A Review Of Convolutional Neural Networks For Medical Image Analysis: Trends And Future Directions

Authors

  • Shyamala Mathi
  • Daizy Deb
  • Avijit Kumar Chaudhuri
  • Lincy Joseph
  • Susmita Biswas

DOI:

https://doi.org/10.63682/jns.v14i7.5117

Keywords:

Convolutional Neural Networks, Medical Imaging, Deep Learning, Image Segmentation, Transfer Learning

Abstract

One of the most important parts in diagnosing and monitoring the disease is medical imaging, image data is complex and its interpretation is manual. In this review, Convolutional Neural Networks (CNNs) from the application side and their evolutions are highlighted in the analysis of medical images. Specifically, CNNs are specialized deep learning models based on biological processes that automatically learn features of raw image data. Although compared to traditional methods, CNNs have made a great progress for the applications of medical image classification, segmentation and detection. Due to the architectures like VGG, ResNet and Inception, CNNs were enhanced and now capable of disease detection, organ segmentation, and classification of tumors quite accurately. All these advances come with challenges like lack of data availability, complexity or interpretability of models and computational resources. These limitations have sparked transfer learning and fine-tune pre trained models approach, as well as amalgamation of multi modal data. Explainable AI (XAI) come into frequent use for future model transparency and clinical trust. That leads to future directions such as improving generalization, robustness and integration of the model to Electronic Health Records (EHRs) for personalised treatment insight. Solving these challenges will further solidify CNNs as key transformative technology in medical image study for accurate analytical, treatment plan, and patient outcome.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Hussain S, Mubeen I, Ullah N, Shah SS, Khan BA, Zahoor M, Ullah R, Khan FA, Sultan MA. Modern diagnostic imaging technique applications and risk factors in the medical field: a review. BioMed research international. 2022;2022(1):5164970.

Pinto-Coelho L. How Artificial Intelligence Is Shaping Medical Imaging Technology: A Survey of Innovations and Applications. Bioengineering (Basel). 2023 Dec 18;10(12):1435. doi: 10.3390/bioengineering10121435. PMID: 38136026; PMCID: PMC10740686.

Sarvamangala DR, Kulkarni RV. Convolutional neural networks in medical image understanding: a survey. Evol Intell. 2022;15(1):1-22. doi: 10.1007/s12065-020-00540-3. Epub 2021 Jan 3. PMID: 33425040; PMCID: PMC7778711.

Vakalopoulou M, Christodoulidis S, Burgos N, Colliot O, Lepetit V. Deep Learning: Basics and Convolutional Neural Networks (CNNs). In: Neuromethods [Internet]. 2023. p. 77–115. Available from: https://www.ncbi.nlm.nih.gov/books/NBK597497/

Habib G, Qureshi S. Optimization and acceleration of convolutional neural networks: A survey. J King Saud Univ Comput Inf Sci. 2022;34(7):4244-4268. doi: 10.1016/j.jksuci.2020.10.004.

Taye MM. Theoretical understanding of convolutional neural network: Concepts, architectures, applications, future directions. Computation. 2023;11(3):52. doi: 10.3390/computation11030052.

Jia H, Zhang J, Ma K, Qiao X, Ren L, Shi X. Application of convolutional neural networks in medical images: a bibliometric analysis. Quant Imaging Med Surg. 2024 May 1;14(5):3501-3518. doi: 10.21037/qims-23-1600. Epub 2024 Apr 11. PMID: 38720828; PMCID: PMC11074758.

Sarvamangala DR, Kulkarni RV. Convolutional neural networks in medical image understanding: a survey. Evol Intell. 2022;15(1):1-22. doi: 10.1007/s12065-020-00540-3. Epub 2021 Jan 3. PMID: 33425040; PMCID: PMC7778711.

Olawade DB, Marinze S, Qureshi N, Weerasinghe K, Teke J. The impact of artificial intelligence and machine learning in organ retrieval and transplantation: A Comprehensive review. Current Research in Translational Medicine [Internet]. 2025 Jan 6;73(2):103493. Available from: https://www.sciencedirect.com/science/article/pii/S2452318625000029

Alzubaidi L, Zhang J, Humaidi AJ, Al-Dujaili A, Duan Y, Al-Shamma O, Santamaría J, Fadhel MA, Al-Amidie M, Farhan L. Review of deep learning: concepts, CNN architectures, challenges, applications, future directions. J Big Data. 2021;8(1):53. doi: 10.1186/s40537-021-00444-8. Epub 2021 Mar 31. PMID: 33816053; PMCID: PMC8010506.

Bera S, Shrivastava VK. Effect of pooling strategy on convolutional neural network for classification of hyperspectral remote sensing images. IET Image Process. 2020;14(3):480-486. doi: 10.1049/iet-ipr.2019.0561.

Akgül İ. Activation function cyclically switchable convolutional neural network model. PeerJ Comput Sci. 2025 Mar 24;11:e2756. doi: 10.7717/peerj-cs.2756. PMID: 40151816; PMCID: PMC11948315.

van Meegen A, Sompolinsky H. Coding schemes in neural networks learning classification tasks. Nat Commun. 2025 Apr 9;16(1):3354. doi: 10.1038/s41467-025-58276-6. PMID: 40204730; PMCID: PMC11982327.

Raj R, Kos A. An Extensive Study of Convolutional Neural Networks: Applications in Computer Vision for Improved Robotics Perceptions. Sensors (Basel). 2025 Feb 9;25(4):1033. doi: 10.3390/s25041033. PMID: 40006262; PMCID: PMC11858843.

Prinzi F, Currieri T, Gaglio S, Vitabile S. Shallow and deep learning classifiers in medical image analysis. Eur Radiol Exp. 2024 Mar 5;8(1):26. doi: 10.1186/s41747-024-00428-2. PMID: 38438821; PMCID: PMC10912073.

Chan HP, Samala RK, Hadjiiski LM, Zhou C. Deep Learning in Medical Image Analysis. Adv Exp Med Biol. 2020;1213:3-21. doi: 10.1007/978-3-030-33128-3_1. PMID: 32030660; PMCID: PMC7442218.

Yin XX, Sun L, Fu Y, Lu R, Zhang Y. U-Net-Based Medical Image Segmentation. J Healthc Eng. 2022 Apr 15;2022:4189781. doi: 10.1155/2022/4189781. Retraction in: J Healthc Eng. 2023 Oct 18;2023:9890389. doi: 10.1155/2023/9890389. PMID: 35463660; PMCID: PMC9033381.

Xiao Y, Wang X, Zhang P, Meng F, Shao F. Object detection based on Faster R-CNN algorithm with skip pooling and fusion of contextual information. Sensors. 2019;20(19):5490. doi: 10.3390/s20195490.

Mohammed FA, Tune KK, Assefa BG, Jett M, Muhie S. Medical image classifications using convolutional neural networks: A survey of current methods and statistical modeling of the literature. Mach Learn Knowl Extr. 2024;6(1):699-735. doi: 10.3390/make6010033.

Pérez-Núñez JR, Rodríguez C, Vásquez-Serpa LJ, Navarro C. The Challenge of Deep Learning for the Prevention and Automatic Diagnosis of Breast Cancer: A Systematic Review. Diagnostics (Basel). 2024 Dec 23;14(24):2896. doi: 10.3390/diagnostics14242896. PMID: 39767257; PMCID: PMC11675111.

Xu Y, Quan R, Xu W, Huang Y, Chen X, Liu F. Advances in Medical Image Segmentation: A Comprehensive Review of Traditional, Deep Learning and Hybrid Approaches. Bioengineering (Basel). 2024 Oct 16;11(10):1034. doi: 10.3390/bioengineering11101034. PMID: 39451409; PMCID: PMC11505408.

Murthy CB, Hashmi MF, Bokde ND, Geem ZW. Investigations of object detection in images/videos using various deep learning techniques and embedded platforms—a comprehensive review. Appl Sci. 2019;10(9):3280. doi:10.3390/app10093280.

DuMont Schütte A, Hetzel J, Gatidis S, Hepp T, Dietz B, Bauer S, Schwab P. Overcoming barriers to data sharing with medical image generation: a comprehensive evaluation. NPJ Digit Med. 2021 Sep 24;4(1):141. doi: 10.1038/s41746-021-00507-3. PMID: 34561528; PMCID: PMC8463544.

Luca AR, Ursuleanu TF, Gheorghe L, Grigorovici R, Iancu S, Hlusneac M, et al. Impact of quality, type and volume of data used by deep learning models in the analysis of medical images. Informatics in Medicine Unlocked [Internet]. 2022 Jan 1;29:100911. Available from: https://www.sciencedirect.com/science/article/pii/S2352914822000612

Ennab M, Mcheick H. Enhancing interpretability and accuracy of AI models in healthcare: a comprehensive review on challenges and future directions. Front Robot AI. 2024 Nov 28;11:1444763. doi: 10.3389/frobt.2024.1444763. PMID: 39677978; PMCID: PMC11638409.

Razali MN, Arbaiy N, Lin P, Ismail S. Optimizing multiclass classification using convolutional neural networks with class weights and early stopping for imbalanced datasets. Electronics. 2024;14(4):705. doi:10.3390/electronics14040705.

Mennella C, Maniscalco U, De Pietro G, Esposito M. Ethical and regulatory challenges of AI technologies in healthcare: A narrative review. Heliyon. 2024 Feb 15;10(4):e26297. doi: 10.1016/j.heliyon.2024.e26297. PMID: 38384518; PMCID: PMC10879008.

Ebbehoj A, Thunbo MØ, Andersen OE, Glindtvad MV, Hulman A. Transfer learning for non-image data in clinical research: A scoping review. PLOS Digit Health. 2022 Feb 17;1(2):e0000014. doi: 10.1371/journal.pdig.0000014. PMID: 36812540; PMCID: PMC9931256.

Waqas A, Tripathi A, Ramachandran RP, Stewart PA, Rasool G. Multimodal data integration for oncology in the era of deep neural networks: a review. Front Artif Intell. 2024 Jul 25;7:1408843. doi: 10.3389/frai.2024.1408843. PMID: 39118787; PMCID: PMC11308435.

Yang G, Ye Q, Xia J. Unbox the black-box for the medical explainable AI via multi-modal and multi-centre data fusion: A mini-review, two showcases and beyond. Inf Fusion. 2022 Jan;77:29-52. doi: 10.1016/j.inffus.2021.07.016. PMID: 34980946; PMCID: PMC8459787.

Kourounis G, Elmahmudi AA, Thomson B, Hunter J, Ugail H, Wilson C. Computer image analysis with artificial intelligence: a practical introduction to convolutional neural networks for medical professionals. Postgrad Med J. 2023 Nov 20;99(1178):1287-1294. doi: 10.1093/postmj/qgad095. PMID: 37794609; PMCID: PMC10658730.

Abumohsen M, Owda AY, Owda M, Abumihsan A. Hybrid machine learning model combining of CNN-LSTM-RF for time series forecasting of Solar Power Generation. e-Prime - Advances in Electrical Engineering Electronics and Energy [Internet]. 2024 Jun 22;9:100636. Available from: https://www.sciencedirect.com/science/article/pii/S277267112400216X

Tran AT, Zeevi T, Payabvash S. Strategies to improve the robustness and generalizability of deep learning segmentation and classification in neuroimaging. BioMed Informatics. 2025;5(2):20. doi:10.3390/biomedinformatics5020020.

Perera H, Costa L. Personality classification of text through machine learning and deep learning: A review (2023). Int J Res Adv Comput Sci Eng. 2023 Jul 28;9(4):6-12. doi:10.53555/cse.v9i4.2266.

Kannry JL, Williams MS. Integration of genomics into the electronic health record: mapping terra incognita. Genet Med. 2013 Oct;15(10):757-60. doi: 10.1038/gim.2013.102. PMID: 24097178; PMCID: PMC4157459.

Mumuni A, Mumuni F. Data augmentation: A comprehensive survey of modern approaches. Array [Internet]. 2022 Nov 15;16:100258. Available from: https://www.sciencedirect.com/science/article/pii/S2590005622000911

Zhou SK, Greenspan H, Davatzikos C, Duncan JS, van Ginneken B, Madabhushi A, Prince JL, Rueckert D, Summers RM. A review of deep learning in medical imaging: Imaging traits, technology trends, case studies with progress highlights, and future promises. Proc IEEE Inst Electr Electron Eng. 2021 May;109(5):820-838. doi: 10.1109/JPROC.2021.3054390. Epub 2021 Feb 26. PMID: 37786449; PMCID: PMC10544772.

Farhud DD, Zokaei S. Ethical Issues of Artificial Intelligence in Medicine and Healthcare. Iran J Public Health. 2021 Nov;50(11):i-v. doi: 10.18502/ijph.v50i11.7600. PMID: 35223619; PMCID: PMC8826344.

Downloads

Published

2025-05-05

How to Cite

1.
Mathi S, Deb D, Chaudhuri AK, Joseph L, Biswas S. A Review Of Convolutional Neural Networks For Medical Image Analysis: Trends And Future Directions. J Neonatal Surg [Internet]. 2025May5 [cited 2025Oct.23];14(7):90-7. Available from: https://www.jneonatalsurg.com/index.php/jns/article/view/5117