Advancements And Challenges In Predicting Preeclampsia: A Comprehensive Review Of Machine Learning And Deep Learning Approaches

Authors

  • R. Aruna
  • S. Sivaranjani

DOI:

https://doi.org/10.52783/jns.v14.3027

Keywords:

Preeclampsia, maternal demographics, clinical records, biomarkers, ultrasound images

Abstract

Preeclampsia is a serious pregnancy complication that poses significant risks to both maternal and fetal health, often leading to severe outcomes if not detected early. Traditional diagnostic methods rely on clinical observations and biomarkers, which may not always provide timely or accurate predictions. In recent years, deep learning models have emerged as powerful tools for analyzing complex, high-dimensional data, offering the potential to enhance preeclampsia prediction by identifying patterns and features not easily discernible by conventional techniques. A review of the literature reveals that different types of ML and DL models for preeclampsia prediction were published between 2018 and 2022 using a variety of input data such as maternal demographics, clinical records, and ultrasound images. Studies demonstrate promising results, with models achieving improved sensitivity, specificity, and overall accuracy compared to traditional methods. However, challenges such as data quality, interpretation of models, and generalizability across populations remain key areas for further research. This literature review highlights the current advancements in deep learning-based preeclampsia prediction and discusses the potential for future improvements in clinical applications.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Liam Butler, Fatma Gunturkun, Lokesh Chinthala, Ibrahim Karabayir1, Mohammad S. Tootooni, Berna Bakir-Batu, Turgay Celik, Oguz Akbilgic and Robert L. Davis3, “AI-based preeclampsia detection and prediction with electrocardiogram data”, doi: 10.3389/fcvm.2024.1360238,2024.

Taishun Li, Mingyang Xu, Yuan Wang, Ya Wang, Huirong Tang, Honglei Duan, Guangfeng Zhao, Mingming Zheng and Yali Hu, “Prediction model of preeclampsia using machine learning based methods:a population based cohort study in China”, doi: 10.3389/fendo.2024.1345573,2024.

Camilla Edvinsson, Ola Björnsson, Lena Erlandsson & Stefan R. Hansson, “Predicting intensive care need in women with preeclampsia using machine learning – a pilot study”, https://doi.org/10.1080/10641955.2024.2312165,2024.

Ioana Sadiye Scripcariu, Ingrid Andrada Vasilache, Ioana Pavaleanu, Bogdan Doroftei , Alexandru Cărăuleanu , Demetra Socolov , Alina-Sinziana Melinte-Popescu , Petronela Vicoveanu , Valeriu Harabor , Elena Mihalceanu , Marian Melinte-Popescu , Anamaria Harabor , Mariana Stuparu-Cretu , Dragos Nemescu, “Machine Learning-Based Prediction of Intrauterine Growth Restriction and Preeclampsia: A Prospective Study”, doi: 10.20944/preprints202311.1493.v1,2023.

J. Torres-Torres, J. R. Villafan-Bernal, R. J. Martinez-Portilla1, J. A. Hidalgo-Carrera, G. Estrada-Gutierrez, R. Adalid-Martinez-Cisneros, L. Rojas-Zepeda, S. Acevedo-Gallegos, D. M. Camarena-Cabrera, M. Y. Cruz-Mart´Inez And S. Espino-Y-Sosa, “Performance of machine-learning approach for prediction of pre-eclampsia in a middle-income country”, 2024.

Xuhong Chen, Li Yuan, Zhen Ji1, Xiyun Bian, Shaofang Hua,“Development and validation of the prediction models for preeclampsia: a retrospective, single-center, case-control study”, https://dx.doi.org/10.21037/atm-22-4192,2022.

Lola Gómez-Jemes , Andreea Madalina Oprescu , Ángel Chimenea-Toscano , Lutgardo García-Díaz and María del Carmen Romero-Ternero , “Machine Learning to Predict Pre-Eclampsia and Intrauterine Growth Restriction in Pregnant Women”, https://doi.org/10.3390/electronics11193240,2022.

Cecilia Villalaín, Ignacio Herraiz, Paula Domínguez-Del Olmo, Pablo Angulo,

José Luis Ayala and Alberto Galindo, “Prediction of Delivery Within 7 Days After Diagnosis of Early Onset Preeclampsia Using Machine-Learning Models”, doi: 10.3389/fcvm.2022.910701, 2022. Rachel Bennett, Zuber D. Mulla, Pavan Parikh, Alisse Hauspurg, Talayeh Razzaghi, “An imbalance-aware deep neural network for early prediction of preeclampsia”, https://doi.org/ 10.1371/journal.pone.0266042, 2021.

Kelsey McLaughlin, Sebastian R. Hobson, Anjana Ravi Chandran, B Swati Agrawal, Rory C. Windrim, W. Tony Parks, Adrian W. Bowman, Ulla Sovio, Gordon C. Smith, John C. Kingdom, “Circulating maternal placental growth factor responses to low-molecular-weight heparin in pregnant patients at risk of placental dysfunction”, https://doi.org/10.1016/j.ajog.2021.08.027, 2021.

Xinyuan Zhang a, Yu Chen a,c, Stephen Salerno b, Yi Li b, Libin Zhou d, Xiaoxi Zeng c, Huafeng Li, “Prediction of severe preeclampsia in machine learning”, https://doi.org/10.1016/j.medntd.2022.100158, 2022.

Yi-xin Li a, Xiao-ping Shen a, Chao Yang b, Zuo-zeng Cao a, Rui Du a, Min-da Yu a, Jun-ping Wang a, Mei Wang a, “Novel electronic health records applied for prediction of pre-eclampsia:Machine-learning algorithms”, https://doi.org/10.1016/j.preghy.2021.10.006, 2021.

Yawei Zhang, Xin Wang, Ningyu Han, And Rong Zhao, “Ensemble Learning Based Postpartum Hemorrhage Diagnosis for 5G Remote Healthcare”, DOI 10.1109/ACCESS.2021.3051215,2021.

Guan Wang, Yanbo Zhang, Sijin Li, Jun Zhang, Dongkui Jiang, Xiuzhen Li, Yulin Li and Jie Du, “A Machine Learning-Based Prediction Model for Cardiovascular Risk in Women with Preeclampsia”, doi: 10.3389/fcvm.2021.736491, 2021.

Krishan Gupta, Kirti Balyan, Bhumika Lamba, Manju Puri, Debarka Sengupta & Manisha Kumar, “Ultrasound placental image texture analysis using artificial intelligence to predict hypertension in pregnancy”, DOI: 10.1080/14767058.2021.1887847,2021.

Qianyang Huang, Shiying Hao, Jin You, Xiaoming Yao, Zhen Li, James Schilling, Sheeno Thyparambil, Wei-Li Liao, Xin Zhou, Lihong Mo, Subhashini Ladella, Shantay R Davies-Balch, Hangyi Zhao,David Fan, John C Whitin, Harvey J Cohen, Doff B McElhinney, Ronald J Wong, Gary M Shaw, David K Stevenson, Karl G Sylvester, Xuefeng B Ling, “ Early-pregnancy prediction of risk for pre-eclampsia using maternal blood leptin/ceramide ratio: discovery and confirmation”, http://dx.doi.org/10.1136/bmjopen-2021-050963, 2021.

Ivana Maric, Abraham Tsur, Nima Aghaeepour, Andrea Montanari, David K. Stevenson, Gary M. Shaw, Virginia D. Winn, “Early prediction of preeclampsia via machine learning”, https://doi.org/10.1016/j.ajogmf.2020.100100, 2020.

Herdiantri Sufriyana, Yu-Wei Wu, Emily Chia-Yu Su1, “Prediction of Preeclampsia and Intrauterine Growth Restriction: Development of Machine Learning Models on a Prospective Cohort”, doi: 10.2196/15411, 2020.

Anne Dathan-Stumpf, Victoria Czarnowsky, Vicky Hein,Theresa Andraczek, Holger Stepan, “Real-world data on the clinical use of angiogenic factors in pregnancies with placental dysfunction”, https://doi.org/10.1016/j.ajog.2020.10.028, 2020.

Jong Hyun Jhee, SungHee Lee, Yejin Park, Sang Eun Lee, Young Ah Kim, Shin-Wook Kang, Ja-Young Kwon, Jung Tak Park, “Prediction model development of late-onset preeclampsia using machine learning-based Methods”, https://doi.org/10.1371/journal.pone.0221202, 2019.

ClassifiMuhlis Tahir, Tessy Badriyah, Iwan Syarifcation , “Algorithms of Maternal Risk Detection For Preeclampsia With Hypertension During Pregnancy Using Particle Swarm Optimization”, ISSN: 2443-1168, 2018.

S. A. TIRUNEH1, T. T. T. VU1, L. J. MORAN1, E. J. CALLANDER, J. ALLOTEY, S. THANGARATINAM, D. L. ROLNIK, H. J. TEEDE, R. WANG6 and J. ENTICOTT1 , “Externally validated prediction models for pre-eclampsia: systematic review and meta-analysis”, DOI: 10.1002/uog.27490, 2024.

Khanisyah Erza Gumilar, Khairunnisa binti Abd Rauf,Muhammad Ilham Aldika Akbar , Nareswari Cininta Imanadha , Susetyo Atmojo, Alisia Yuana Putri, Erry Gumilar Dachlan,and Gus Dekker, “Connecting the Dots: Exploring the Interplay Between Preeclampsia and Peripartum Cardiomyopathy”, https://doi.org/10.1155/2024/7713590, 2024.

R. Topan-Aditya Rahman, Muhammad-Modi Lakulu, Ismail-Yusuf Panessai , “ Intelligent Systems And Applications In Engineering”, 11(3), 13–23, 2023.

Paula L.Hedley, Christian M.Hagen, Casper Wilstrup, Michael Christiansen, “The use of artificial intelligence and machine learning methods in early pregnancy preeclampsia screening: Systematic review protocol”, https://doi.org./10.1371/journal.pone.0272465, 2023.

Sumayh S. Aljameel, Manar Alzahrani , Reem Almusharraf , Majd Altukhais , Sadeem Alshaia , Hanan Sahlouli , Nida Aslam , Irfan Ullah Khan , Dina A. Alabbad and Albandari Alsumayt , “Prediction of Preeclampsia Using Machine Learning and Deep Learning Models: A Review”, https://doi.org/10.3390/bdcc7010032, 2023.

Alina-Sinziana Melinte-Popescu, Ingrid-Andrada Vasilache, Demetra Socolov and Marian Melinte-Popescu, “Predictive Performance of Machine Learning-Based Methods for the Prediction of Preeclampsia—A Prospective Study”, https://doi.org/10.3390/jcm12020418, 2023.

Monica Cruz-Lemini, Juan Carlos Vazquez, Johana Ullmo, Elisa Llurba, “Low-molecular-weight heparin for prevention of preeclampsia and other placenta-mediated complications: a systematic review and meta-analysis”, https://doi.org/10.1016/j.ajog.2020.11.006, 2020.

Max Hackelöer, Leon Schmidt, Stefan Verlohren, “New advances in prediction and surveillance of preeclampsia: role of machine learning approaches and remote monitoring”, https://doi.org/10.1007/s00404-022-06864-y, 2023.

Konstantinos Giannakou, “Prediction of pre-eclampsia”, DOI: 10.1177/1753495X20984015, 2021.

Annelien C. De Kata, Jane Hirsta, Mark Woodward Stephen Kennedyb, Sanne A. Petersa, “Prediction models for preeclampsia: A systematic review”, https://doi.org/10.1016/j.preghy.2019.03.005, 2019.

Yun Linia, Daniel Mallia, Andrea Clark-Sevilla, Adam Catto, Alisa Leshchenko, Qi Yan’ David Haas , Ronald Wapner, Itsik Pe'er, Anita Raja, Ansaf Salleb-Aouissi, “A Comprehensive And Bias-Free Machine Learning Approach For Risk Prediction Of Preeclampsia With Severe Features in a Nulliparous Study Cohort, DOI: https://doi.org/10.21203/rs.3.rs-2635419/v1, 2023.

Downloads

Published

2025-04-04

How to Cite

1.
R. Aruna RA, S. Sivaranjani SS. Advancements And Challenges In Predicting Preeclampsia: A Comprehensive Review Of Machine Learning And Deep Learning Approaches. J Neonatal Surg [Internet]. 2025Apr.4 [cited 2025Oct.2];14(11S):562-73. Available from: https://www.jneonatalsurg.com/index.php/jns/article/view/3027