Insights of Different Solid Dispersion Techniques and Their Importance in Product Development

Authors

  • Priyanshu Tyagi
  • Sanjeev Kumar Chauhan
  • Surbhi Kamboj
  • Pragati Gupta
  • Richa Goel
  • Praveen K Dixit

Keywords:

SOLID DISPERSION, SOLUBILITY, BIOAVAILABILITY, IMPROVEMENT, PHARMACEUTICAL, FORMULATIONS

Abstract

One of the biggest and most significant challenges in the development of pharmaceutical is poor water solubility or bioavailability. Solid dispersions were introduced as a means of enhanced dissolution rates and consequent therapeutic effectiveness of poorly water-soluble biopharmaceutical classification system (BCS) Class II drugs by incorporating the drugs into hydrophilic carriers. In this review, we cover the core principles, benefits and recent developments in solid dispersion technology. It discusses different preparation approaches, like fusion, solvent evaporation, spray drying, hot-melt extrusion, and newer routines like supercritical fluid processing and electrospinning. Different strategies have their unique advantages including molecular-level distribution, enhanced solubility rate, and larger-scale production capabilities. The review also provides a historical perspective on Solid dispersion system development, from crystalline carriers to amorphous and controlled-release carriers and the four generations of solid dispersion systems. Here, we discuss challenges including recrystallization, thermodynamic instability, and phase separation and strategies to overcome these challenges. Additionally, enhanced characterization techniques like DSC, XRD, and SEM are explored for assessing the structural and dissolution characteristics of solid dispersions. Moreover, solid dispersion techniques are an essential method for increase the solubility of hydrophobic agents and improving the performance of newly developed or established pharmaceutical agents by advancing oral delivery systems. This review highlights their critical role in addressing solubility challenges and advancing the field of drug formulation.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Dhirendra K, Lewis S, Udupa N, Atin K. Solid dispersions: a review. Pak J Pharm Sci. 2009;22(2):234–46.

Alagga A, Gupta V. Drug absorption. In: xPharm: The Comprehensive Pharmacology Reference. Amsterdam, Netherlands: Elsevier Inc; 2021.

Chiou WL, Riegelman S. Pharmaceutical applications of solid dispersion systems. J Pharm Sci. 1971;60(9):1281–302. doi:10.1002/jps.2600600902.

Vasoya JM, Desai HH, Gumaste SG, et al. Development of solid dispersion by hot melt extrusion using mixtures of polyoxylglycerides with polymers as carriers for enhancing dissolution rate of a poorly soluble drug model. J Pharm Sci. 2019;108(2):888–96. doi:10.1016/j.xphs.2018.09.019.

Savjani KT, Gajjar AK, Savjani JK. Drug solubility: importance and enhancement techniques. ISRN Pharm. 2012;2012:10. doi:10.5402/2012/195727.

Greeshmika P, Kavya S, Sayeeda S, Hemalatha B, Padmalatha K. Solid dispersion: strategy to enhance solubility. Indo Am J Pharm Sci. 2021;8:1812–23.

Amidon GL, Lennernäs H, Shah VP, Crison JR. A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res. 1995;12(3):413–20. doi:10.1023/a:1016212804288.

Kalepu S, Nekkanti V. Insoluble drug delivery strategies: review of recent advances and business prospects. Acta Pharm Sin B. 2015;5(5):442–53. doi:10.1016/j.apsb.2015.07.003.

Ravichandran R. NPs in drug delivery: potential green nanomedicine applications. Int J Green Nanotechnol Biomed. 2009;1.

Verma S, Kumar I, Chaudhary A. Solid dispersion: various techniques of enhancing solubility and classification of solid dispersion. Int J Adv Res Ideas Innov Technol. 2019;5:65–71.

Baghel S, Cathcart H, O’Reilly NJ. Polymeric amorphous solid dispersions: a review of amorphization, crystallization, stabilization, solid-state characterization, and aqueous solubilization of biopharmaceutical classification system class II drugs. J Pharm Sci. 2016;105(9):2527–44. doi:10.1016/j.xphs.2015.10.008.

. Dharna A, Singh N, Sandeep A. Solid dispersions: a review on drug delivery system and solubility enhancement. Int J Pharm Sci Res. 2013;4.

Sareen S, Joseph L, Mathew G. Improvement in solubility of poor water-soluble drugs by solid dispersion. Int J Pharm Investig. 2012;2(1):12. doi:10.4103/2230-973x.96921.

Patro NM, Sultana A, Terao K, et al. Comparison and correlation of in vitro, in vivo and in silico evaluations of alpha, beta and gamma cyclodextrin complexes of curcumin. J Incl Phenom Macrocycl Chem. 2014;78(1–4):471–83. doi:10.1007/s10847-013-0322-1.

Kumar SP, Malviya R, Sharma PK. Cancer pain: a critical review of mechanism-based classification and physical therapy management in palliative care. Indian J Palliat Care. 2011;17(2):116–26. doi:10.4103/0973-1075.84532.

Poddar K. Solid dispersions: an approach towards enhancing dissolution rate. Int J Pharm Pharm Sci. 2011;3:9–19.

Dixit K, Singh P, Stuti S. Solid dispersion-a strategy for enhancing the solubility of poorly soluble drugs. Int J Res Pharm Biomed Sci. 2012;3:90–964.

Bhawana K, Ramandeep K, Sukhdeep K, Sukhkaran K, Himani B. Solid dispersion: an evolutionary approach for solubility enhancement of poorly water soluble drugs. Int J Recent Adv Pharm Res. 2012;2:1–6.

Salah Attia M, Ali Hasan A, Ghazy FE, Gomaa E, Attia M. Solid dispersion as a technical solution to boost the dissolution rate and bioavailability of poorly water-soluble drugs. Indian J Pharm Educ Res. 2021;55:S327–39. doi:10.5530/ijper.55.2s.103.

. Zhang Z, Li W, Wang G, Qu YL, Yu DG. Electrospun 4th-generation solid dispersions of poorly water-soluble drug utilizing two various processes. J Nanomater. 2018;2018:10. doi:10.1155/2018/2012140.

. Alshehri S, Imam SS, Hussain A, et al. Potential of solid dispersions to enhance solubility, bioavailability, and therapeutic efficacy of poorly water-soluble drugs: noveler formulation techniques, current marketed scenario and patents. Drug Deliv. 2020;27(1):1625–38. doi:10.1080/10717544.2020.1846638.

Ganesan P, Soundararajan R, Shanmugam U, Ramu V. Development, characterization and solubility enhancement of comparative dissolution study of second-generation of solid dispersions and microspheres for poorly water-soluble drug. Asian J Pharm Sci. 2015;10(5):433–41. doi:10.1016/j.ajps.2015.05.001

. Mande PP, Bachhav SS, Devarajan PV. Bioenhanced advanced third-generation solid dispersion of tadalafil: repurposing with improved therapy in pyelonephritis. Asian J Pharm Sci. 2017;12(6):569–79. doi:10.1016/j.ajps.2017.07.001

. Nair AR, Lakshman YD, Anand VSK, Sree KSN, Bhat K, Dengale SJ. Overview of extensively employed polymeric carriers in solid dispersion technology. AAPS PharmSciTech. 2020;21(8):309–20. doi:10.1208/s12249-020-01849-z

. Verma S, Rawat A, Kaul M, Sainin S. Solid dispersion: a strategy for solubility enhancement. Int J Pharm Technol. 2011;3:1062–99.

Bhut Z, Prajapati B, Patel N, Patel A, Patel A. Solid dispersion as a strategy to enhance solubility: a review article. Int J Pharm Res Scholars. 2012;3:277–83.

Leuner C, Dressman J. Enhancing drug solubility for oral delivery using solid dispersions. Eur J Pharm Biopharm. 2000;50(1):47–60. doi:10.1016/s0939-6411(00)00076-x

Rahul M, Patil A, Maniyar H. Solid dispersion: strategy to enhance solubility. Int J Pharm Sci Rev Res. 2011;8:66–73.

Shamsuddin, Fazil M, Ansari S, Ali J. Development and evaluation of solid dispersion of spironolactone using fusion technique. Int J Pharm Investig. 2016;6(1):63. doi:10.4103/2230-973x.176490

Sharma A, Jain CP, Tanwar YS. Preparation and characterization of solid dispersions of carvedilol with poloxamer 188. J Chilean Chem Soc. 2013;58(1):1553–7. doi:10.4067/s0717-97072013000100012

Arora S, Sharma P, Irchhaiya R, Khatkar A, Singh N, Gagoria J. Development, characterization and solubility study of solid dispersions of cefuroxime axetil by the solvent evaporation technique. J Adv Pharm Technol Res. 2010;1(3):326. doi:10.4103/0110-5558.72427

Alshehri S, Imam SS, Altamimi MA, et al. Enhanced dissolution of luteolin by solid dispersion prepared by various techniques: physicochemical characterization and antioxidant activity. ACS Omega. 2020;5(12):6461–71. doi:10.1021/acsomega.9b04075

Mayur T. Solubility enhancement of atorvastatin calcium by using microwave-assisted solid dispersion preparation technique. Int J Pharm Res Allied Sci. 2015;4:51–6.

Repka MA, Majumdar S, Kumar Battu S, Srirangam R, Upadhye SB. Applications of hot-melt extrusion for drug delivery. Expert Opin Drug Deliv. 2008;5(12):1357–76. doi:10.1517/17425240802583421

Inventor S. Reckitt Benckiser Healthcare (UK) Limited. Granules comprising a NSAID and a sugar alcohol made by melt extrusion. UK Patent; 2006.

Maniruzzaman M, Boateng JS, Snowden MJ, Douroumis D. A review of hot-melt extrusion: process technology to pharmaceutical products. ISRN Pharmaceutics. 2012;2012:9. doi:10.5402/2012/436763

Anupama K, Neena B. Formulation and evaluation of mouth-dissolving tablets of oxcarbazepine. Int J Pharm Pharm Sci. 2009;S1:12–23.

Chavan RB, Lodagekar A, Yadav B, Shastri NR. Amorphous solid dispersion of nisoldipine by solvent evaporation technique: preparation, characterization, in vitro, in vivo evaluation, and scale-up feasibility study. Drug Deliv Transl Res. 2020;10(4):903–18. doi:10.1007/s13346-020-00775-8

Raj AL, Kumar YS, Raj L. Preparation and evaluation of solid dispersion of nebivolol using solvent evaporation technique. Int J Pharm Sci Drug Res. 2018;10(4):322–8. doi:10.25004/ijpsdr.2018.100418

Sharma A, Jain CP. Preparation and characterization of solid dispersions of carvedilol with PVP K30. Res Pharm Sci. 2010;5(1):49–56.

Choi JS, Lee SE, Jang WS, Byeon JC, Park JS. Solid dispersion of dutasteride using the solvent evaporation technique: approaches to improve dissolution rate and oral bioavailability in rats. Mater Sci Eng C. 2018;90:387–96. doi:10.1016/j.msec.2018.04.074

Gagoria J, Khatkar AD. Characterization and solubility study of solid dispersion of cefpodoxime proxetil by solvent evaporation technique. Int J ChemTech Res. 2010;27:557.

Alkufi HK, Rashid AM. Enhancement of the solubility of famotidine solid dispersion using natural polymer by solvent evaporation. Int J Appl Pharm. 2021;13:193–8. doi:10.22159/ijap.2021v13i3.40934

Mohammadi G, Hemati V, Nikbakht MR, et al. In vitro and in vivo evaluation of clarithromycin-urea solid dispersions prepared by solvent evaporation, electrospraying, and freeze-drying techniques. Powder Technol. 2014;257:168–74. doi:10.1016/j.powtec.2014.03.014

Hussein LS, Al-Khedairy EBH. Solubility and dissolution enhancement of ebastine by surface solid dispersion technique. Iraqi J Pharm Sci. 2021;30(1):122–32. doi:10.31351/vol30iss1pp122-132

Patel M, Tekade A, Gattani S, Surana S. Solubility enhancement of lovastatin by modified locust bean gum using solid dispersion techniques. AAPS PharmSciTech. 2008;9(4):1262–9. doi:10.1208/s12249-008-9171-4

Kim NA, Oh HK, Lee JC, Choi YH, Jeong SH. Comparison of solubility enhancement by solid dispersion and micronized butein and its correlation with in vivo study. J Pharm Investig. 2021;51(1):53–60. doi:10.1007/s40005-020-00486-9

Nikghalb L, Singh G, Singh G, Kahkeshan K. Solid dispersion: techniques and polymers to enhance the solubility of poorly soluble drugs. J Appl Pharm Sci. 2012;2:170–5.

Okoye E, Ezenwa C, Aburime O, Ekweogu A. Comparative evaluation of coprecipitation, solvent evaporation, and kneading as techniques to improve solubility and dissolution profiles of a BCS class IV drug. Egypt Pharm J. 2017;16(2):121. doi:10.4103/epj.epj_7_17

Patel BB, Patel JK, Chakraborty S, Shukla D. Revealing facts behind spray-dried solid dispersion technology utilized for solubility enhancement. Saudi Pharm J. 2015;23(4):352–65. doi:10.1016/j.jsps.2013.12.013

Mahlin D, Bergström CA. Early drug development predictions of glass-forming ability and physical stability of drugs. Eur J Pharm Sci. 2013;49(2):323–32. doi:10.1016/j.ejps.2013.03.016.

Fouad EA, El-Badry M, Mahrous GM, Alanazi FK, Neau SH, Alsarra IA. The use of spray-drying to enhance celecoxib solubility. Drug Dev Ind Pharm. 2011;37(12):1463–72. doi:10.3109/03639045.2011.587428.

Karva GS, Katariya VR, Shahi SR. Spray drying: an approach for solubility enhancement of ritonavir by solid dispersion. Int J Pharm Sci Drug Res. 2015;7:321–8.

Altamimi MA, Elzayat EM, Alshehri SM, et al. Utilizing spray drying technique to improve oral bioavailability of apigenin. Adv Powder Technol. 2018;29(7):1676–84. doi:10.1016/j.apt.2018.04.002.

Uwineza A, Waśkiewicz A. Recent advances in supercritical fluid extraction of natural bioactive compounds from natural plant materials. Molecules. 2020;25(17):3847. doi:10.3390/molecules25173847.

Sapkale G, Patil S, Surwase U, Bhatbhage P. Supercritical fluid extraction. Int J Chem Sci. 2010;8:729–43.

Escobar ELN, da Silva TA, Pirich CL, Corazza ML, Pereira Ramos L. Supercritical fluids: a promising technique for biomass pretherapyment and fractionation. Front Bioeng Biotechnol. 2020;8:252. doi:10.3389/fbioe.2020.00252.

Kim JT, Kim HL, Ju CS. Micronization and characterization of drug substances by RESS with supercritical CO2. Korean J Chem Eng. 2010;27(4):1139–44. doi:10.1007/s11814-010-0219-2.

Sodeifian G, Saadati Ardestani N, Sajadian SA, Soltani Panah H. Experimental measurements and thermodynamic modeling of Coumarin-7 solid solubility in supercritical carbon dioxide: production of NPs via RESS technique. Fluid Phase Equilib. 2019;483:122–43. doi:10.1016/j.fluid.2018.11.006.

Baboota S, Dhaliwal M, Kohli K. Physicochemical characterization, in vitro dissolution behavior, and pharmacodynamic studies of rofecoxib-cyclodextrin inclusion compounds. AAPS PharmSciTech. 2005;6(1):E83–E90. doi:10.1208/pt060114.

Sapkal S, Narkhede M, Babhulkar M, Mehetre G, Rathi A. Natural polymers: best carriers for enhancing bioavailability of poorly water-soluble drugs in solid dispersions. Marmara Pharm J. 2014;17:65–72.

Abd-El Bary A, Louis SS, Sayed S. Polmesartan medoxomil surface solid dispersion-based orodispersible tablets: formulation and in vitro characterization. J Drug Deliv Sci Technol. 2014;24(6):665–72. doi:10.1016/s1773-2247(14)50134-7.

de França Almeida Moreira CDL, de Oliveira Pinheiro JG, da Silva-Junior WF, et al. Amorphous solid dispersions of hecogenin acetate using various polymers for enhancement of solubility and improvement of anti-hyperalgesic effect in neuropathic pain model in mice. Biomed Pharmacother. 2018;97:870–9. doi:10.1016/j.biopha.2017.10.161.

Patel V, Patel R, Shah H, Purohit S, Pawar M, Pathan A. Solubility enhancement of azithromycin by solid dispersion technique using mannitol and β-cyclodextrin. Acta Sci Pharm Sci. 2021;5(4):48–54. doi:10.31080/asps.2021.05.0701.

Hormann TR, Jager N, Funke A, Murb RK, Khinast JG, Paudel A. Formulation performance and processability window for manufacturing a dual-polymer amorphous solid dispersion via hot-melt extrusion and strand pelletization. Int J Pharm. 2018;553(1–2):408–21.

Tian B, Tang X, Taylor LS. Investigating the correlation between miscibility and physical stability of amorphous solid dispersions using fluorescence-based techniques. Mol Pharm. 2016;13(11):3988–4000.

Jog R, Gokhale R, Burgess DJ. Solid state drug-polymer miscibility studies using the model drug ABT-102. Int J Pharm. 2016;509(1–2):285–95.

Wegiel LA, Zhao Y, Mauer LJ, Edgar KJ, Taylor LS. Curcumin amorphous solid dispersions: the influence of intra and intermolecular bonding on physical stability. Pharm Dev Technol. 2014;19(8):976–86.

Zhang Q, Zhao Y, Zhao Y, Ding Z, Fan Z, Zhang H, et al. Effect of HPMCAS on recrystallization inhibition of nimodipine solid dispersions prepared by hot-melt extrusion and dissolution enhancement of nimodipine tablets. Colloids Surf B Biointerfaces. 2018;172:118–26.

Chavan RB, Thipparaboina R, Kumar D, Shastri NR. Evaluation of the inhibitory potential of HPMC, PVP and HPC polymers on nucleation and crystal growth. RSC Adv. 2016;6(81):77569–76.

Ueda K, Higashi K, Yamamoto K, Moribe K. The effect of HPMCAS functional groups on drug crystallization from the supersaturated state and dissolution improvement. Int J Pharm. 2014;464(1–2):205–13.

Huang W, Mandal T, Larson RG. Computational modeling of hydroxypropyl-methylcellulose acetate succinate (HPMCAS) and phenytoin interactions: A systematic coarse-graining approach. Mol Pharm. 2017;14(3):733–45.

Kallakunta VR, Sarabu S, Bandari S, Batra A, Bi V, Durig T, et al. Stable amorphous solid dispersions of fenofibrate using hot melt extrusion technology: effect of formulation and process parameters for a low glass transition temperature drug. J Drug Deliv Sci Technol. 2019;101395.

Tsinman O, Tsinman K, Ali S. Excipient update-Soluplus®: an understanding of supersaturation from amorphous solid dispersions. Drug Deliv Technol. 2015;15(1).

Alopaeus JF, Hagesæther E, Tho I. Micellisation mechanism and behaviour of Soluplus®-furosemide micelles: preformulation studies of an oral nanocarrier-based system. Pharmaceuticals. 2019;12(1):15.

Shi NQ, Lai HW, Zhang Y, Feng B, Xiao X, Zhang HM, et al. On the inherent properties of Soluplus and its application in ibuprofen solid dispersions generated by microwave-quench cooling technology. Pharm Dev Technol. 2018;23(6):573–86.

. Bochmann ES, Neumann D, Gryczke A, Wagner KG. Micro-scale prediction technique for API-solubility in polymeric matrices and process model for forming amorphous solid dispersion by hot-melt extrusion. Eur J Pharm Biopharm. 2016;107:40–8.

Song B, Wang J, Lu SJ, Shan LN. Andrographolide solid dispersions formulated by Soluplus to enhance interface wetting, dissolution, and absorption. J Appl Polym Sci. 2020;137(6):48354.

. Rahman M, Ahmad S, Tarabokija J, Bilgili E. Roles of surfactant and polymer in drug release from spray-dried hybrid nanocrystal-amorphous solid dispersions (HyNASDs). Powder Technol. 2020;361:663–78.

. Guan J, Huan X, Liu Q, Jin L, Wu H, Zhang X, et al. Synergetic effect of nucleation and crystal growth inhibitor on in vitro-in vivo performance of supersaturable lacidipine solid dispersion. Int J Pharm. 2019;566:594–603.

Dengale SJ, Grohganz H, Rades T, Löbmann K. Recent advances in co-amorphous drug formulations. Adv Drug Deliv Rev. 2016;100:116–25.

Ruff A, Fiolka T, Kostewicz ES. Prediction of ketoconazole absorption using an updated in vitro transfer model coupled to physiologically based pharmacokinetic modelling. Eur J Pharm Sci. 2017;100:42–55.

. Chegireddy M, Hanegave GK, Lakshman D, Urazov A, Sree KN, Lewis SA, et al. The significance of utilizing in vitro transfer model and media selection to study the dissolution performance of weak ionizable bases: investigation using saquinavir as a model drug. AAPS PharmSciTech. 2020;21(2):1–14.

. Zhong Y, Jing G, Tian B, Huang H, Zhang Y, Gou J, et al. Supersaturation induced by Itraconazole/Soluplus® micelles provided high GI absorption in vivo. Asian J Pharm Sci. 2016;11(2):255–64.

. Lakshman D, Chegireddy M, Hanegave GK, Sree KN, Kumar N, Lewis SA, et al. Investigation of drug-polymer miscibility, biorelevant dissolution, and bioavailability improvement of Dolutegravir-polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol graft copolymer solid dispersions. Eur J Pharm Sci. 2020;142:105137.

. Pinto JMO, Rengifo AFC, Mendes C, Leao AF, Parize AL, Stulzer HK. Understanding the interaction between Soluplus® and biorelevant media components. Colloids Surf B Biointerfaces. 2019;110673.

. Baghel S, Cathcart H, O’Reilly NJ. Understanding the generation and maintenance of supersaturation during the dissolution of amorphous solid dispersions using modulated DSC and 1H NMR. Int J Pharm. 2018;536(1):414–25.

. Browne E, Charifou R, Worku ZA, Babu RP, Healy AM. Amorphous solid dispersions of ketoprofen and poly-vinyl polymers prepared via electrospraying and spray drying: A comparison of particle characteristics and performance. Int J Pharm. 2019;566:173–84.

. Yan T, Zhang Y, Ji M, Wang Z, Yan T. Preparation of irbesartan composite microparticles by supercritical aerosol solvent extraction system for dissolution enhancement. J Supercrit Fluids. 2019;153:104594.

. Smeets A, Koekoekx R, Clasen C, Van den Mooter G. Amorphous solid dispersions of darunavir: comparison between spray drying and electrospraying. Eur J Pharm Biopharm. 2018;130:96–107.

Xiong X, Zhang M, Hou Q, Tang P, Suo Z, Zhu Y, et al. Solid dispersions of telaprevir with improved solubility prepared by co-milling: formulation, physicochemical characterization, and cytotoxicity evaluation. Mater Sci Eng C. 2019;105:110012.

Sakurai A, Sakai T, Sako K, Maitani Y. Polymer combination enhancedd both physical stability and oral absorption of solid dispersions containing a low glass transition temperature drug: physicochemical characterization and in vivo study. Chem Pharm Bull. 2012;60(4):459–64.

Kapourani A, Vardaka E, Katopodis K, Kachrimanis K, Barmpalexis P. Rivaroxaban polymeric amorphous solid dispersions: moisture-induced thermodynamic phase behavior and intermolecular interactions. Eur J Pharm Biopharm. 2019;145:98–112.

Chen H, Pui Y, Liu C, Chen Z, Su CC, Hageman M, et al. Moisture-induced amorphous phase separation of amorphous solid dispersions: molecular mechanism, microstructure, and its impact on dissolution performance. J Pharm Sci. 2018;107(1):317–26.

Milne M, Liebenberg W, Aucamp M. The stabilization of amorphous zopiclone in an amorphous solid dispersion. AAPS PharmSciTech. 2015;16(5):1190–202.

Shah N, Sandhu H, Choi DS, Chokshi H, Malick AW. Amorphous solid dispersions. Berlin: Springer; 2014.

Rahman M, Ozkan S, Lester J, Farzana I, Bi V, Durig T. Plasticizer compatibility and thermal properties of Plasdone™ polymers for hot-melt extrusion applications. AAPS; 2012.

Que C, Lou X, Zemlyanov DY, Mo H, Indulkar AS, Gao Y, et al. Insights into the dissolution behavior of Ledipasvir-Copovidone amorphous solid dispersions. Mol Pharm. 2019;16(12):5054–67.

Harmon P, Galipeau K, Xu W, Brown C, Wuelfing WP. Mechanism of dissolution-induced nanoparticle formation. Mol Pharm. 2016;13(5).

Nair AR, Lakshman YD, Anand VSK, et al. Overview of extensively employed polymeric carriers in solid dispersion technology. AAPS PharmSciTech. 2020;21:309. doi: 10.1208/s12249-020-01849-z.

Siddiqui MR, Alothman ZA, Rahman N. Analytical techniques in pharmaceutical analysis: a review. Arab J Chem. 2017;10:S1409–S21. doi:10.1016/j.arabjc.2013.04.016.

. Tran P, Pyo YC, Kim DH, Lee SE, Kim JK, Park JS. Overview of the manufacturing techniques of solid dispersion technology for enhancing the solubility of poorly water-soluble drugs and application to anticancer drugs. Pharmaceutics. 2019;11(3):132. doi:10.3390/pharmaceutics11030132.

. Kaur R, Singh S. Solid dispersions: A technology for enhancing bioavailability. J Appl Pharm Sci. 2020;10(5):1-10. Available from: https://medcraveonline.com/JAPLR/solid-dispersions-a-technology-for-enhancing -bioavailability.html

Vo A, Choi H, Lee Y, Kim J, Kim J. Potential of solid dispersions to enhance solubility, bioavailability and therapeutic efficacy of poorly water-soluble drugs: A review. Pharmaceutics. 2020;12(11):1044. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC7737680/

Kaur R, Kumar S, Gupta V, Sharma P. Solid dispersions: A review on drug delivery system and solubility enhancement. Int J Pharm Sci Rev Res. 2024;70(1):1-12. Available from: https://ijpsr.com/bft-article/solid-dispersions-a-review-on-drug-delivery-system-and-solubility-enhancement/

Bansal N, Kaur R, Kumar S. Current trends on solid dispersions: Past, present, and future. BioMed Res Int. 2022;2022:5916013. Available from: https://onlinelibrary.wiley.com/doi/10.1155/2022/5916013

Bhatt D, Bhatt M, Patel N, Patel M. Enhancement of oral bioavailability and solid dispersion: A review. J Appl Pharm Sci. 2021;11(6):1-9. Available from: https://japsonline.com/admin/php/uploads/164_pdf.pdf

Kumar P, Singh S, Gupta V, Kaur R. A review on solubility enhancement by solid dispersion technique. J Drug Deliv Ther. 2021;11(4):1-8. Available from: https://jddtonline.info/index.php/jddt/article/view/4489

Sharma A, Gupta V, Kaur R, Singh S. Solid dispersion as a technical solution to boost the dissolution rate and bioavailability of poorly water-soluble drugs: A review. Res J Pharm Technol. 2022;15(5):2345-2350. Available from: https://www.researchgate.net/publication/352375894_Solid_Dispersion_as_a_Technical_Solution_to_Boost_the_Dissolution_Rate_and_Bioavailability_of_Poorly_Water-Soluble_Drugs

Madgulkar A, Chavan R, Patil S, Shinde D. Solid dispersion: A novel approach for bioavailability enhancement of poorly water-soluble drugs in solid oral dosage forms. Asian J Pharm Clin Res. 2019;12(2):1-6. Available from: https://doi.org/10.22159/ajpcr.2019.v12i2.29157

Seo H, Kim YS, Kim HJ, et al. Enhancement of solubility and dissolution rate of poorly soluble drugs using solid dispersion techniques: A review on recent advances and future perspectives. Pharm Dev Technol. 2015;20(1):1-9.

Serrano DR, Garcia ML, de la Torre M, et al. Solid dispersions as a strategy to improve the solubility and bioavailability of poorly soluble drugs: An overview of recent advances and future perspectives. Expert Opin Drug Deliv. 2015;12(11):1777-1790.

Ohara T, Takahashi Y, Matsumoto M, et al. Development of solid dispersions using novel carriers for enhancing the solubility and dissolution rate of poorly soluble drugs: A review of recent advances and future perspectives. Drug Discov Today Technol. 2005;2(3):235-243.

Paudwal R, Gupta V, Singh S, Kaur R. Novel techniqueologies for solid dispersion preparation to enhance solubility and bioavailability of poorly water-soluble drugs: A review on current literature and future perspectives. J Drug Deliv Sci Technol. 2019;52:101-110.

Uttreja P, Youssef AAA, Karnik I, Sanil K, Narala N, Wang H, et al. Formulation development of solid self-nanoemulsifying drug delivery systems of quetiapine fumarate via hot-melt extrusion technology: optimization using central composite design. Pharmaceutics. 2024;16(3):324. doi:10.3390/pharmaceutics16030324

Giri BR, Kwon J, Vo AQ, Bhagurkar AM, Bandari S, Kim DW. Hot-melt extruded amorphous solid dispersion for solubility, stability, and bioavailability enhancement of telmisartan. Pharmaceuticals (Basel). 2021;14(1):73. doi:10.3390/ph14010073

Thompson SA, Davis DA Jr, Moon C, Williams RO 3rd. Increasing drug loading of weakly acidic telmisartan in amorphous solid dispersions through pH modification during hot-melt extrusion. Mol Pharm. 2022;19(1):318-31. doi:10.1021/acs.molpharmaceut.1c00805

Wdowiak K, Miklaszewski A, Cielecka-Piontek J. Amorphous polymer-phospholipid solid dispersions for the co-delivery of curcumin and piperine prepared via hot-melt extrusion. Pharmaceutics. 2024;16(8):999. doi:10.3390/pharmaceutics16080999

Almotairy A, Almutairi M, Althobaiti A, Alyahya M, Sarabu S, Alzahrani A, et al. Effect of pH modifiers on the solubility, dissolution rate, and stability of telmisartan solid dispersions produced by hot-melt extrusion technology. J Drug Deliv Sci Technol. 2021;65:102674. doi:10.1016/j.jddst.2021.102674

Mura P, Manconi M, Fadda AM, et al. Amorphous solid dispersion as drug delivery vehicles in cancer therapy: Recent advances and future perspectives in formulation development and clinical applications in oncology pharmacotherapy strategies. Pharmaceutics. 2023;16(7):958. Available from: https://doi.org/10.3390/pharmaceutics16070958

Jain S, Gupta V, Kaur R, et al. Solid dispersion technology as a strategy to improve the dissolution rate of poorly soluble drugs: A systematic review of recent advancements with a focus on polymeric carriers utilized for solid dispersion formulations. J Drug Deliv Sci Technol. 2022;68:102885. Available from: https://doi.org/10.1016/j.jddst.2022.102885

Zhang Y, Liu Y, Wang Y, et al. Recent advances in amorphous solid dispersions: Preformulation screening and formulation approaches for enhancing solubility and bioavailability of poorly soluble drugs. Expert Opin Drug Deliv. 2022;19(10):1161-1176. Available from: https://doi.org/10.1080/17425247.2022.2091288

Vannini M, Marchese P, Sisti L, Saccani A, Mu T, Sun H, Celli A. Integrated efforts for the valorization of sweet potato by-products within a circular economy concept: biocomposites for packaging applications close the loop. Polymers (Basel). 2021;13(7):1048. doi:10.3390/polym13071048

Bhirud YD, Phalak HM. Advances in solid dispersion technology and its applications in the development of solid dosage forms. J Drug Deliv Ther. 2016;6:40-47.

Hamieh T. Temperature dependence of the polar and Lewis acid-base properties of poly methyl methacrylate adsorbed on silica via inverse gas chromatography. Molecules. 2024;29(8):1688. doi:10.3390/molecules29081688

..

Downloads

Published

2025-05-09

How to Cite

1.
Tyagi P, Chauhan SK, Kamboj S, Gupta P, Goel R, K Dixit P. Insights of Different Solid Dispersion Techniques and Their Importance in Product Development. J Neonatal Surg [Internet]. 2025May9 [cited 2025Sep.20];14(21S):788-804. Available from: https://www.jneonatalsurg.com/index.php/jns/article/view/5395

Most read articles by the same author(s)