Kishan Dev Pithani * , Radhika Vadhi, 2023,
Performance of the CellaVision® DM96 system for detecting red blood cell morphologic abnormalities Christopher L. Horn1,2, Adnan Mansoor2, Brenda Wood2, Heather Nelson2, Diane Higa2, Lik Hang Lee1,2, Christopher Naugler1,2, Available FREE in open access from: http://www.jpathinformatics.org/text.asp?2015/6/1/11/151922
Technological Advances in SPECT and SPECT/CT Imaging Yassine Bouchareb 1,* , Afrah AlSaadi 1 , Jawa Zabah 2, Anjali Jain 3, Aziza Al-Jabri 2, Peter Phiri 4,5 Jian Qing Shi 4,6,7, Gayathri Delanerolle 4,8 1 and Srinivasa Rao Sirasanagandla, Advances in SPECT and SPECT/CT Imaging. Diagnostics 2024, 14, 1431. https://doi.org/10.3390/ diagnostics14131431
Blue light reflectance imaging in non-perfusion areas detection: insights from multimodal analysis Ricardo Leitão Guerra1,3, Gabriel Castilho Sandoval Barbosa2*, Cezar Leitão Guerra3, Emmerson Badaro1, Luiz Roisman1, Luiz Filipe Lucatto1 and Eduardo Novais, 2024, https://doi.org/10.1186/s40942-024-00602-z
Quantitative detection of macular microvascular abnormalities identified by optical coherence tomography angiography in different hematological diseases , Guihua Li3, Boxuan Song2, Helei Wang2, Xueying Yang2,Tianzi Jian1, Fabao Xu2 Weibin Zhai2, Xiangchen Li4, Zhiwen Li2, Qi Feng1, Shuqian Xu1, John W. Semple5,6,7, Li Zhang8 & Jun Peng1, Scientific Reports | (2024) 14:25433 | https://doi.org/10.1038/s41598-024-76753-8
Detection of capillary abnormalities in early diabetic retinopathy using scanning laser ophthalmoscopy and optical coherence tomography combined with adaptive optics Marie Elise Wistrup Torm 1,2*, Michael Pircher 3, Sophie Bonnin 4,5,6, Jesper Johannesen 2,7,8, Oliver Niels Klefter 1,2, Mathias Falck Schmidt 2,9, Jette Lautrup Frederiksen 2,9, Nicolas Lefaudeux 10, Jordi Andilla 11, Claudia Valdes 11, Pablo Loza Alvarez 11, Luisa Sanchez Brea 12,13,14, Danilo Andrade De Jesus 12,13,14, Kate Grieve 4,5, Michel Paques 4,5, Michael Larsen 1,2 & Kiyoko Gocho 4,5, Scientific Reports | (2024) 14:13450 | https://doi.org/10.1038/s41598-024-63749-7
Artificial intelligence in routine blood tests, Miguel A. Santos-Silva1,2, Nuno Sousa1,2,3,4 and João Carlos Sousa1,2*, PUBLISHED 25 March 2024 DOI 10.3389/fmede.2024.1369265
An analysis of decipherable red blood cell abnormality detection under federated environment leveraging XAI incorporated deep learning Shakib Mahmud Dipto1, Md Tanzim Reza2, Nadia Tasnim Mim2, Amel Ksibi3, Shrooq Alsenan3, Jia Uddin4 &Md Abdus Samad5, Scientific Reports | (2024) 14:25664 | https://doi.org/10.1038/s41598-024-76359-0
A Review on Blood Disease Detection using Artificial Intelligence Techniques by Deepali Gaikwad Dept. of Computer Science and IT Dr. Babasaheb Ambedkar Marathwada University, Vivek Mahale Late Pandharinath Patil Institute of Management Studies and Information Technology, Vivekanand College Campus Chh. Sambhajinagar, (M.S), India 431001 mahalevh@gmail.com, 2024, | DOI: 10.1109/ICBDML60909.2024.10577320, Blood pressure abnormality detection and Interpretation utilizing Explainable Artificial Intelligence Hedayetul Islam , Md. Sadiq Iqbal , Muhammad Minoar Hossai, https://doi.org/10.1016/j.imed.2024.09.005
Schistocyte detection in artificial intelligence age Zeng Zhang1,2 | SuYang1,2 | XiuhongWang1,2, 2024, DOI:10.1111/ijlh.14260
Nano fuzzy alarming system for blood transfusion requirement detection in cancer using deep learning Nasibeh Rady Raz 1, Ali Arash Anoushirvani 1,2*, Neda Rahimian 2, Maryam Ghoerishi 2, Nazanin Alibeik 2 & Masoumeh Sajadi Rad 3, (2024) 14:15958 | https://doi.org/10.1038/s41598-024-66607-8
Blood mass spectrometry detects residual disease better than standard techniques in light-chain amyloidosis Angela Dispenzieri1,2, Bonnie Arendt2,SurendraDasari2, Mindy Kohlhagen2, Taxiarchis Kourelis1,2, Shaji K. Kumar Nelson Leung 1,3,EliMuchtar 1 1 , , Francis K. Buadi1, Rahma Warsame1, Robert A. Kyle1,2, Martha Q. Lacy1, David Dingli1, Prashant Kapoor1, Wilson I. Gonsalves1,RonaldS.Go 1 , Suzanne R. Hayman1,YiLisaHwa1, Amy Fonder1, Miriam Hobbs1, Dragan Jevremovic2, JohnA.Lust1,StevenZeldenrust1, Steve J. Russell1, S. Vincent Rajkumar Morie A. Gertz1 and David Murray. https://doi.org/10.1038/s41408-020-0291-8
Advances in Mass Spectrometry-Based Blood Metabolomics Profiling for Non-Cancer Diseases: A Comprehensive Review by Ekaterina Demicheva and Team. doi: 10.3390/metabo14010054.
Liquid biopsy of peripheral blood using mass spectrometry detects primary extramedullary disease in multiple myeloma patients.
Short- and long-term alterations of hematopoietic cell lineages in rats with congenital iron deficiency by Author links open overlay panelAnthony Babu a, ZacharyR. Smith a b, Narmin Mukhtarova a, Ashajyothi M. Siddappa c, Pamela J. Kling a https://doi.org/10.1016/j.bcmd.2024.102908
Mass spectrometry–based assessment of M protein in peripheral blood during maintenance therapy in multiple myeloma by Tadeusz Kubicki and team. https://doi.org/10.1182/blood.2024024041
Cytogenetics in the management of hematological malignancies: An overview of alternative technologies for cytogenetic characterization Valentin Lestringant a , Jean-Baptiste Gaillard a * , H´ el` ene Guermouche-Flament d , Dominique Penther, https://doi.org/10.1016/j.retram.2024.103440
Fluorescence in situ hybridization (FISH): an increasingly demanded tool for biomarker research and personalized medicine Linping Hu1,6†, Kun Ru1,2†, Li Zhang1,3, Yuting Huang4, Xiaofan Zhu1,3,6, Hanzhi Liu1,6, Anders Zetterberg5, Tao Cheng1,6* and Weimin Miao1,6*, Hu et al. Biomarker Research 2014, 2:3, http://www.biomarkerres.org/content/2/1/3
Precision hematology: Navigating the evolution of diagnostic classifications in the era of globalized medicine Elizabeth Macintyre1,2 | Konstanze Döhner3 | Kirsten Grønbæk4,5,6 |Martin Dreyling7 | BrianHuntly8 | Antonio Almeida9,10 | John Gribben11 | for the EHA Board, DOI: 10.1002/hem3.65
Cytogenetic abnormalities in multiple myeloma: association with disease characteristics and treatment response by Nadine Abdallah and his team members. Blood Cancer Journal (2020) 10:82 https://doi.org/10.1038/s41408-020-00348-5
Genomic technologies for detecting structural variations in hematologic malignancies by Mi Ae Jang. https://doi.org/10.1007/s44313-024-00001-1
A gene pathogenicity tool “GenePy” identifies missed biallelic diagnoses in the 100,000 Genomes Project by Eleanor G. Seaby and his team members. doi: https://doi.org/10.1016/j.gim.2024.101073
Cytogenetic abnormalities in essential thrombocythemia: Clinical and molecular correlates and prognostic relevance in 809 informative cases by Naseema Gangat Animesh Pardanani1 and Ayalew Tefferi. Blood Cancer Journal (2022) 12:44 ; https://doi.org/10.1038/s41408-022-00639-z
Exploring the Impact of Cytogenetic Abnormalities on Treatment Responses and Survival Outcomes in Multiple Myeloma: ASingle-Centre Experience of 13 Years of Follow-Up, MehmetAli Kazgı 1, Ertugrul Bayram 2,*, Tolga Kosecı 2, Burak Mete 3 , Tugba Toyran 4, Melek Ergin 4 and Ismail Oguz Kara, Biomedicines 2024, 12(5), 1014; https://doi.org/10.3390/biomedicines12051014
The single-cell sequencing: new developments and medical applications. Xiaoning Tang1,2†, Yongmei Huang1,2†, Jinli Lei1,2, Hui Luo1,2* and Xiao Zhu1,2*. Tang et al. Cell Biosci https://doi.org/10.1186/s13578-019-0314-y
Single-cell RNA sequencing of peripheral blood links cell-type-specific regulation of splicing to autoimmune and inflammatory diseases by Chi Tian and his team. https://doi.org/10.1038/s41588-024-02019-8
Single-cell sequencing analysis of peripheral blood in patients with moyamoya disease by Qikai Tang1†, Wenjun Li1†, Jie Huang2†, Yuting Wu3†, Chenfeng Ma1, Yiming Tu1, Qianmiao Zhu4, Jiacheng Lu1, Jiaheng Xie5, Yu Liu1, Xiaoman Mao1 and Wei Wu. Tang et al. Orphanet Journal of Rare Diseases https://doi.org/10.1186/s13023-023-02781-8
Single-cell RNA sequencing reveals peripheral immunological features in Parkinson’s Disease. Liu-Lin Xiong 1,2,8 ,Ruo-LanDu3,8,Rui-ZeNiu1,4,8,Lu-LuXue3,8, Li Chen3, Li-Ren Huangfu1, Xiao-XingCai1,Xiu-YingHe3,JinHuang5,Xue-YanHuang6,JiaLiu1,Chang-YinYu6,Wen-YuanWang1,7 Ting-Hua Wang. https://doi.org/10.1038/s41531-024-00790-3
SINGLE-CELL GENOMICS-BASED IMMUNE AND DISEASE MONITORING IN BLOOD MALIGNANCIES Anja C. Rathgeber1,2,3 , Leif S. Ludwig, MD/PhD1,3 a , Livius Penter, MD2. https://doi.org/10.46989/001c.117961
UsingbloodtranscriptomeanalysisforAlzheimer’sdisease diagnosisandpatientstratification HuanZhong1,2 XiaopuZhou1,2,3 HyebinUhm1 YuanbingJiang1,2 HanCao1 YuChen, TiffanyT.W.Mak1,2 RonnieMingNokLo1 BonnieWingYanWong1,2 ElaineYeeLingCheng1,2 KinY.Mok, AndrewLungTatChan6 TimothyC.Y.Kwok7 VincentC.T.Mok8 FannyC.F.Ip1,2,3 JohnHardy2,5,9 AmyK.Y.Fu1,2,3 NancyY.Ip1,2,3. DOI:10.1002/alz.13691
Single cell genomics based insights into the impact of cell-type specific microbial internalization on disease severity by jyoti soni and Rajesh Pandey.https://doi.org/10.3389/fimmu.2024.1401320
Single-Cell RNA Sequencing to Disentangle the Blood System Jean Acosta, Daniel Ssozi, Peter van Galen. DOI: 10.1161/ATVBAHA.120.314654
Proteomic analysis of peripheral blood mononuclear cells in first episode psychosis – Protein and peptide-centered approaches to elucidate potential diagnostic biomarkers Catia Santaa,b,1, Jo˜ao E. Rodriguesa,b,1, Ana Martinhoa,b, Vera M. Mendesa,b, Nuno Madeirac,d,e, Manuel Coroab,c,d, Vítor Santosb,c,d, Sofia Moraisc,d,e, Miguel Bajoucoc,d,e, H´ elder Costad, Sandra I. Anjoa,b, Inˆ es Baldeirasa,b,c, Antonio Macedoc,d,e,*, Bruno Manadasa. https://doi.org/10.1016/j.jprot.2024.105296
Functional and multi-omics signatures of mitapivat efficacy upon activation of pyruvate kinase in red blood cells from patients with sickle cell disease Angelo D’Alessandro,1 Kang Le,2 Maureen Lundt,2 Quan Li,3 Emily B. Dunkelberger,3 Troy Cellmer,3 Andrew J. Worth,4 Spurthi Patil,4 Chris Huston,4 Abby Grier,1 Monika Dzieciatkowska,1 Daniel Stephenson,1 William A. Eaton3 and Swee Lay Thein2. Vol. 109 No. 8 (2024): August, 2024 https://doi.org/10.3324/haematol.2023.284831
An interactive atlas of genomic, proteomic, and metabolomic biomarkers promotes the potential of proteins to predict complex diseases Martin Smelik 1,4, Yelin Zhao 1,4, Xinxiu Li 1, Joseph Loscalzo 2, Oleg Sysoev 3, Firoj Mahmud 1,4, Dina Mansour Aly 1,4 & Mikael Benson 1. Scientific Reports | (2024) 14:12710 | https://doi.org/10.1038/s41598-024-63399-9.
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
You are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
Terms:
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.