Study of an Advanced DDS for Improving Efficacy and Precision of Healthcare Innovation
DOI:
https://doi.org/10.52783/jns.v14.3149Keywords:
healthcare innovation, drug administration, bioavailability, low solubilityAbstract
Nowadays, a modern healthcare system has been enhanced by incorporating the DDS (DDS) which is one of the most significant therapeutic interventions. Moreover, DDS is the latest advanced technological to overcome the limitations of the existing drug administration’s such as bioavailability, low solubility, abbreviated half-life, etc. Here, this study discusses the recent technologies which based on healthcare innovation related models are explored.
Downloads
Metrics
References
Menden, M.P.; Iorio, F.; Garnett, M.; McDermott, U.; Benes, C.H.; Ballester, P.J.; Saez-Rodriguez, J. Machine Learning Prediction of Cancer Cell Sensitivity to Drugs Based on Genomic and Chemical Properties. PLoS ONE 2013, 8, e61318
Rafienia, M.; Amiri, M.; Janmaleki, M.; Sadeghian, A. Application of artificial neural networks in controlled drug delivery systems. Appl. Artif. Intell. 2010, 24, 807–820.
Cui, P.; Wang, S. Application of Microfluidic Chip Technology in Pharmaceutical Analysis: A Review. J. Pharm. Anal. 2019, 9, 238–247
Esch, E.W.; Bahinski, A.; Huh, D. Organs-on-Chips at the Frontiers of Drug Discovery. Nat. Rev. Drug Discov. 2015, 14, 248–260.
Kim, S.M.; Yang, Y.; Oh, S.J.; Hong, Y.; Seo, M.; Jang, M. Cancer-Derived Exosomes as a Delivery Platform of CRISPR/Cas9 Confer Cancer Cell Tropism-Dependent Targeting. J. Control. Release 2017, 266, 8–16.
Nugent, B.M.; Madabushi, R.; Buch, B.; Peiris, V.; Crentsil, V.; Miller, V.M.; Bull, J.R.; Jenkins, M. Heterogeneity in Treatment Effects across Diverse Populations. Pharm. Stat. 2021, 20, 929–938.
He, Z.; Tang, X.; Yang, X.; Guo, Y.; George, T.J.; Charness, N.; Quan Hem, K.B.; Hogan, W.; Bian, J. Clinical Trial Generalizability Assessment in the Big Data Era: A Review. Clin. Transl. Sci. 2020, 13, 675–684.
Norori, N.; Hu, Q.; Aellen, F.M.; Faraci, F.D.; Tzovara, A. Addressing Bias in Big Data and AI for Health Care: A Call for Open Science. Patterns 2021, 2, 100347.
Drabiak, K. Leveraging Law and Ethics to Promote Safe and Reliable AI/ML in Healthcare. Front. Nucl. Med. 2022, 2, 983340.
Koppad, S.; Gkoutos, G.V.; Acharjee, A. Cloud Computing Enabled Big Multi-Omics Data Analytics. Bioinform. Biol. Insights 2021, 15, 11779322211035921.
Hofer, I.S.; Burns, M.; Kendale, S.; Wanderer, J.P. Realistically Integrating Machine Learning Into Clinical Practice: A Road Map of Opportunities, Challenges, and a Potential Future. Anesth. Analg. 2020, 130, 1115–1118
Nayyar, S., Chakole, S., Taksande, A. B., Prasad, R., Munjewar, P. K., & Wanjari, M. B. (2023). From awareness to action: A review of efforts to reduce disparities in breast cancer screening. Cureus, 15(6), Article e40674.
Nielsen, D. L., Kümler, I., Palshof, J. A. E., & Andersson, M. (2013). Efficacy of HER2-targeted therapy in metastatic breast cancer. Monoclonal antibodies and tyrosine kinase inhibitors. Breast, 22(1), 1-12.
Papakonstantinou, T., & Kolettis, T. M. (2020). Investigational therapies and patients’ autonomy. Canadian Journal of Bioethics, 3(3), 115-117.
M. M., & Kontoravdi, C. (2020). Engineering challenges in therapeutic protein product and process design. Current Opinion in Chemical Engineering, 27, 81-88. https://doi.org/10.1016/j.coche.2019.11.010
Stokes JM, Yang K, Swanson K, et al. A deep learning approach to antibiotic discovery. Cell. 2020;180(4):688-702.
Sarella PN, Mangam VT. AI-Driven Natural Language Processing in Healthcare: Transforming Patient-Provider Communication. Indian Journal of Pharmacy Practice. 2024;17(1).
Topol EJ. High-performance medicine: the convergence of human and artificial intelligence. Nat Med. 2019;25(1):44-56.
Sellwood MA, Ahmed M, Segler MHS, Brown N. Artificial intelligence in drug discovery. Future Med Chem. 2018;10(17):2025-2028.
Paul D, Sanap G, Shenoy S, et al. Artificial intelligence in drug discovery and development. Drug Discov Today. 2021;26(1):80-93.
Artificial Intelligence in Drug Discovery Market Analysis Report By Technology. Grand View Research. 2021:1-250.
Simões MF, Pinto RMF, Simões S. Artificial intelligence in pharmaceutical product formulation: neural computing. Curr Pharm Des. 2019;25(12):1409-1421.
Raza K. Artificial intelligence against COVID-19: A meta-analysis of current research. Big Data Analytics and Artificial Intelligence Against COVID-19: Innovation Vision and Approach. 2020:165-176.
Adir O, Poley M, Chen G, et al. Integrating artificial intelligence and nanotechnology for precision cancer medicine. Adv Mater. 2020;32(13):1901989.
Liu R, Wang X, Yang Y, et al. Artificial intelligence in drug delivery. J Control Release. 2020;319:232-245.
Rantanen J, Khinast J. The future of pharmaceutical manufacturing sciences. J Pharm Sci. 2015;104(11):3612-3638.
Bi WL, Hosny A, Schabath MB, et al. Artificial intelligence in cancer imaging: Clinical challenges and applications. CA Cancer J Clin. 2019;69(2):127-157.
Savage N. How AI is improving cancer diagnostics. Nature. 2020;579(7800):S14-S16
Senapati, S., Mahanta, A. K., Kumar, S., & Maiti, P. (2018). Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduction and Targeted Therapy, 3(1).
Sicklick, J. K., Kato, S., Okamura, R., Schwaederle, M., Hahn, M. E., Williams, C. B., De, P., Krie, A., Piccioni, D. E., Miller, V. A., Ross, J. S., Benson, A., Webster, J., Stephens, P. J., Lee, J. J., Fanta, P. T., Lippman, S. M., Leyland-Jones, B., & Kurzrock, R. (2019). Molecular profiling of cancer patients enables personalized combination therapy: The IPREDICT study. Nature Medicine, 25(5), 744-750.
Sokolenko, A. P., & Imyanitov, E. N. (2018). Molecular diagnostics in clinical oncology. Frontiers in Molecular Biosciences, 5.
Souho, T., Lamboni, L., Xiao, L., & Yang, G. (2018). Cancer hallmarks and malignancy features: Gateway for improved targeted drug delivery. Biotechnology Advances, 36(7), 1928-1945
Stahlschmidt, R., Ferracini, A. C., de Souza, C. M., de Medeiros, L. M., Juliato, C. R. T., & Mazzola, P. G. (2019). Adherence and quality of life in women with breast cancer being treated with oral hormone therapy. Supportive Care in Cancer, 27(10), 3799-3804. https://doi.org/10.1007/ s00520-019-04671-x
Arantes VT, Faraco AG, Ferreira FB, et al. Retinoic acid-loaded solid lipid nanoparticles surrounded by chitosan film support diabetic wound healing in in vivo study. Colloids Surf B Biointerf. 2020;188:110749.
Fu W, Liang D, Wu X, et al. Long noncoding RNA LINC01435 impedes diabetic wound healing by facilitating YY1-mediated HDAC8 expression. iScience. 2022;25(4):104006. doi: 10.1016/j.isci.2022.104006.
Kasiewicz LN, Whitehead KA. Lipid nanoparticles silence tumor necrosis factor alpha to improve wound healing in diabetic mice. Bioeng Transl Med. 2019;4(1):75–82.
Fatima F, Aleemuddin M, Ahmed MM, et al. Design and evaluation of solid lipid nanoparticles loaded topical gels: repurpose of fluoxetine in diabetic wound healing. Gels. 2022;9(1):21.
Ghatak S, Khanna S, Roy S, et al. Driving adult tissue repair via re-engagement of a pathway required for fetal healing. Mol Ther. 2023;31(2):454–470.
Kandregula B, Narisepalli S, Chitkara D, et al. Exploration of lipid-based nanocarriers as drug delivery systems in diabetic foot ulcer. Mol Pharm. 2022;19(7):1977–1998.
Zha W, Wang J, Guo Z, et al. Efficient delivery of VEGF-A mRNA for promoting diabetic wound healing via ionizable lipid nanoparticles. Int J Pharm. 2023;632:122565.
Sato Y, Nakamura T, Yamada Y, et al. The nanomedicine rush: new strategies for unmet medical needs based on innovative nano DDS. J Control Rel. 2021;330:305–316.
Seo Y, Lim H, Park H, et al. Recent progress of lipid nanoparticles-based lipophilic drug delivery: focus on surface modifications. Pharmaceutics. 2023;15(3):772. doi: 10.3390/pharmaceutics15030772.
Gradauer, K.; Vonach, C.; Leitinger, G.; Kolb, D.; Fröhlich, E.; Roblegg, E.; Bernkop-Schnürch, A.; Prassl, R. Chemical coupling of thiolated chitosan to preformed liposomes improves mucoadhesive properties. Int. J. Nanomed. 2012, 7, 2523–2534. [Google Scholar] [CrossRef]
Thirawong, N.; Thongborisute, J.; Takeuchi, H.; Sriamornsak, P. Improved intestinal absorption of calcitonin by mucoadhesive delivery of novel pectin-liposome nanocomplexes. J. Control. Release 2008, 125, 236–245. [Google Scholar] [CrossRef]
Tirosh, B.; Khatib, N.; Barenholz, Y.; Nissan, A.; Rubinstein, A. Transferrin as a luminal target for negatively charged liposomes in the inflamed colonic mucosa. Mol. Pharm. 2009, 6, 1083–1091. [Google Scholar] [CrossRef] [PubMed]
Carlson, M.; Raab, Y.; Peterson, C.; Hällgren, R.; Venge, P. Increased intraluminal release of eosinophil granule proteins EPO, ECP, EPX, and cytokines in ulcerative colitis and proctitis in segmental perfusion. Am. J. Gastroenterol. 1999, 94, 1876–1883. [Google Scholar] [CrossRef] [PubMed]
Peterson, C.G.; Eklund, E.; Taha, Y.; Raab, Y.; Carlson, M. A new method for the quantification of neutrophil and eosinophil cationic proteins in feces: Establishment of normal levels and clinical application in patients with inflammatory bowel disease. Am. J. Gastroenterol. 2002, 97, 1755–1762. [Google Scholar] [CrossRef] [PubMed]
Jubeh, T.T.; Barenholz, Y.; Rubinstein, A. Differential adhesion of normal and inflamed rat colonic mucosa by charged liposomes. Pharm. Res. 2004, 21, 447–453. [Google Scholar] [CrossRef] [PubMed]
Muchow, M.; Maincent, P.; Muller, R.H. Lipid nanoparticles with a solid matrix (SLN, NLC, LDC) for oral drug delivery. Drug Dev. Ind. Pharm. 2008, 34, 1394–1405. [Google Scholar] [CrossRef]
Mitragotri, S. (2005). Current status and future prospects of needle-free liquid jet injectors. Nature Reviews Drug Discovery, 4(2), 115-124.
Chien, Y. W. (1982). Transdermal therapeutic systems: scope and product development. Pharmaceutica Acta Helvetiae, 57(2-3), 44-49.
Jain, A. K., Thomas, N. S., &Panchagnula, R. (2005). Transdermal drug delivery of imipramine hydrochloride: I. Effect of terpenes. Journal of Controlled Release, 107(3), 419-431.
Cilurzo, F., Gennari, C. G., Selmin, F., &Minghetti, P. (2012). Transdermal delivery
Banga, A. K., Chien, Y. W., & Neubert, R. H. (1997). Transdermal delivery of drugs (Vol. 118). Springer.of metformin. Journal of Pharmaceutical Sciences, 101(1), 98-106.
Hadgraft, J., & Guy, R. H. (2018). Transdermal drug delivery: from the past to the future. Advanced Drug Delivery Reviews, 132, 3-7.
Lewis, S., Dave, R. A., Singh, P. K., &Ledwani, L. (2013). Development of transdermal drug delivery system: a review. Journal of Innovative Trends in Pharmaceutical Sciences, 4(3), 11-20.
Neumann, A., Weill, A., and Ricordeau, P. (2009). Filling the gap in drug exposure information: The French national health insurance information system. Health Services Research, 44(2 Pt 1), 503-518.
Charbit, B., Alvarez, J.C., Dasque, E., et al. (1997). Droperidol and ondansetron-induced QT interval prolongation: A clinical drug interaction study. Anesthesia & Analgesia, 85(5), 1020-1025.
Profitiliotis, Thomas, and Dimitrios Tzetzis. "Design optimization and finite element analysis of 3D printed DDSs." Fundamentals and future trends of 3D printing in drug delivery. Academic Press, 2025. 77-99.
Arunachalam, P., et al. "Study on AI-Powered Advanced Drug Discovery for Enhancing Privacy and Innovation in Healthcare." AI-Powered Advances in Pharmacology. IGI Global, 2025. 25-60.
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
You are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
Terms:
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.