Advancements in Sentiment Analysis: A Comprehensive Review of Deep Learning Approaches

Authors

  • Akshatha Shetty
  • Manjaiah D H
  • Asha Kumari
  • Alagappan Thiyagarajan

Keywords:

Sentiment Detection, Social Media Analysis, Emotion Recognition, Language Diversity, Model Interpretability

Abstract

Sentiment analysis has become an integral part of natural language processing, especially in social media, where large volumes of user-generated content are readily available. This review delves into the various deep learning techniques used in sentiment analysis, assessing their advantages and drawbacks across multiple languages and settings. It examines document-level, sentence-level, and aspect-based sentiment analysis methodologies, emphasizing the progress made with models like Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), and particularly BERT and its adaptations. Moreover, the paper discusses the existing challenges in sentiment classification, including the complexities of sarcasm detection, multilingual processing issues, and the importance of effective preprocessing techniques. The findings highlight the significance of sentiment analysis in diverse fields, including education, brand management, finance, and emergency response. Ultimately, this review identifies opportunities for future research, such as the integration of advanced models, the inclusion of underrepresented languages, and the development of interpretable frameworks to enhance trust in sentiment analysis applications.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Zhang, W., Xu, M., Jiang, Q.: Opinion mining and sentiment analysis in social media: Challenges and applications. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), pp. 536–548. Springer, Berlin (2018)

S. Garg, D. Panwar, A. Gupta, & R. Katarya (2020). A literature review on sentiment analysis techniques involving social media platforms. In Sixth International Conference on Parallel, Distributed and Grid Computing (pp. 254–259).

Singh, N. A. (2020). Sentiment analysis on motor vehicles amendment act, 2019, an initiative by the government of india to follow traffic rule. In In 2020 International Conference on Computer Communication and Informatics (ICCCI) (pp. 1–5). IEEE.

Chandio, M., & Sah, M. (2020). Brexit twitter sentiment analisys: Changing opinions about brexit and UK politicians. In International Conference on Information, Communication and Computing Technologies: Intelligent Computing Paradigm and Cutting-edge Technologies (pp. 1–11). Springer volume 9.

Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: Pretraining of deep bidirectional transformers for language understanding (2018). https://doi.org/10.48550/arXiv.1810.04805

Kraaijeveld, O., & Smedt, J. (2020). The predictive power of public twitter sentiment for forecasting crytocurrency prices. J. Int. Financ. Mark. Insitutions Money, 65.

S. Bouktif, A. Fiaz and M. Awad, "Augmented Textual Features-Based Stock Market Prediction," in IEEE Access, vol. 8, pp. 40269-40282, 2020, doi: 10.1109/ACCESS.2020.2976725.

Gartner Group Inc. (2021). A Game Changer In The Way Organizations Deal With Data. Stamford, USA: Technical Report Gartner Group Inc.

Zhang, L.,Wang, S., Liu, B.: Deep learning for sentiment analysis: a survey. WIREs Data Min. Knowl. Discov. (2018). https://doi. org/10.1002/widm.1253 10.

Ravi, K., Ravi, V.: A survey on opinion mining and sentiment analysis: Tasks, approaches and applications. Knowl. Based Syst. 89, 14–46 (2015). https://doi.org/10.1016/j.knosys.2015.06.015

Liu, B., Zhang, L.: A survey of opinion mining and sentiment analysis. In: Mining Text Data. Springer US, Boston, pp. 415–463 (2012). https://doi.org/10.1007/978-1-4614-3223-4_13

Islam, Md.S., et al.: Challenges and future in deep learning for sentiment analysis: a comprehensive review and a proposed novel hybrid approach. Artif. Intell. Rev. Intell. Rev. 57(3), 62 (2024). https://doi.org/10.1007/s10462-023-10651-9

Elsa, J., Koraye, J.: Deep learning techniques for natural language processing: recent developments (2024). https://easychair.org/pu blications/preprint_download/FPbH

Dang, N.C., Moreno-García, M.N., De la Prieta, F.: Sentiment analysis based on deep learning: a comparative study. Electronics (Basel) 9(3), 483 (2020). https://doi.org/10.3390/electronics903 0483

Prabha, M.I., Umarani Srikanth, G.: Survey of sentiment analysis using deep learning techniques. In: 2019 1st International Conference on Innovations in Information and Communication Technology (ICIICT), pp. 1–9 (2019). https://doi.org/10.1109/IC IICT1.2019.8741438

Yadav, A., Vishwakarma, D.K.: Sentiment analysis using deep learning architectures: a review. Artif. Intell. Rev.. Intell. Rev. 53(6), 4335–4385 (2020). https://doi.org/10.1007/s10462-019-09 794-5

Ain, Q.T., et al.: Sentiment analysis using deep learning techniques: a review. Int. J. Adv. Comput. Sci. Appl.Comput. Sci. Appl. (2017). https://doi.org/10.14569/IJACSA.2017.080657

Cho, K., van Merrienboer, B., Bahdanau, D., & Bengio, Y. (2014). On the properties of neural machine translation: Encoder–decoder approaches. In Proceedings of SSST-8, Eighth Workshop on Syntax, Semantics and Structure in Statistical Translation (pp. 103–111). Doha, Qatar: Association for Computational Linguistics.

Dolianiti, F.S., Iakovakis, D., Dias, S.B., Hadjileontiadou, S., Diniz, J.A., Hadjileontiadis, L.: Sentiment analysis techniques and applications in education: a survey. In: Communications in Computer and Information Science, pp. 412–427. Springer, Berlin (2019). https://doi.org/10.1007/978-3-030-20954-4_31

Shah, P.V., Swaminarayan, P.R.: Sentiment analysis—an evaluation of the sentiment of the people: a survey. In: Kotecha, K., Piuri, V., Shah, H.N., Patel, R. (eds.) Data Science and Intelligent Applications, pp. 53–61. Springer, Singapore (2021)

Behdenna, S., Barigou, F., Belalem, G.: Document level sentiment analysis: a survey. EAI Endors. Trans. Context-Aware Syst. Appl. 4(13), e2–e2 (2018)

Altrabsheh, N., Gaber, M.M., Cocea, M.: SA-E: sentiment analysis for education. Frontiers in Artificial Intelligence and Applications, 255, pp. 353–362 (2013). https://doi.org/10.3233/978-1- 61499-264-6-353

Colace, F., de Santo, M., Greco, L.: SAFE: a sentiment analysis framework for E-learning. Int. J. Emerg. Technol. Learn. (iJET) 9(6), 37 (2014). https://doi.org/10.3991/ijet.v9i6.4110

Chaturvedi, S., Mishra, V., Mishra, N.: Sentiment analysis using machine learning for business intelligence. In: 2017 IEEE International Conference on Power, Control, Signals and Instrumentation Engineering (ICPCSI), pp. 2162–2166 (2017). https://doi.org/10. 1109/ICPCSI.2017.8392100

Benedetto, F., Tedeschi, A.: Big data sentiment analysis for brand monitoring in social media streams by cloud computing. In: Pedrycz, W., Chen, S.-M. (eds.) Sentiment Analysis and Ontology Engineering: An Environment of Computational Intelligence, pp. 341–377. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-30319-2_14

Sousa, M.G., Sakiyama, K., de Souza Rodrigues, L., Moraes, P.H., Fernandes, E.R., Matsubara, E.T.: BERT for stock market sentiment analysis. In: 2019 IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI), pp. 1597–1601 (2019). https://doi.org/10.1109/ICTAI.2019.00231

Dang, N.C., Moreno-García, M.N., de la Prieta, F.: Sentiment analysis based on deep learning: a comparative study. Electronics (Switzerland) 9(3), 483 (2020). https://doi.org/10.3390/electron ics9030483

Jain, A.P., Dandannavar, P.: Application of machine learning techniques to sentiment analysis. In: 2016 2nd International Conference on Applied and Theoretical Computing and Communication Technology (iCATccT), pp. 628–632 (2016). https://doi.org/10.1109/ICATCCT.2016.7912076

Azeez, J., Aravindhar, D.J.: Hybrid approach to crime prediction using deep learning. In: 2015 International Conference on Advances in Computing, Communications and Informatics (ICACCI), pp. 1701–1710. IEEE (2015). https://doi.org/10.1109/ICACCI.2015.7275858

Gerber, M.S.: Predicting crime using Twitter and kernel density estimation. Decis. Support. Syst. Support. Syst. 61, 115–125 (2014). https://doi.org/10.1016/j.dss.2014.02.003

Sufi, F.K., Khalil, I.: Automated disaster monitoring from social media posts using AI-based location intelligence and sentiment analysis. IEEE Trans. Comput. Soc. Syst. (2022). https://doi.org/10.1109/TCSS.2022.3157142

Mendon, S., Dutta, P., Behl, A., Lessmann, S.: A hybrid approach of machine learning and lexicons to sentiment analysis: enhanced insights from Twitter data of natural disasters. Inf. Syst. Front. 23(5), 1145–1168 (2021). https://doi.org/10.1007/s10796-021-10107-x

Roy, K., Kohli, D., Kumar, R.K.S., Sahgal, R., Wen-Bin, Yu.: Sentiment analysis of Twitter data for demonetization in India ? A text mining approach. Issues Inf. Syst. 18(4), 9–15 (2017). https://doi.org/10.48009/4_iis_2017_9-15 75

Zhang, L., Wang, S., Liu, B.: Deep learning for sentiment analysis: a survey. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. (2018). https://doi.org/10.1002/widm.1253

Mumuni, A., Mumuni, F.: Automated data processing and feature engineering for deep learning and big data applications: a survey. J. Inf. Intell. (2024). https://doi.org/10.1016/j.jiixd.2024.01.002

O’Mahony, N., et al.: Deep learning vs. traditional computer vision. In: Advances in Computer Vision: Proceedings of the 2019 Computer Vision Conference (CVC), vol. 1, pp. 128–144 (2020)

Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998). https://doi.org/10.1109/5.726791

Elman, J.L.: Finding structure in time. Cogn. Sci.. Sci. 14(2), 179–211 (1990). https://doi.org/10.1016/0364-0213(90)90002-E

Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput.Comput. 9(8), 1735–1780 (1997). https://doi.org/10. 1162/neco.1997.9.8.1735

Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., Bengio, Y. Learning phrase representations using RNN encoder-decoder for statistical machine translation (2014) arXiv prepri

Sun, X., Li, X., Zhang, S., Wang, S., Wu, F., Li, J., Zhang, T. and Wang, G. Sentiment analysis through llm negotiations (2023) arXiv preprint arXiv:2311.01876. https://doi.org/10.48550/arXiv. 2311.01876

Khosravi, A., Rahmati, Z., Vefghi, A.: Relational graph convolutional networks for sentiment analysis (2024). arXiv preprint arXiv:2404.13079. https://doi.org/10.48550/arXiv.2404.13079

Jain, P.K., Saravanan, V., Pamula, R.: A hybrid CNN-LSTM: a deep learning approach for consumer sentiment analysis using qualitative user-generated contents. ACM Trans. Asian and LowResource Lang. Inf. Process. 20(5), 1 (2021). https://doi.org/10. 1145/3457206

Brauwers, G., Frasincar, F.: A survey on aspect-based sentiment classification. ACM Comput. Surv.Comput. Surv. (2021). https://doi.org/10.1145/3503044

Alshuwaier, F., Areshey, A., Poon, J.: Applications and enhancement of document-based sentiment analysis in deep learning methods: systematic literature review. Intell. Syst. Appl. (2022). https://doi.org/10.1016/j.iswa.2022.200090

Rani, S., Kumar, P.: Deep learning based sentiment analysis using convolution neural network. Arab. J. Sci. Eng. 44(4), 3305–3314 (2019). https://doi.org/10.1007/s13369-018-3500-z

Obiedat, R., Al-Darras, D., Alzaghoul, E., Harfoushi, O.: Arabic aspect-based sentiment analysis: a systematic literature review. In: IEEE Access, Institute of Electrical and Electronics Engineers Inc., vol. 9, pp. 152628–152645 (2021). https://doi.org/10.1109/ACCESS.2021.3127140

Gothane, S., et al.: Sentiment analysis in social media using deep learning techniques. IJISAE (2024)

Zyout, I., Zyout, M.: Sentiment analysis of student feedback using attention-based RNN and transformer embedding. Int. J. Artif. Intell. 13(2), 2173–2184 (2024)

Huang, B., et al.: Aspect-level sentiment analysis with aspectspecific context position information. Knowl. Based Syst. (2022). https://doi.org/10.1016/j.knosys.2022.108473

Sudhir, P., Suresh, V.D.: Comparative study of various approaches, applications and classifiers for sentiment analysis. Glob. Transit. Proc. 2(2), 205–211 (2021). https://doi.org/10.1016/j.gltp.2021. 08.004

Rida-E-Fatima, S., et al.: A multi-layer dual attention deep learning model with refined word embeddings for aspect-based sentiment analysis. IEEE Access 7, 114795–114807 (2019). https://doi.org/10.1109/ACCESS.2019.2927281

Zhao, N., Gao, H., Wen, X., Li, H.: Combination of convolutional neural network and gated recurrent unit for aspect-based sentiment analysis. IEEE Access 9, 15561–15569 (2021). https://doi.org/10. 1109/ACCESS.2021.3052937

Zhang, B., Zhou, W.: Transformer-encoder-GRU (T-E-GRU) for Chinese sentiment analysis on Chinese comment text. Neural. Process. Lett. 55, 1847 (2021)

Abdullah, T., Ahmet, A.: Deep learning in sentiment analysis: a survey of recent architectures. ACM Comput. Surv. Comput. Surv. (2022). https://doi.org/10.1145/3548772

Xiao, Y., Li, C., Thürer, M., Liu, Y., Qu, T.: User preference mining based on fine-grained sentiment analysis. J. Retail. Consum. Serv.Consum. Serv. 68, 103013 (2022). https://doi.org/10.1016/j. jretconser.2022.103013

Žitnik, S., Blagus, N., Bajec, M.: Target-level sentiment analysis for news articles. Knowl. Based Syst. 249, 108939 (2022). https://doi.org/10.1016/j.knosys.2022.108939

Miah, M.S.U., Kabir, M.M., Bin Sarwar, T., Safran, M., Alfarhood, S., Mridha, M.F.: A multimodal approach to cross-lingual sentiment analysis with ensemble of transformer and LLM. Sci. Rep. 14(1), 9603 (2024). https://doi.org/10.1038/s41598-024-60 210-7

Xing, F.: Designing heterogeneous LLM agents for financial sentiment analysis (2024). arXiv preprint arXiv:2401.05799. https://doi.org/10.48550/arXiv.2401.05799

Li, Y., Li, N.: Sentiment analysis of weibo comments based on graph neural network. IEEE Access 10, 23497–23510 (2022). https://doi.org/10.1109/ACCESS.2022.3154107

Yin, S., Zhong, G.: TextGT: a double-view graph transformer on text for aspect-based sentiment analysis. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp. 19404–19412 (2024)

. Boiy, E., Moens, M.-F.: A machine learning approach to sentiment analysis in multilingual Web texts. Inf. Retr. Boston 12(5), 526–558 (2009). https://doi.org/10.1007/s10791-008-9070-z

Kim, S.-M., Hovy, E.: Determining the sentiment of opinions. In: Proceedings of the 20th International Conference on Computational Linguistics, in COLING ’04. Association for Computational Linguistics, USA, p. 1367 (2004). https://doi.org/10.3115/ 1220355.1220555

Souza, M.D., Prabhu, G.A., Kumara, V. et al. EarlyNet: a novel transfer learning approach with VGG11 and EfficientNet for early-stage breast cancer detection. Int J Syst Assur Eng Manag (2024). https://doi.org/10.1007/s13198-024-02408-6

Souza, M. D., Prabhu, A. G., & Kumara, V. (2019). A comprehensive review on advances in deep learning and machine learning for early breast cancer detection. International Journal of Advanced Research in Engineering and Technology (IJARET), 10(5), 350-359.

Melwin D'souza, Ananth Prabhu Gurpur, Varuna Kumara, “SANAS-Net: spatial attention neural architecture search for breast cancer detection”, IAES International Journal of Artificial Intelligence (IJ-AI), Vol. 13, No. 3, September 2024, pp. 3339-3349, ISSN: 2252-8938, DOI: http://doi.org/10.11591/ijai.v13.i3.pp3339-3349

P. M. Manjunath, Gurucharan and M. Dsouza, Shwetha, "IoT Based Agricultural Robot for Monitoring Plant Health and Environment", Journal of Emerging Technologies and Innovative Research vol. 6, no. 2, pp. 551-554, Feb 2019

M. D. Souza, V. Kumara, R. D. Salins, J. J. A Celin, S. Adiga and S. Shedthi, "Advanced Deep Learning Model for Breast Cancer Detection via Thermographic Imaging," 2024 IEEE International Conference on Distributed Computing, VLSI, Electrical Circuits and Robotics (DISCOVER), Mangalore, India, 2024, pp. 428-433, doi:10.1109/DISCOVER62353.2024.10750727

J. Park, H. Leung, & K. Ma (2017). Information fusion of stock prices and sentiment in social media using granger causality. In IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (pp. 614–619).

Kaur, S., & Mohana, R. (2019). Temporality based sentiment analysis using linguistic rules and meta-data. Proceedings of the National Academy of Sciences India Section A - Physical Sciences, 89, 331–339.

..

Downloads

Published

2025-04-22

How to Cite

1.
Shetty A, D H M, Kumari A, Thiyagarajan A. Advancements in Sentiment Analysis: A Comprehensive Review of Deep Learning Approaches. J Neonatal Surg [Internet]. 2025Apr.22 [cited 2025Sep.29];14(16S):558-77. Available from: https://www.jneonatalsurg.com/index.php/jns/article/view/4348

Most read articles by the same author(s)