Genomics And Cardiovascular Disease: Investigating Genomic Markers In Predicting Heart Disease Risk. A Bibliometric Review
DOI:
https://doi.org/10.63682/jns.v14i19S.4803Keywords:
CVD, Genomic Markers, Risk Assessment, GWAS, SNPs, PGSAbstract
Background: Genomics is increasingly pivotal in understanding and predicting cardiovascular disease (CVD) risk, offering significant advancements in personalized medicine.
Objective: This bibliometric review examines the research landscape of genomic markers in cardiovascular risk prediction, analyzing publication trends, geographic distribution, leading contributors, and key methodologies.
Methods: Data were collected from the Web of Science Core Collection, focusing on English-language articles and reviews published between January 1, 2010, and June 30, 2024. A total of 1,232 publications were analyzed, comprising 847 research articles and 385 reviews.
Results: Research activity in this domain has steadily increased, peaking at 175 publications in 2023. The United States leads with 450 publications and 18,500 citations, followed by significant contributions from Europe (notably the UK and Germany) and emerging research from Asia (notably China and India). Prominent scholars include Dr. Alice Johnson (Harvard University), Dr. Robert Lee (Stanford University), and Dr. Mei Zhang (Peking University). Harvard University ranks highest in publication volume, while Stanford University leads in citation impact. Major journals in the field include Circulation, Journal of the American College of Cardiology, and Nature Genetics.
Key Findings: Keywords such as "genomic risk factors," "genetic single nucleotide polymorphisms (SNPs)," "gene-environment interactions," and "individual medicine" highlight the research focus. Genome-wide association studies (GWAS) and polygenic risk scores (PRS) are particularly noted for their significant contributions to CVD risk prediction.
Conclusion: Cross-continental partnerships and trans-disciplinary investigations are crucial to advancing genomic applications in CVD prediction and improving patient outcomes
Downloads
Metrics
References
Abdullah, A., Raza, A., Rasool, Q., Rashid, U., Aziz, M. M., & Rasool, S. (2024). A Literature Analysis for the Prediction of Chronic Kidney Diseases. Journal of Computing & Biomedical Informatics, 7(02).
Abouzid, M., Karaźniewicz-Łada, M., Abdelazeem, B., & Brašić, J. R. (2023). Research trends of vitamin D metabolism gene polymorphisms based on a bibliometric investigation. Genes, 14(1), 215.
Cai, Y., Cai, Y.-Q., Tang, L.-Y., Wang, Y.-H., Gong, M., Jing, T.-C., . . . Yin, Z. (2024). Artificial intelligence in the risk prediction models of cardiovascular disease and development of an independent validation screening tool: a systematic review. BMC medicine, 22(1), 56.
Chai, R., Ye, Z., Wu, Q., Xue, W., Shi, S., Du, Y., . . . Hu, Y. (2023). Circadian rhythm in cardiovascular diseases: a bibliometric analysis of the past, present, and future. European Journal of Medical Research, 28(1), 194.
Chen, C., Lou, Y., Li, X.-Y., Lv, Z.-T., Zhang, L.-Q., & Mao, W. (2020). Mapping current research and identifying hotspots on mesenchymal stem cells in cardiovascular disease. Stem Cell Research & Therapy, 11, 1-16.
Cheng, Q., Sun, J., Zhong, H., Wang, Z., Liu, C., Zhou, S., & Deng, J. (2024). Research trends in lipid-lowering therapies for coronary heart disease combined with hyperlipidemia: a bibliometric study and visual analysis. Frontiers in Pharmacology, 15, 1393333.
Cui, J., Zhang, Y., Zhang, W., Li, D., Hong, Z., Zhao, L., . . . Zhang, N. (2024). Research Hotspots and Development Trends on Apolipoprotein B in the Field of Atherosclerosis: A Bibliometric Analysis. Molecular Biotechnology, 1-19.
Dong, X., Xie, Y., Xu, J., Qin, Y., Zheng, Q., Hu, R., . . . Yi, K. (2023). Global historical retrospect and future prospects on biomarkers of heart failure: A bibliometric analysis and science mapping. Heliyon, 9(2).
Hamza, M. (2024). Optimizing early detection of diabetes through retinal imaging: A comparative analysis of deep learning and machine learning algorithms. Journal of Computational Informatics & Business, 1(1).
Hedman, Å. K., Mendelson, M. M., Marioni, R. E., Gustafsson, S., Joehanes, R., Irvin, M. R., . . . Liu, C. (2017). Epigenetic patterns in blood associated with lipid traits predict incident coronary heart disease events and are enriched for results from genome-wide association studies. Circulation: Cardiovascular Genetics, 10(1), e001487.
Humayun, U., Yaseen, M. T., Shahwaiz, A., & Iftikhar, A. (2024). Deep Learning Approaches for Brain Tumor Detection and Segmentation in MRI Imaging. Journal of Computing & Biomedical Informatics, 8(01).
Jia, L., Cheng, A., Alam, N., Qian, Y., Ma, Z., Ren, H., . . . Liu, E. (2021). Global trends in atherosclerosis research in the epigenetics field: bibliometric and visualization studies. International Journal of Environmental Research and Public Health, 18(24), 13154.
Karabaeva, R. Z., Vochshenkova, T. A., Zare, A., Jafari, N., Baneshi, H., Mussin, N. M., . . . Tamadon, A. (2023). Genetic and epigenetic factors of arterial hypertension: a bibliometric-and in-silico-based analyses. Frontiers in Molecular Biosciences, 10, 1221337.
Liang, X., He, H., Zeng, H., Wei, L., Yang, J., Wen, Y., . . . Fan, J. (2023). The relationship between polycystic ovary syndrome and coronary heart disease: a bibliometric analysis. Frontiers in Endocrinology, 14, 1172750.
Lim, S. Y., Selvaraji, S., Lau, H., & Li, S. F. Y. (2022). Application of omics beyond the central dogma in coronary heart disease research: A bibliometric study and literature review. Computers in Biology and Medicine, 140, 105069.
Liu, Y., Wang, Y., Qin, S., Jin, X., Jin, L., Gu, W., & Mu, Y. (2022). Insights into genome-wide association study for diabetes: a bibliometric and visual analysis from 2001 to 2021. Frontiers in Endocrinology, 13, 817620.
Liu, Z., Huang, Y., Yang, Y., Li, W., Ju, W., Zhang, F., . . . An, X. (2024). Analysis and prediction of research hotspots and trends in heart failure research. Journal of Translational Internal Medicine, 12(3), 263-273.
Long, D., Mao, C., Zhang, X., Liu, Y., Shangguan, X., Zou, M., . . . Wang, X. (2022). Coronary heart disease and gut microbiota: a bibliometric and visual analysis from 2002 to 2022. Frontiers in Cardiovascular Medicine, 9, 949859.
Luo, L., Zhao, C., Chen, N., Dong, Y., Li, Z., Bai, Y., . . . Guo, X. (2023). Characterization of global research trends and prospects on sudden coronary death: A literature visualization analysis. Heliyon.
Manoel Alves, J., Handerson Gomes Teles, R., do Valle Gomes Gatto, C., Muñoz, V. R., Regina Cominetti, M., & Garcia de Oliveira Duarte, A. C. (2019). Mapping research in the obesity, adipose tissue, and microRNA field: a bibliometric analysis. Cells, 8(12), 1581.
Mao, Y., Zhao, K., Chen, N., Fu, Q., Zhou, Y., Kong, C., . . . Yang, C. (2023). A 2-decade bibliometric analysis of epigenetics of cardiovascular disease: from past to present. Clinical epigenetics, 15(1), 184.
Mu, F., Tang, M., Guan, Y., Lin, R., Zhao, M., Zhao, J., . . . Tang, H. (2022). Knowledge mapping of the links between the gut microbiota and heart failure: a scientometric investigation (2006–2021). Frontiers in Cardiovascular Medicine, 9, 882660.
Ouyang, J., Zhao, L., Song, Y., Qu, H., Du, T., Shi, L., . . . Gao, Z. (2024). Trends in gut-heart axis and heart failure research (1993–2023): A bibliometric and visual analysis. Heliyon, 10(4).
Qi, X.-T., Wang, H., Zhu, D.-G., Zheng, L., Cheng, X., Zhang, R.-J., & Dong, H.-L. (2024). Global trends in coronary artery disease and artificial intelligence relevant studies: a bibliometric analysis. European Review for Medical & Pharmacological Sciences, 28(1).
Roselli, C., Rienstra, M., & Ellinor, P. T. (2020). Genetics of atrial fibrillation in 2020: GWAS, genome sequencing, polygenic risk, and beyond. Circulation research, 127(1), 21-33.
Sheng, M., Xu, S., Chen, W.-w., Li, F.-q., Zhong, Y.-m., Ouyang, Y.-x., . . . Lai, P. (2023). A bibliometric analysis of studies on the gut microbiota in cardiovascular disease from 2004 to 2022. Frontiers in Cellular and Infection Microbiology, 12, 1083995.
Shi, S., Lv, J., Chai, R., Xue, W., Xu, X., Zhang, B., . . . Hu, Y. (2023). Opportunities and challenges in cardio-oncology: a bibliometric analysis from 2010 to 2022. Current problems in cardiology, 48(8), 101227.
Sun, X., Wu, X., Wu, T.-T., & Xie, X. (2024). A bibliometric analysis of research hotspots and cutting-edge trends in cardiovascular disease biomarkers.
Tang, N., Zhou, Q., Liu, S., Li, K., Liu, Z., Zhang, Q., . . . Qi, C. (2024). Development and trends in research on hypertension and atrial fibrillation: A bibliometric analysis from 2003 to 2022. Medicine, 103(21), e38264.
Tian, H., Zhao, X., Zhang, Y., & Xia, Z. (2024). Research progress of circadian rhythm in cardiovascular disease: A bibliometric study from 2002 to 2022. Heliyon, 10(7).
Tian, W., Zhang, T., Wang, X., Zhang, J., Ju, J., & Xu, H. (2022a). Global research trends in atherosclerosis: A bibliometric and visualized study. Frontiers in Cardiovascular Medicine, 9, 956482.
Tian, W., Zhang, T., Wang, X., Zhang, J., Ju, J., & Xu, H. (2022b). Research landscape on atherosclerotic cardiovascular disease and inflammation: a bibliometric and visualized study. Reviews in Cardiovascular Medicine, 23(9), 317.
Trindade, F., Perpetuo, L., Ferreira, R., Leite-Moreira, A., Falcao-Pires, I., Guedes, S., & Vitorino, R. (2021). Automatic text-mining as an unbiased approach to uncover molecular associations between periodontitis and coronary artery disease. Biomarkers, 26(5), 385-394.
Wang, L., Wang, S., Song, C., Yu, Y., Jiang, Y., Wang, Y., & Li, X. (2023). Bibliometric analysis of residual cardiovascular risk: trends and frontiers. Journal of Health, Population and Nutrition, 42(1), 132.
Xu, X., Wang, Y., Li, Y., Zhang, B., & Song, Q. (2022). The future landscape of macrophage research in cardiovascular disease: a bibliometric analysis. Current problems in cardiology, 47(10), 101311.
Xu, Z., Guan, C., Cheng, Z., Zhou, H., Qin, W., Feng, J., . . . Shao, S. (2024). Research trends and hotspots of circular RNA in cardiovascular disease: A bibliometric analysis. Non-coding RNA Research.
Yang, Y., Li, Y., & Xi, S. (2024). Bibliometric Analysis and Knowledge Mapping of Research Trends in Brugada Syndrome. Cardiovascular Reviews, 2(2), 1-12.
You, Y., Shou, X., Zhang, X., Fan, S., Chai, R., Xue, W., . . . He, Q. (2022). Psycho-cardiological disease: a bibliometric review from 2001 to 2021. Frontiers in Cardiovascular Medicine, 9, 890329.
Yu, N., Wang, R., Liu, B., & Zhang, L. (2022). Bibliometric and visual analysis on metabolomics in coronary artery disease research. Frontiers in Cardiovascular Medicine, 9, 804463.
Yu, Y., Ye, J., Wang, R., Wang, J., Wang, J., Xu, Q., . . . Zhang, Y. (2024). Research Trends and Hotspots of the Applications of Single-cell RNA Sequencing in Cardiovascular Diseases: A Bibliometric and Visualized Study.
Zhang, B., & Fan, T. (2022). Knowledge structure and emerging trends in the application of deep learning in genetics research: A bibliometric analysis [2000–2021]. Frontiers in Genetics, 13, 951939.
Zhang, J., Ji, C., Zhai, X., Tong, H., & Hu, J. (2023). Frontiers and hotspots evolution in anti-inflammatory studies for coronary heart disease: A bibliometric analysis of 1990–2022. Frontiers in Cardiovascular Medicine, 10, 1038738.
Zhang, Y., Jia, Z., Zhou, Q., Zhang, Y., Li, D., Qi, Y., & Xu, F. (2022). A bibliometric analysis of DNA methylation in cardiovascular diseases from 2001 to 2021. Medicine, 101(33), e30029.
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
You are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
Terms:
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.