Functional Imaging in Radiology: Assessing Metabolic and Molecular Changes in Disease Diagnosis

Authors

  • V. Anitha
  • ashirwad P
  • Hement Kumar Ahirwar
  • Sheffy Sabu Thomas
  • Sk Sahil
  • Anoop V

Keywords:

Functional radiology imaging, Molecular assessment, Metabolic changes, Diagnostic biomarkers, Disease classification, Medical imaging techniques.

Abstract

Radiology has come to depend on functional imaging for the assessment of metabolic and molecular changes in disease, including cancer, neurological disorders, and inflammatory conditions. The purpose of this study is to evaluate the diagnostic effectiveness of three imaging modalities, Positron emission tomography  (PET), Magnetic resonance imaging (MRI), and Single-Photon Emission computed tomography (SPECT), in identifying disease-specific metabolic and structural changes. A cohort of 150 participants was divided into cancer, neurological, and inflammatory disease groups. Mean standardized uptake values (SUV) were significantly higher in cancer patients (8.5 ± 2.3) than in neurological (4.2 ± 1.1) and inflammatory (3.8 ± 1.5) groups (p < 0.001). The mean apparent diffusion coefficient (ADC) in cancer patients (0.8 ± 0.2) was the lowest among all groups, which is consistent with restricted cellular movement (p < 0.001) indicative of malignancy. Regional cerebral blood flow (rCBF) analysis by SPECT showed higher perfusion in neurological patients (55.0 ± 15.0) than in cancer (40.0 ± 10.0) and inflammatory cases (45.0 ± 12.0), suggesting different perfusion requirements in different disease states (p < 0.01). Significant correlations between imaging parameters and clinical outcomes were demonstrated by correlation analysis, which highlights the value of multimodal imaging for personalized diagnosis. These findings confirm the complementary use of PET, MRI, and SPECT to image unique metabolic and structural markers to improve diagnostic precision and develop targeted treatment

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Adak, S., Bhalla, R., Vijaya Raj, K. K., Mandal, S., Pickett, R., & Luthra, S. K. (2012). Radiotracers for SPECT imaging: current scenario and future prospects.

Basu, S., Chryssikos, T., Moghadam-Kia, S., Zhuang, H., Torigian, D. A., & Alavi, A. (2009, January). Positron emission tomography as a diagnostic tool in infection: present role and future possibilities. In Seminars in nuclear medicine (Vol. 39, No. 1, pp. 36-51). WB Saunders.

Bussink, J., van Herpen, C. M., Kaanders, J. H., & Oyen, W. J. (2010). PET-CT for response assessment and treatment adaptation in head and neck cancer. The lancet oncology, 11(7), 661-669.

Bybel, B., Brunken, R. C., DiFilippo, F. P., Neumann, D. R., Wu, G., & Cerqueira, M. D. (2008). SPECT/CT imaging: clinical utility of an emerging technology. Radiographics, 28(4), 1097-1113.

Du, L., Roy, S., Wang, P., Li, Z., Qiu, X., Zhang, Y., ... & Guo, B. (2024). Unveiling the future: advancements in MRI imaging for neurodegenerative disorders. Aging Research Reviews, 102230.

Hauge, A., Wegner, C. S., Gaustad, J. V., Simonsen, T. G., Andersen, L. M. K., & Rofstad, E. K. (2017). Diffusion-weighted MRI-derived ADC values reflect collagen I content in PDX models of uterine cervical cancer. Oncotarget, 8(62), 105682.

Hicks, R. J., & Hofman, M. S. (2012). Is there still a role for SPECT–CT in oncology in the PET–CT era? Nature reviews Clinical oncology, 9(12), 712-720.

Le Bihan, D. (2003). Looking into the functional architecture of the brain with diffusion MRI. Nature Reviews Neuroscience, 4(6), 469-480.

Lee, M. S., Cho, J. Y., Kim, S. Y., Cheon, G. J., Moon, M. H., Oh, S., ... & Kim, S. H. (2017). Diagnostic value of integrated PET/MRI for detection and localization of prostate cancer: Comparative study of multiparametric MRI and PET/CT. Journal of Magnetic Resonance Imaging, 45(2), 597-609.

Li, X., Zhang, L., Yang, J., & Teng, F. (2024). Role of Artificial Intelligence in Medical Image Analysis: A Review of Current Trends and Future Directions. Journal of Medical and Biological Engineering, 1-13.

Ljungberg, M., & Pretorius, P. H. (2018). SPECT/CT: an update on technological developments and clinical applications. The British journal of radiology, 91(1081), 20160402.

Malayeri, A. A., El Khouli, R. H., Zaheer, A., Jacobs, M. A., Corona-Villalobos, C. P., Kamel, I. R., & Macura, K. J. (2011). Principles and applications of diffusion-weighted imaging in cancer detection, staging, and treatment follow-up. Radiographics, 31(6), 1773-1791.

Mariani, G., Bruselli, L., Kuwert, T., Kim, E. E., Flotats, A., Israel, O., ... & Watanabe, N. (2010). A review on the clinical uses of SPECT/CT. European journal of nuclear medicine and molecular imaging, 37, 1959-1985.

Martí‐Bonmatí, L., Sopena, R., Bartumeus, P., & Sopena, P. (2010). Multimodality imaging techniques. Contrast media & molecular imaging, 5(4), 180-189.

McMillan, C. T., Avants, B., Irwin, D. J., Toledo, J. B., Wolk, D. A., Van Deerlin, V. M., ... & Grossman, M. (2013). Can MRI screen for CSF biomarkers in neurodegenerative disease?. Neurology, 80(2), 132-138.

Meyer, H. J., Wienke, A., & Surov, A. (2020). ADC values of benign and high grade meningiomas and associations with tumor cellularity and proliferation–A systematic review and meta-analysis. Journal of the Neurological Sciences, 415, 116975.

Momcilovic, M., & Shackelford, D. B. (2018). Imaging cancer metabolism. Biomolecules & therapeutics, 26(1), 81.

Ogawa, S., Lee, T. M., Kay, A. R., & Tank, D. W. (1990). Brain magnetic resonance imaging with contrast dependent on blood oxygenation. proceedings of the National Academy of Sciences, 87(24), 9868-9872.

Peller, P., Subramaniam, R., & Guermazi, A. (Eds.). (2012). PET-CT and PET-MRI in oncology: a practical guide. Springer Science & Business Media.

Schuster, D. P. (2007). The opportunities and challenges of developing imaging biomarkers to study lung function and disease. American journal of respiratory and critical care medicine, 176(3), 224-230.

Suzuki, K. (2017). Overview of deep learning in medical imaging. Radiological physics and technology, 10(3), 257-273.

Szymański, P., Markowicz, M., Janik, A., Ciesielski, M., & Mikiciuk-Olasik, E. (2010). Neuroimaging diagnosis in neurodegenerative diseases. Nuclear Medicine Review, 13(1), 23-31.

Waite, S., Scott, J., & Colombo, D. (2021). Narrowing the gap: imaging disparities in radiology. Radiology, 299(1), 27-35.

Walker, Z., & Walker, R. W. (2005). Imaging in neurodegenerative disorders: recent studies. Current Opinion in Psychiatry, 18(6), 640-646.

Wallitt, K. L., Khan, S. R., Dubash, S., Tam, H. H., Khan, S., & Barwick, T. D. (2017). Clinical PET imaging in prostate cancer. Radiographics, 37(5), 1512-1536.

Yeo, J. M., Lim, X., Khan, Z., & Pal, S. (2013). Systematic review of the diagnostic utility of SPECT imaging in dementia. European archives of psychiatry and clinical neuroscience, 263, 539-552.

Zaucha, J. M., Chauvie, S., Zaucha, R., Biggii, A., & Gallamini, A. (2019). The role of PET/CT in the modern treatment of Hodgkin lymphoma. Cancer treatment reviews, 77, 44-56.

Downloads

Published

2025-05-13

How to Cite

1.
Anitha V, P ashirwad, Kumar Ahirwar H, Thomas SS, Sahil S, V A. Functional Imaging in Radiology: Assessing Metabolic and Molecular Changes in Disease Diagnosis. J Neonatal Surg [Internet]. 2025May13 [cited 2025Oct.15];14(7):498-507. Available from: https://www.jneonatalsurg.com/index.php/jns/article/view/5743