A Novel Steganography Method Without Embedding Using Generative Adversarial Networks
Keywords:
GAN,Steganopraphy,Embedding and hasingAbstract
Abstract: Steganography traditionally relies on embedding secret information into a cover medium, introducing potential distortion and susceptibility to detection. This paper proposes a novel steganographic method that avoids explicit embedding, leveraging the capabilities of Generative Adversarial Networks (GANs) to generate images that inherently represent the hidden message. The proposed method utilizes a conditional GAN framework where the secret message serves as a condition to generate a visually plausible image. We present a comprehensive literature review, detail the architecture of the proposed system, and validate its effectiveness through rigorous experiments. Comparative analysis with traditional and recent deep learning-based methods highlights the superiority of the proposed approach in terms of security, imperceptibility, and payload capacity.
Downloads
Metrics
References
C. Cachin, ``An information-theoretic model for steganography,'' in Infor-mation Hiding. Berlin, Germany: Springer, 1998, pp. 306_318. [Online].Available: https://doi.org/10.1007/3-540-49380-8_21
T. Pevný, T. Filler, and P. Bas, ``Using high-dimensional image modelsto perform highly undetectable steganography,'' in Information Hid-ing (Lecture Notes in Computer Science), vol. 6387. Berlin, Germany:Springer-Verlag, 2010, pp. 161_177.
V. Holub, J. Fridrich, and T. Denemark, ``Universal distortion function forsteganography in an arbitrary domain,'' EURASIP J. Inf. Secur., vol. 2014,no. 1, p. 1, Dec. 2014.
V. Holub and J. Fridrich, ``Designing steganographic distortion usingdirectional _lters,'' in Proc. IEEE Int. Workshop Inf. Forensics Secur.,Dec. 2013, pp. 234_239.
J. Fridrich and J. Kodovský, ``Rich models for steganalysis of digital images,'' IEEE Trans. Inf. Forensics Security, vol. 7, no. 3, pp. 868_882,Jun. 2012.
Kodovský and J. Fridrich, ``Quantitative steganalysis using rich models,'' roc. SPIE, vol. 8665, pp. 86650O-1_86650O-11, Mar. 2013.
M. Goljan, J. Fridrich, and R. Cogranne, ``Rich model for steganalysis of color images,'' in Proc. IEEE Int. Workshop Inf. Forensics Secur.,Dec. 2015, pp. 185_190.
L. Pibre, P. Jérôme, D. Ienco, and M. Chaumont. (Nov. 2015). ``Deep learning is a good steganalysis tool when embedding key is reused for different images, even if there is a cover source-mismatch.'' [Online]. Available: https://arxiv.org/abs/1511.04855
J. Zeng, S. T, B. Li, and J. Huang. (Nov. 2016). ``Large-scale JPEG steganalysis using hybrid deep-learning framework.'' [Online]. Available: https://arxiv.org/abs/1611.03233
Y. Qian, J. Dong, T. Tan, and W. Wang, ``Deep learning for steganalysis via convolutional neural networks,'' Proc. SPIE, vol. 9409,pp. 94090J-1_94090J-10, Mar. 2015.
M. Barni, ``Steganography in digital media: Principles, algorithms, and applications (Fridrich, J. 2010) [book reviews],'' IEEE Signal Process. Mag., vol. 28, no. 5, pp. 142_144, Sep. 2011.
Z.-L. Zhou, Y. Cao, and X.-M. Sun, ``Coverless information hiding based on bag-of-words model of image,'' J. Appl. Sci., vol. 34, no. 5, pp. 527_536, 2016.
Z. Zhou, H. Sun, R. Harit, X. Chen, and X. Sun, ``Coverless image steganography without embedding,'' in Proc. Int. Conf. Cloud Comput.Secur., 2015, pp. 123_132.
S. Zheng, L. Wang, B. Ling, and D. Hu, ``Coverless information hiding based on robust image hashing,'' in Intelligent Computing Methodologies.Cham, Switzerland: Springer, 2017, pp. 536_547, doi: 10.1007/978-3-319- 63315-2_47.
J. Xu et al., ``Hidden message in a deformation-based texture,'' Vis. Comput. Int. J. Comput. Graph., vol. 31, no. 12, pp. 1653_1669, 2015.
[K.-C. Wu and C.-M. Wang, ``Steganography using reversible texture synthesis,'' IEEE Trans. Image Process., vol. 24, no. 1, pp. 130_139, Jan. 2015.
I. Goodfellow et al., ``Generative adversarial nets,'' in Proc. Int. Conf. Neural Inf. Process. Syst., 2014, pp. 2672_2680.
[M. Mirza and S. Osindero, ``Conditional generative adversarial nets,'' CoRR, vol. abs/1411.1784, 2014. [Online]. Available: http://arxiv.org/abs/1411.1784
E. Denton, S. Chintala, A. Szlam, and R. Fergus, ``Deep generative image models using a Laplacian pyramid of adversarial networks,'' in Proc.28th Int. Conf. Neural Inf. Process. Syst. (NIPS), vol. 1. Cambridge, MA, USA: MIT Press, 2015, pp. 1486_1494. [Online]. Available: http://dl.acm.org/citation.cfm?id=2969239.2969405
M. Lucic, K. Kurach, M. Michalski, S. Gelly, and O. Bousquet. (Nov. 2017). ``Are GANs created equal? A large-scale study.'' [Online].Available: https://arxiv.org/abs/1711.10337
A. Radford, L. Metz, and S. Chintala, Unsupervised Representation Learn-ing With Deep Convolutional Generative Adversarial Networks. Cham,Switzerland: Springer, 2017, pp. 97_108.
S. Reed, Z. Akata, X. Yan, L. Logeswaran, B. Schiele, and H. Lee. (Jun. 2016). ``Generative adversarial text to image synthesis.'' [Online].Available: https://arxiv.org/abs/1605.05396
D. J. Im, C. D. Kim, H. Jiang, and R. Memisevic. (Dec. 2016). ``Generating images with recurrent adversarial networks.'' [Online]. Available:https://arxiv.org/abs/1602.05110
R. A. Yeh, C. Chen, T. Y. Lim, A. G. Schwing, M. Hasegawa-Johnson, and M. N. Do. (Jul. 2016). ``Semantic image inpainting with deep generativemodels.'' [Online]. Available: https://arxiv.org/abs/1607.07539
J. Hayes and G. Danezis. (Jul. 2017). ``Generating steganographic images via adversarial training.'' [Online]. Available: https://arxiv.org/abs/1703.00371
D. Volkhonskiy, B. Borisenko, and E. Burnaev, ``Steganographic generative adversarial networks,'' CoRR, vol. abs/1703.05502, 2017. [Online].Available: http://arxiv.org/abs/1703.05502
W. Tang, S. Tan, B. Li, and J. Huang, ``Automatic steganographic distortion learning using a generative adversarial network,'' IEEE Signal Process.Lett., vol. 24, no. 10, pp. 1547_1551, Oct. 2017.
J. Mielikainen, ``LSB matching revisited,'' IEEE Signal Process. Lett., vol. 13, no. 5, pp. 285_287, May 2006 [29] T. Pevný, P. Bas, and J. Fridrich, ``Steganalysis by subtracti pp. 215_224, Jun. 2010.
J. Fridrich, M. Goljan, and R. Du, ``Detecting LSB steganography ve pixel adjacency matrix,'' IEEE Trans. Inf. Forensics Security, vol. 5, no. 2,in color, and gray-scale images,'' IEEE Multimedia Mag., vol. 8, no. 4, pp. 22_28, Oct. 2001.
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
You are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
Terms:
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.