A Novel Steganography Method Without Embedding Using Generative Adversarial Networks

Authors

  • D Sreedhar
  • P Padmanabham
  • J.V.R Murthy

Keywords:

GAN,Steganopraphy,Embedding and hasing

Abstract

Abstract: Steganography traditionally relies on embedding secret information into a cover medium, introducing potential distortion and susceptibility to detection. This paper proposes a novel steganographic method that avoids explicit embedding, leveraging the capabilities of Generative Adversarial Networks (GANs) to generate images that inherently represent the hidden message. The proposed method utilizes a conditional GAN framework where the secret message serves as a condition to generate a visually plausible image. We present a comprehensive literature review, detail the architecture of the proposed system, and validate its effectiveness through rigorous experiments. Comparative analysis with traditional and recent deep learning-based methods highlights the superiority of the proposed approach in terms of security, imperceptibility, and payload capacity.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

C. Cachin, ``An information-theoretic model for steganography,'' in Infor-mation Hiding. Berlin, Germany: Springer, 1998, pp. 306_318. [Online].Available: https://doi.org/10.1007/3-540-49380-8_21

T. Pevný, T. Filler, and P. Bas, ``Using high-dimensional image modelsto perform highly undetectable steganography,'' in Information Hid-ing (Lecture Notes in Computer Science), vol. 6387. Berlin, Germany:Springer-Verlag, 2010, pp. 161_177.

V. Holub, J. Fridrich, and T. Denemark, ``Universal distortion function forsteganography in an arbitrary domain,'' EURASIP J. Inf. Secur., vol. 2014,no. 1, p. 1, Dec. 2014.

V. Holub and J. Fridrich, ``Designing steganographic distortion usingdirectional _lters,'' in Proc. IEEE Int. Workshop Inf. Forensics Secur.,Dec. 2013, pp. 234_239.

J. Fridrich and J. Kodovský, ``Rich models for steganalysis of digital images,'' IEEE Trans. Inf. Forensics Security, vol. 7, no. 3, pp. 868_882,Jun. 2012.

Kodovský and J. Fridrich, ``Quantitative steganalysis using rich models,'' roc. SPIE, vol. 8665, pp. 86650O-1_86650O-11, Mar. 2013.

M. Goljan, J. Fridrich, and R. Cogranne, ``Rich model for steganalysis of color images,'' in Proc. IEEE Int. Workshop Inf. Forensics Secur.,Dec. 2015, pp. 185_190.

L. Pibre, P. Jérôme, D. Ienco, and M. Chaumont. (Nov. 2015). ``Deep learning is a good steganalysis tool when embedding key is reused for different images, even if there is a cover source-mismatch.'' [Online]. Available: https://arxiv.org/abs/1511.04855

J. Zeng, S. T, B. Li, and J. Huang. (Nov. 2016). ``Large-scale JPEG steganalysis using hybrid deep-learning framework.'' [Online]. Available: https://arxiv.org/abs/1611.03233

Y. Qian, J. Dong, T. Tan, and W. Wang, ``Deep learning for steganalysis via convolutional neural networks,'' Proc. SPIE, vol. 9409,pp. 94090J-1_94090J-10, Mar. 2015.

M. Barni, ``Steganography in digital media: Principles, algorithms, and applications (Fridrich, J. 2010) [book reviews],'' IEEE Signal Process. Mag., vol. 28, no. 5, pp. 142_144, Sep. 2011.

Z.-L. Zhou, Y. Cao, and X.-M. Sun, ``Coverless information hiding based on bag-of-words model of image,'' J. Appl. Sci., vol. 34, no. 5, pp. 527_536, 2016.

Z. Zhou, H. Sun, R. Harit, X. Chen, and X. Sun, ``Coverless image steganography without embedding,'' in Proc. Int. Conf. Cloud Comput.Secur., 2015, pp. 123_132.

S. Zheng, L. Wang, B. Ling, and D. Hu, ``Coverless information hiding based on robust image hashing,'' in Intelligent Computing Methodologies.Cham, Switzerland: Springer, 2017, pp. 536_547, doi: 10.1007/978-3-319- 63315-2_47.

J. Xu et al., ``Hidden message in a deformation-based texture,'' Vis. Comput. Int. J. Comput. Graph., vol. 31, no. 12, pp. 1653_1669, 2015.

[K.-C. Wu and C.-M. Wang, ``Steganography using reversible texture synthesis,'' IEEE Trans. Image Process., vol. 24, no. 1, pp. 130_139, Jan. 2015.

I. Goodfellow et al., ``Generative adversarial nets,'' in Proc. Int. Conf. Neural Inf. Process. Syst., 2014, pp. 2672_2680.

[M. Mirza and S. Osindero, ``Conditional generative adversarial nets,'' CoRR, vol. abs/1411.1784, 2014. [Online]. Available: http://arxiv.org/abs/1411.1784

E. Denton, S. Chintala, A. Szlam, and R. Fergus, ``Deep generative image models using a Laplacian pyramid of adversarial networks,'' in Proc.28th Int. Conf. Neural Inf. Process. Syst. (NIPS), vol. 1. Cambridge, MA, USA: MIT Press, 2015, pp. 1486_1494. [Online]. Available: http://dl.acm.org/citation.cfm?id=2969239.2969405

M. Lucic, K. Kurach, M. Michalski, S. Gelly, and O. Bousquet. (Nov. 2017). ``Are GANs created equal? A large-scale study.'' [Online].Available: https://arxiv.org/abs/1711.10337

A. Radford, L. Metz, and S. Chintala, Unsupervised Representation Learn-ing With Deep Convolutional Generative Adversarial Networks. Cham,Switzerland: Springer, 2017, pp. 97_108.

S. Reed, Z. Akata, X. Yan, L. Logeswaran, B. Schiele, and H. Lee. (Jun. 2016). ``Generative adversarial text to image synthesis.'' [Online].Available: https://arxiv.org/abs/1605.05396

D. J. Im, C. D. Kim, H. Jiang, and R. Memisevic. (Dec. 2016). ``Generating images with recurrent adversarial networks.'' [Online]. Available:https://arxiv.org/abs/1602.05110

R. A. Yeh, C. Chen, T. Y. Lim, A. G. Schwing, M. Hasegawa-Johnson, and M. N. Do. (Jul. 2016). ``Semantic image inpainting with deep generativemodels.'' [Online]. Available: https://arxiv.org/abs/1607.07539

J. Hayes and G. Danezis. (Jul. 2017). ``Generating steganographic images via adversarial training.'' [Online]. Available: https://arxiv.org/abs/1703.00371

D. Volkhonskiy, B. Borisenko, and E. Burnaev, ``Steganographic generative adversarial networks,'' CoRR, vol. abs/1703.05502, 2017. [Online].Available: http://arxiv.org/abs/1703.05502

W. Tang, S. Tan, B. Li, and J. Huang, ``Automatic steganographic distortion learning using a generative adversarial network,'' IEEE Signal Process.Lett., vol. 24, no. 10, pp. 1547_1551, Oct. 2017.

J. Mielikainen, ``LSB matching revisited,'' IEEE Signal Process. Lett., vol. 13, no. 5, pp. 285_287, May 2006 [29] T. Pevný, P. Bas, and J. Fridrich, ``Steganalysis by subtracti pp. 215_224, Jun. 2010.

J. Fridrich, M. Goljan, and R. Du, ``Detecting LSB steganography ve pixel adjacency matrix,'' IEEE Trans. Inf. Forensics Security, vol. 5, no. 2,in color, and gray-scale images,'' IEEE Multimedia Mag., vol. 8, no. 4, pp. 22_28, Oct. 2001.

Downloads

Published

2025-05-06

How to Cite

1.
Sreedhar D, Padmanabham P, Murthy J. A Novel Steganography Method Without Embedding Using Generative Adversarial Networks. J Neonatal Surg [Internet]. 2025May6 [cited 2025Sep.11];14(18S):805-11. Available from: https://www.jneonatalsurg.com/index.php/jns/article/view/5265