Measuring Sustainability: Metrics And Methods In Green Analytical Chemistry
DOI:
https://doi.org/10.52783/jns.v14.3231Keywords:
Green chemistry, Sample preparation, Solvent used, Green metric toolsAbstract
Green chemistry has emerged as a vital framework in laboratories, prioritizing sustainable, energy-efficient practices. The field focuses on replacing conventional methods with environmentally friendly alternatives by utilizing greener materials and improved waste management. Anastas first defined green chemistry, aiming to reduce hazardous substances, while also pioneering green analytical chemistry (GAC), which emphasizes practices like miniaturization and reagent substitution. This review highlights sustainable practices in analytical chemistry, focusing on techniques such as HPLC and UV-Visible Spectroscopy. Various metrics, including the National Environmental Methods Index (NEMI) and Analytical GREEnness (AGREE), are discussed to evaluate the eco-friendliness of these methods. The need for continuous improvement of these metrics is essential for researchers aiming to enhance sustainability in analytical practices, particularly in industries like pharmaceuticals and chemicals, where reducing environmental impact is crucial
Downloads
Metrics
References
Anastas PT (1999) Green chemistry and the role of analytical methodology development. Crit Rev Anal Chem 29:167–175. https://doi.org/10.1080/10408349891199356
Ibanez E, Cifuentes A (2020) Moving forward to greener extraction techniques. TrAC Trends Anal Chem 122:115698. https://doi.org/10.1016/j.trac.2019.115698
Reyes-Garces N, Gionfriddo E, Gomez-Rios GA, Alam MN, Boyaci E, Bojko B, Singh V, Grandy J, Pawliszyn J (2018) Advances in solid phase microextraction and perspective on future directions. Anal Chem 90:302–360. https://doi.org/10.1021/acs.analchem.7b04502
Grob K (1984) Further development of direct aqueous injection with electron-capture detection in gas chromatography. J Chromatogr A 299:1–11. https://doi.org/10.1016/S0021-9673(01)95206-4
Tobiszewski M, Mechlinska A, Zygmunt B, Namiesnik J (2009) Green analytical chemistry in sample preparation for determination of trace organic pollutants. TrAC Trends Anal Chem 28(8):943–951. https://doi.org/10.1016/j.trac.2009.06.001
Broekaert JAC (2015) Daniel C. Harris: Quantitative chemical analysis, 9th ed. Anal Bioanal Chem 407:8943–8944. https://doi.org/10.1007/s00216-015-9059-6
Dybowski MP, Dawidowicz AL (2018) Application of the QuEChERS procedure for analysis of Δ9-tetrahydrocannabinol and its metabolites in authentic whole blood samples by GC–MS/MS. Forensic Toxicol 36:415–423. https://doi.org/10.1007/s11419-018-0419-8
Andrascikova M, Matisova E, Hrouzkova S (2015) Liquid phase microextraction techniques as a sample preparation step for analysis of pesticide residues in food. Sep Purif Rev J 44(1):1–18. https://doi.org/10.1080/15422119.2013.872125
Raut P, Bhosle D, Janghel A, Deo S, Verma C, Kumar SS, Agrawal M, Amit N, Sharma M, Giri T (2015) Emerging pressurized liquid extraction (PLE) techniques as an innovative green technologies for the effective extraction of the active phytopharmaceuticals. Res J Pharm Technol 8(6):800–810. https://doi.org/10.5958/0974-360X.2015.00129.4
Armenta S, la Guardia M, de, (2016) Green chromatography for the analysis of foods of animal origin. TrAC Trends Anal Chem 80:517–530. https://doi.org/10.1016/j.trac.2015.08.011
Tiwari BK (2015) Ultrasound: a clean, green extraction technology. TrAC Trends Anal Chem 71:100–109. https://doi.org/10.1016/j.trac.2015.04.013
Chemat F, Rombaut N, Sicaire AG, Meullemiestre A, Fabiano-Tixier AS, Abert-Vian M (2017) Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrason Sonochem 34:540–560. https://doi.org/10.1016/j.ultsonch.2016.06.035
Meskar M, Sartaj M, Sedano JAI (2018) Optimization of operational parameters of supercritical fluid extraction for PHCs removal from a contaminated sand using response surface methodology. J Environ Chem Eng 6(2):3083–3094. https://doi.org/10.1016/j.jece.2018.04.048
Mazaud A, Lebeuf R, Laguerre M, Nardello-Rataj V (2020) Hydrotropic extraction of carnosic acid from rosemary with short-chain alkyl polyethylene glycol ethers. ACS Sustain Chem Eng 8:15268–15277. https://doi.org/10.1021/acssuschemeng.0c05078
Kanda H, Hoshino R, Murakami K, Wahyudiono ZQ, Goto M (2020) Lipid extraction from microalgae covered with biomineralized cell walls using liquefied dimethyl ether. Fuel 262:116590. https://doi.org/10.1016/j.fuel.2019.116590
Funari CS, Carneiro RL, Khandagale MM, Cavalheiro AJ, Hilder EF (2015) Acetone as a greener alternative to acetonitrile in liquid chromatographic fingerprinting. J Sep Sci 38(9):1458–1465. https://doi.org/10.1002/jssc.201401324
Prache N, Abreu S, Sassiat P, Thiebaut D, Chaminade P (2016) Alternative solvents for improving the greenness of normal phase liquid chromatography of lipid classes. J Chromatogr A 1464:55–63. https://doi.org/10.1016/j.chroma.2016.08.034
Dogan A, Eylem CC, Akduman NEB (2020) Application of green methodology to pharmaceutical analysis using eco-friendly ethanol-water mobile phases. Microchem J 157:104895. https://doi.org/10.1016/j.microc.2020.104895
L.P. Kowtharapu, N.K. Katari, C.A. Sandoval, S.K. Muchakayala, V.K. Rekulapally (2022) Unique green chromatography method for the determination of serotonin receptor antagonist (Ondansetron hydrochloride) related substances in a liquid formulation, robustness by quality by design‐based design of experiments approach. J. Separ. Sci., 45; 1711-1726. https://doi.org/10.1002/jssc.202100979
D. Raynie, J.L. Driver (2009), Green Assessment of Chemical Methods, In13th Green Chem Conf., USA. https://doi.org/10.1021/cr068359e
K. Van Aken, L. Strekowski, L. Patiny(2006), EcoScale, a semi-quantitative tool to select an organic preparation based on economical and ecological parameters, Beilstein J. Org. Chem., 2. https://doi.org/10.1186/1860-5397-2-3
S.S. Panda, S. Dutta, R.K.V.V. Bera, S. Jammula(2021), Analytical eco‐scale and quality by design‐oriented liquid chromatography method for simultaneous quantification of metoprolol succinate, telmisartan, and cilnidipine in their fixed‐dose combination, Separ. Sci., 4: 128-136. https://doi.org/10.1002/sscp.202000041
J. Płotka-Wasylka (2018), A new tool for the evaluation of the analytical procedure: green Analytical Procedure Index, Talanta, 181: 204-209. https://doi.org/10.1016/j.talanta.2018.01.013
Y.A. Sharaf, A.E. Ibrahim, S. El Deeb, R.A. Sayed (2023), Green chemometric determination of cefotaxime Sodium in the presence of its degradation impurities using different multivariate data processing tools; GAPI and AGREE GREEnness evaluation, Molecules, 28: 2187. https://doi.org/10.3390/molecules28052187
J. Płotka-Wasylka, W. Wojnowski (2021), Complementary green analytical procedure index (ComplexGAPI) and software, Green Chem., 23: 8657-8665. https://doi.org/10.1039/D1GC02008F
M.A.E. Hamd, M.A. Albalawi, H. Gomaa, B.S. Mohammad, R.F. Abdul-Kareem, R.H. Obaydo, W.T. Alsaggaf, S.F. Saleh, M.A. Alossaimi, M.A. Abdel-Lateef (2023), Ziziphus spina-christi leaf-derived carbon dots as a fluorescence nanosensor to evaluate rifaximin antibacterial via inner filter effect: GREEnness and whiteness studies, Chemosensors, 11: 275. https://doi.org/10.3390/chemosensors11050275
F. Pena-Pereira, W. Wojnowski, M. Tobiszewski, (2020) AGREE—analytical GREEnness metric approach and software, Anal. Chem., 92: 10076-10082. https://doi.org/10.1021/acs.analchem.0c01887
Mostafa, H. Shaaban, A.M. Alqarni, M. Alghamdi, S. Alsultan, J. Saleh Al-Saeed, S. Alsaba, A. AlMoslem, Y. Alshehry, R. Ahmad, (2022) Vortex-assisted dispersive liquid–liquid microextraction using thymol based natural deep eutectic solvent for trace analysis of sulfonamides in water samples: assessment of the GREEnness profile using AGREE metric, GAPI and analytical eco-scale, Microchem. J., 183: Article 107976. https://doi.org/10.1016/j.microc.2022.107976
W. Wojnowski, M. Tobiszewski, F. Pena-Pereira, E. Psillakis (2022), AGREEprep – analytical GREEnness metric for sample preparation, TrAC, Trends Anal. Chem., 149: Article 116553. https://doi.org/10.1016/j.trac.2022.116553
A.K. El-Deen, H. Elmansi, K. Shimizu (2022), Utilization of hydrophilic and hydrophobic deep eutectic solvents for dispersive liquid-liquid microextraction of bicalutamide from water and spiked human plasma, Sustainable Chemistry and Pharmacy, 29:Article 100825. https://doi.org/10.1016/j.scp.2022.100825
Y. Gaber, U. Törnvall, M.A. Kumar, M. Ali Amin, R. Hatti-Kaul (2011), HPLC-EAT (Environmental Assessment Tool): a tool for profiling safety, health and environmental impacts of liquid chromatography methods, Green Chem., 13: 2021. https://doi.org/10.1039/C0GC00667J
M. Gamil, N.M. El Zahar, N. Magdy, A.M. El-Kosasy (2022), Green, bioanalytically validated chromatographic method for the determination and quantification of photoinitiators in saliva in contact with baby bibs, teethers and pacifiers, Microchem. J., 181: Article 107841. https://doi.org/10.1016/j.microc.2022.107841
R. Hartman, R. Helmy, M. Al-Sayah, C.J. Welch (2011), Analytical Method Volume Intensity (AMVI): a green chemistry metric for HPLC methodology in the pharmaceutical industry, Green Chem., 13:934. https://doi.org/10.1039/C0GC00524J
M.Y. Fares, M.A. Hegazy, G.M. El-Sayed, M.M. Abdelrahman, N.S. Abdelwahab (2022), Quality by design approach for green HPLC method development for simultaneous analysis of two thalassemia drugs in biological fluid with pharmacokinetic study, RSC Adv., 12: 13896-13916. https://doi.org/10.1039/D2RA01320A
M.B. Hicks, W. Farrell, C. Aurigemma, L. Lehmann, L. Weisel, K. Nadeau, H. Lee, C. Moraff, M. Wong, Y. Huang, P. Ferguson (2019), Making the move towards modernized greener separations: introduction of the analytical method GREEnness score (AMGS) calculator, Green Chem., 21:1816-1826. https://doi.org/10.1039/C8GC03875H
K.P. Kannaiah, A. Sugumaran, H.K. Chanduluru (2023), Simultaneous estimation of crotamiton and hydrocortisone by RP-UPLC using green analytical principles embedded analytical quality by design (AQbD) method, Microchem. J., 184:Article 108166. https://doi.org/10.1016/j.microc.2023.108166
Y. Shen, C. Lo, D.R. Nagaraj, R. Farinato, A. Essenfeld, P. Somasundaran (2016), Development of GREEnness Index as an evaluation tool to assess reagents: evaluation based on SDS (Safety Data Sheet) information, Miner. Eng., 94: 1-9. https://doi.org/10.1016/j.mineng.2016.04.001
Y. Shen, P. Somasundaran, (2019) GREEnness index evaluation of fracking chemicals using SDS (safety data sheet) information, J. Environ. Chem. Eng., 7:Article 102989. https://doi.org/10.1016/j.jece.2019.102989
M. González-Miquel, I. Díaz, (2021) Green solvent screening using modeling and simulation, Current Opinion in Green and Sustainable Chemistry, 29: Article 100469. https://doi.org/10.1016/j.cogsc.2021.100469
L.J. Diorazio, P. Richardson, H.F. Sneddon, A. Moores, C. Briddell, I. Martinez(2021), Making sustainability assessment accessible: tools developed by the ACS green chemistry institute pharmaceutical roundtable, ACS Sustain. Chem. Eng., 9:16862-16864. https://doi.org/10.1021/acssuschemeng.1c06235
C.H. Benison, P.R. Payne (2022), Manufacturing mass intensity: 15 Years of Process Mass Intensity and development of the metric into plant cleaning and beyond, Current Research in Green and Sustainable Chemistry, 5: Article 100229. https://doi.org/10.1016/j.crgsc.2022.100229
S.R. Madabhushi, N.D.S. Pinto, H. Lin (2022), Comparison of process mass intensity (PMI) of continuous and batch manufacturing processes for biologics, N. Biotech., 72: 122-127, https://doi.org/10.1016/j.nbt.2022.07.004
Elsheikh SG, Hassan AME, Fayez YM, El-Mosallamy SS (2023) Green analytical chemistry and experimental design: a combined approach for the analysis of zonisamide. BMC Chem 17:38. https://doi.org/10.1186/s13065-023-00920-0
Kokilambigai KS, Lakshmi KS (2022) Analytical quality by design assisted RP-HPLC method for quantifying atorvastatin with green analytical chemistry perspective. J Chromatogr Open 2:100052. https://doi.org/10.1016/j.jcoa.2022.100052
Perumal DD, Krishnan M, Lakshmi KS (2022) Eco-friendly based stability-indicating RP-HPLC technique for the determination of escitalopram and etizolam by employing QbD approach. Green Chem Lett Rev 15(3):671–682. https://doi.org/10.1080/17518253.2022.2109780
Vieira-Sellai L, Quintana M, Diop O, Mercier O, Tarrit S, Raimi N, Ba A, Maunit B, Galmier MJ (2022) Green HPLC quantification method of lamivudine, zidovudine and nevirapine with identification of related substances in tablets. Green Chem Lett Rev 15(3):695–704. https://doi.org/10.1080/17518253.2022.2109780
Iqbal M, Imam F, Ali EA, Kalam MA, Alhudaithi SS, Anwer MdK (2023) A validated UPLC-MS/MS method for rapid quantification of umifenovir in plasma samples and its greenness assessment. Separations 10(7):379. https://doi.org/10.3390/separations10070379
Iqbal M, Ezzeldin E, Anwer MdK, Imam F (2021) Eco-friendly UPLC-MS/MS quantitation of delafloxacin in plasma and its application in a pharmacokinetic study in rats. Separations 8(9):146. https://doi.org/10.3390/separations8090146
Prajapati PB, Bodiwala KB, Shah SA (2018) Analytical quality-by-design approach for the stability study of thiocolchicoside by eco-friendly chromatographic method. JPC J Planar Chromatogr Mod TLC 31(6):477–487. https://doi.org/10.1556/1006.2018.31.6.8
Naguib IA, Hassan ES, Emam AA, Abdelaleem EA (2020) Development and validation of HPTLC and green HPLC methods for determination of a new combination of quinfamide and mebendazole. J Chromatogr Sci 58(1):16–21. https://doi.org/10.1093/chromsci/bmz070
Elsheikh SG, Hassan AME, Fayez YM, El-Mosallamy SS (2022) Greenness assessment of two validated stability-indicating chromatographic methods for estimating modafinil using the analytical eco-scale. J AOAC Int 105(2):379–386. https://doi.org/10.1093/jaoacint/qsab148
Elsheikh SG, Hassan AME, Fayez YM, El-Mosallamy SS (2023) Green analytical chemistry and experimental design: a combined approach for the analysis of zonisamide. BMC Chem 17:38. https://doi.org/10.1186/s13065-023-00920-0
Chanduluru HK, Sugumaran A, Kannaiah KP (2022) Multiple spectrophotometric determinations of Chlorthalidone and Cilnidipine using propylene carbonate—as a step towards greenness. Anal Biochem 657:114890. https://doi.org/10.1016/j.ab.2023.114890
Fawzy MG, Hassan WE, Mostafa AA, Sayed RA (2022) Different approaches for the assessment of greenness of spectrophotometric methodologies utilized for resolving the spectral overlap of newly approved binary hypoglycemic pharmaceutical mixture. Spectrochim Acta A Mol Biomol Spectrosc 272:120998. https://doi.org/10.1016/j.saa.2022.120998
Fawzy MG, Saleh H, Reda A, Bahgat EA (2022) A green spectrophotometric method for the simultaneous determination of nasal binary mixture used in respiratory diseases: applying isosbestic point and chemometric approaches as a resolving tool, greenness evaluation. Spectrochim Acta A Mol Biomol Spectrosc 283:121585. https://doi.org/10.1016/j.saa.2022.121585.
Avasarala, H., Jayanthi, V. R., & Dinakaran, S. K. (2018). Fast and sensitive quantification of asenapine maleate by high-performance thin layer chromatography. Lat. Am. J. Pharm, 37(2), 330-3. https://www.researchgate.net/publication/323186272_Fast_and_sensitive_quantification_of_asenapine_maleate_by_high-performance_thin_layer_chromatography.
Dinakaran, S.K., Nitesh, Y., Kothapalli, U.L.S.T., Alekhya, R., Avasarala, H.(2024) Eco-friendly assessment of turmeric-assisted approach in developing and validating a method for the quantification of atropine sulphate in bulk and tablet dosage form using UV–Visible spectrophotometry, Green Analytical Chemistry, 9, 100114. https://doi.org/10.1016/j.gac.2023.100114
Kumar D. Sathis, Bhavitha K., Harani A., Meenakshi V, Rajendran Parvathy, Lee It Ee, Awadh Mohammed Al, Yuheng Lu, Prasad N.E Chandra,(2025) Green analytical comparison and central composite design optimization for simultaneous estimation of pain management drugs using RP-liquid chromatography, Microchemical Journal, 208, 112309. https://doi.org/10.1016/j.microc.2024.112309.
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
You are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
Terms:
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.