Development of Orthopedic Implants: Tribological Insights and Biomedical Material Innovations in Mechanical Engineering
DOI:
https://doi.org/10.63682/jns.v14i23S.5833Keywords:
Tribocorrosion, Orthopedic Implants, Biomaterials, Wear Behavior, Material Characterization, Additive ManufacturingAbstract
This comprehensive review paper concentrates on tribocorrosion behavior of biomaterials and composites in the context of orthopedic implant applications. This review paper focuses on the wear behavior of hip implant materials in the context of orthopedic implant applications. It highlights the critical importance of understanding the effects of different lubrication mediums on wear characteristics and emphasizes the necessity for comprehensive tribological investigations to optimize lubrication conditions for improved implant longevity and performance. Through an in-depth analysis of engineering studies, the paper highlights the crucial role of material characterization methods such as scanning electron microscopy and X-ray diffraction in assessing the microstructure and chemical composition of biomaterials for implant suitability. Mechanical testing techniques are explored to evaluate the tensile strength, flexural strength, and hardness of biomaterials, crucial for determining their performance in implant systems. The review emphasizes the significance of materials like Polyetheretherketone (PEEK), Ultra-High Molecular Weight Polyethylene (UHMWPE), carbon fiber-reinforced resins, and titanium alloys in enhancing the mechanical properties and longevity of orthopedic implants. Furthermore, advancements in additive manufacturing techniques for creating customized structures for biomedical applications are discussed. The paper concludes by stressing the importance of interdisciplinary research in optimizing the design and performance of biomaterials for orthopedic implants, ultimately aiming to enhance implant longevity and overall performance
Downloads
Metrics
References
Affatato, S., Freccero, N., & Taddei, P. (2016). The biomaterials challenge: A comparison of polyethylene wear using a hip joint simulator. Journal of the Mechanical Behavior of Biomedical Materials, 53, 40–48. https://doi.org/10.1016/j.jmbbm.2015.08.001
Arevalo, S., Arthurs, C., Molina, M. I. E., Pruitt, L., & Roy, A. (2023). An overview of the tribological and mechanical properties of PEEK and CFR-PEEK for use in total joint replacements. In Journal of the Mechanical Behavior of Biomedical Materials (Vol. 145). Elsevier Ltd. https://doi.org/10.1016/j.jmbbm.2023.105974
Arevalo, S. E., & Pruitt, L. A. (2020). Nanomechanical analysis of medical grade PEEK and carbon fiber-reinforced PEEK composites. Journal of the Mechanical Behavior of Biomedical Materials, 111. https://doi.org/10.1016/j.jmbbm.2020.104008
Bartolomeu, F., Buciumeanu, M., Costa, M. M., Alves, N., Gasik, M., Silva, F. S., & Miranda, G. (2019). Multi-material Ti6Al4V & PEEK cellular structures produced by Selective Laser Melting and Hot Pressing: A tribocorrosion study targeting orthopedic applications. Journal of the Mechanical Behavior of Biomedical Materials, 89, 54–64. https://doi.org/10.1016/j.jmbbm.2018.09.009
Baykal, D., Siskey, R. S., Haider, H., Saikko, V., Ahlroos, T., & Kurtz, S. M. (2014). Advances in tribological testing of artificial joint biomaterials using multidirectional pin-on-disk testers. In Journal of the Mechanical Behavior of Biomedical Materials (Vol. 31, pp. 117–134). https://doi.org/10.1016/j.jmbbm.2013.05.020
Bijwe, J., Sen, S., & Ghosh, A. (2005). Influence of PTFE content in PEEK-PTFE blends on mechanical properties and tribo-performance in various wear modes. Wear, 258(10), 1536–1542. https://doi.org/10.1016/j.wear.2004.10.008
Bonnheim, N., Ansari, F., Regis, M., Bracco, P., & Pruitt, L. (2019). Effect of carbon fiber type on monotonic and fatigue properties of orthopedic grade PEEK. Journal of the Mechanical Behavior of Biomedical Materials, 90, 484–492. https://doi.org/10.1016/j.jmbbm.2018.10.033
Brockett, C. L., Carbone, S., Abdelgaied, A., Fisher, J., & Jennings, L. M. (2016). Influence of contact pressure, cross-shear and counterface material on the wear of PEEK and CFR-PEEK for orthopaedic applications. Journal of the Mechanical Behavior of Biomedical Materials, 63, 10–16. https://doi.org/10.1016/j.jmbbm.2016.06.005
Brockett, C. L., Carbone, S., Fisher, J., & Jennings, L. M. (2017). PEEK and CFR-PEEK as alternative bearing materials to UHMWPE in a fixed bearing total knee replacement: An experimental wear study. Wear, 374–375, 86–91. https://doi.org/10.1016/j.wear.2016.12.010
Chang, Y., Lee, M. S., Liau, J. J., Liu, Y. L., Chen, W. C., & Ueng, S. W. N. (2020). Polyethylene-based knee spacer for infection control: Design concept and pre-clinical in vitro validations. Polymers, 12(10), 1–18. https://doi.org/10.3390/polym12102334
Chithambaram, K., & Senthilnathan, N. (2024). Effects of printing parameters on hardness and wear characteristics of 3D printed polyetheretherketone (PEEK) polymer. Materials Letters, 356. https://doi.org/10.1016/j.matlet.2023.135588
Dayyoub, T., Olifirov, L. K., Chukov, D. I., Kaloshkin, S. D., Kolesnikov, E., & Nematulloev, S. (2020). The structural and mechanical properties of the UHMWPE films mixed with the PE-Wax. Materials, 13(15), 1–18. https://doi.org/10.3390/ma13153422
De Santis, R., Gloria, A., & Ambrosio, L. (2017). Composite materials for hip joint prostheses. In Biomedical Composites, Second Edition (pp. 237–259). Elsevier. https://doi.org/10.1016/B978-0-08-100752-5.00012-3
Diabb Zavala, J. M., Leija Gutiérrez, H. M., Segura-Cárdenas, E., Mamidi, N., Morales-Avalos, R., Villela-Castrejón, J., & Elías-Zúñiga, A. (2021). Manufacture and mechanical properties of knee implants using SWCNTs/UHMWPE composites. Journal of the Mechanical Behavior of Biomedical Materials, 120. https://doi.org/10.1016/j.jmbbm.2021.104554
Díaz, C., & Fuentes, G. (2017). Tribological studies comparison between UHMWPE and PEEK for prosthesis application. Surface and Coatings Technology, 325, 656–660. https://doi.org/10.1016/j.surfcoat.2017.07.007
Dworak, M., Rudawski, A., Markowski, J., & Blazewicz, S. (2017). Dynamic mechanical properties of carbon fibre-reinforced PEEK composites in simulated body-fluid. Composite Structures, 161, 428–434. https://doi.org/10.1016/j.compstruct.2016.11.070
El Kadi, H., & Denault, J. (2001). Effects of processing conditions on the mechanical behavior of carbon-fiber-reinforced PEEK. Journal of Thermoplastic Composite Materials, 14(1), 34–53. https://doi.org/10.1106/XDX9-U8K4-E0PM-70MX
Fujihara, K., Huang, Z. M., Ramakrishna, S., & Hamada, H. (2004). Influence of processing conditions on bending property of continuous carbon fiber reinforced PEEK composites. Composites Science and Technology, 64(16), 2525–2534. https://doi.org/10.1016/j.compscitech.2004.05.014
Garcia-Gonzalez, D., Rodriguez-Millan, M., Rusinek, A., & Arias, A. (2015). Investigation of mechanical impact behavior of short carbon-fiber-reinforced PEEK composites. Composite Structures, 133, 1116–1126. https://doi.org/10.1016/j.compstruct.2015.08.028
Guenther, L. E., Turgeon, T. R., Bohm, E. R., & Brandt, J. M. (2015). The biochemical characteristics of wear testing lubricants affect polyethylene wear in orthopaedic pin-on-disc testing. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 229(1), 77–90. https://doi.org/10.1177/0954411914567930
Jones, D. P., Leach, D. C., & Moore, D. R. (1985). Mechanical properties of poly(ether-ether-ketone) for engineering applications.
Koh, Y. G., Lee, J. A., & Kang, K. T. (2019). Prediction of wear on tibial inserts made of UHMWPE, PEEK, and CFR-PEEK in total knee arthroplasty using finite-element analysis. Lubricants, 7(4). https://doi.org/10.3390/lubricants7040030
Koh, Y. G., Park, K. M., Lee, J. A., Nam, J. H., Lee, H. Y., & Kang, K. T. (2019). Total knee arthroplasty application of polyetheretherketone and carbon-fiber-reinforced polyetheretherketone: A review. In Materials Science and Engineering C (Vol. 100, pp. 70–81). Elsevier Ltd. https://doi.org/10.1016/j.msec.2019.02.082
Kumar, A., Prabhakaran, D., & Ramani, M. (2021). Design, Analysis and Rapid prototype of Hip Simulator.
Kurtz, S. M., Hozack, W., Marcolongo, M., Turner, J., Rimnac, C., & Edidin, A. (2003). Degradation of Mechanical Properties of UHMWPE Acetabular Liners Following Long-Term Implantation. https://doi.org/10.1054/S0883-5403(03)00292-4
Kurtz, S. M., MacDonald, D. W., Kocagöz, S., Tohfafarosh, M., & Baykal, D. (2014). Can Pin-on-Disk Testing Be Used to Assess the Wear Performance of Retrieved UHMWPE Components for Total Joint Arthroplasty? BioMed Research International, 2014. https://doi.org/10.1155/2014/581812
Li, C. S., Vannabouathong, C., Sprague, S., & Bhandari, M. (2014a). The use of carbon-fiber-reinforced (CFR) peek material in orthopedic implants: A systematic review. Clinical Medicine Insights: Arthritis and Musculoskeletal Disorders, 8, 33–45. https://doi.org/10.4137/cmamd.s20354
Li, C. S., Vannabouathong, C., Sprague, S., & Bhandari, M. (2014b). The use of carbon-fiber-reinforced (CFR) peek material in orthopedic implants: A systematic review. Clinical Medicine Insights: Arthritis and Musculoskeletal Disorders, 8, 33–45. https://doi.org/10.4137/cmamd.s20354
Liu, H., Xie, D., Qian, L., Deng, X., Leng, Y. X., & Huang, N. (2011). The mechanical properties of the ultrahigh molecular weight polyethylene (UHMWPE) modified by oxygen plasma. Surface and Coatings Technology, 205(8–9), 2697–2701. https://doi.org/10.1016/j.surfcoat.2010.08.120
Mohamad Raffi, N., Kanagarajan, D., & Srinivasan, V. (2016). Wear behavior of γ -irradiated ultra high-molecular weight polyethylene in a hip joint simulator. Journal of Thermoplastic Composite Materials, 29(2), 249–259. https://doi.org/10.1177/0892705714530749
Oladapo, B. I., Zahedi, S. A., Ismail, S. O., & Omigbodun, F. T. (2021). 3D printing of PEEK and its composite to increase biointerfaces as a biomedical material- A review. In Colloids and Surfaces B: Biointerfaces (Vol. 203). Elsevier B.V. https://doi.org/10.1016/j.colsurfb.2021.111726
Pan, L., & Yapici, U. (2016). A comparative study on mechanical properties of carbon fiber/PEEK composites. Advanced Composite Materials, 25(4), 359–374. https://doi.org/10.1080/09243046.2014.996961
Panayotov, I. V., Orti, V., Cuisinier, F., & Yachouh, J. (2016). Polyetheretherketone (PEEK) for medical applications. In Journal of Materials Science: Materials in Medicine (Vol. 27, Issue 7). Springer New York LLC. https://doi.org/10.1007/s10856-016-5731-4
Paulo Davim, J., Reis, P., Lapa, V., & Conceiçao António, C. (2003). Machinability study on polyetheretherketone (PEEK) unreinforced and reinforced (GF30) for applications in structural components. Composite Structures, 62(1), 67–73. https://doi.org/10.1016/S0263-8223(03)00085-0
Puértolas, J. A., Castro, M., Morris, J. A., Ríos, R., & Ansón-Casaos, A. (2019). Tribological and mechanical properties of graphene nanoplatelet/PEEK composites. Carbon, 141, 107–122. https://doi.org/10.1016/j.carbon.2018.09.036
Pulipaka, A., Gide, K. M., Beheshti, A., & Bagheri, Z. S. (2023). Effect of 3D printing process parameters on surface and mechanical properties of FFF-printed PEEK. Journal of Manufacturing Processes, 85, 368–386. https://doi.org/10.1016/j.jmapro.2022.11.057
Rae, P. J., Brown, E. N., & Orler, E. B. (2007). The mechanical properties of poly(ether-ether-ketone) (PEEK) with emphasis on the large compressive strain response. Polymer, 48(2), 598–615. https://doi.org/10.1016/j.polymer.2006.11.032
Rasheva, Z., Zhang, G., & Burkhart, T. (2010). A correlation between the tribological and mechanical properties of short carbon fibers reinforced PEEK materials with different fiber orientations. Tribology International, 43(8), 1430–1437. https://doi.org/10.1016/j.triboint.2010.01.020
Regis, M., Bellare, A., Pascolini, T., & Bracco, P. (2017). Characterization of thermally annealed PEEK and CFR-PEEK composites: Structure-properties relationships. Polymer Degradation and Stability, 136, 121–130. https://doi.org/10.1016/j.polymdegradstab.2016.12.005
Regis, M., Lanzutti, A., Bracco, P., & Fedrizzi, L. (2018). Wear behavior of medical grade PEEK and CFR PEEK under dry and bovine serum conditions. Wear, 408–409, 86–95. https://doi.org/10.1016/j.wear.2018.05.005
Roy Chowdhury, S. K., Mishra, A., Pradhan, B., & Saha, D. (2004). Wear characteristic and biocompatibility of some polymer composite acetabular cups. Wear, 256(11–12), 1026–1036. https://doi.org/10.1016/S0043-1648(03)00535-0
Sagbas, B. (2016). Biotribology of Artificial Hip Joints. In Advances in Tribology. InTech. https://doi.org/10.5772/64488
Sak, A., Moskalewicz, T., Zimowski, S., Cieniek, Ł., Dubiel, B., Radziszewska, A., Kot, M., & Łukaszczyk, A. (2016). Influence of polyetheretherketone coatings on the Ti-13Nb-13Zr titanium alloy’s bio-tribological properties and corrosion resistance. Materials Science and Engineering C, 63, 52–61. https://doi.org/10.1016/j.msec.2016.02.043
Savio III, A., Overcamp, L. M., & Black, J. (n.d.). Review Paper Size and Shape of Biomaterial Wear Debris.
Scholes, S. C., & Unsworth, A. (2009). Wear studies on the likely performance of CFR-PEEK/CoCrMo for use as artificial joint bearing materials. Journal of Materials Science: Materials in Medicine, 20(1), 163–170. https://doi.org/10.1007/s10856-008-3558-3
ShenoyB, S., & BhatN, S. (2018). Role of different orthopedic biomaterials on wear of hip joint prosthesis: A review. In Chethan.K.N/ Materials Today: Proceedings (Vol. 5). www.sciencedirect.comwww.materialstoday.com/proceedings
Shrivastava, S. P., Dable, R., Raj, A. N., Mutneja, P., Srivastava, S. B., Haque, M., & Ali, R. W. (2021). Comparison of Mechanical Properties of PEEK and PMMA: An In Vitro Study. Journal of Contemporary Dental Practice, 22(2), 179–183. https://doi.org/10.5005/jp-journals-10024-3077
Soemardi, T. P., Suwandi, A., & Soefi Ibrahim, A. (2021). Simulation Experiment to Predict the Critical Friction Area of Acetabular Liner Component on Hip Joint Replacement Implant During Movement.
Soliman, M. M., Chowdhury, M. E. H., Islam, M. T., Musharavati, F., Nabil, M., Hafizh, M., Khandakar, A., Mahmud, S., Nezhad, E. Z., Shuzan, M. N. I., & Abir, F. F. (2022). A Review of Biomaterials and Associated Performance Metrics Analysis in Pre-Clinical Finite Element Model and in Implementation Stages for Total Hip Implant System. In Polymers (Vol. 14, Issue 20). MDPI. https://doi.org/10.3390/polym14204308
Spiegelberg, S., Kozak, A., & Braithwaite, G. (2016). UHMWPE Biomaterials Handbook 29 Characterization of Physical, Chemical, and Mechanical Properties of UHMWPE. In UHMWPE Biomaterials Handbook. https://doi.org/10.1016/B978-0-323-35401-1/00029-6
Stolarski, T. A. (1992). Tribology of poiyetheretherketone. In Wear (Vol. 158).
Sui, G., Zhong, W. H., Ren, X., Wang, X. Q., & Yang, X. P. (2009). Structure, mechanical properties and friction behavior of UHMWPE/HDPE/carbon nanofibers. Materials Chemistry and Physics, 115(1), 404–412. https://doi.org/10.1016/j.matchemphys.2008.12.016
Talbott, M. F., Springer, G. S., & Berglund, L. A. (1987). The Effects of Crystallinity on the Mechanical Properties of PEEK Polymer and Graphite Fiber Reinforced PEEK. Journal of Composite Materials, 21(11), 1056–1081. https://doi.org/10.1177/002199838702101104
Teoh, S. H. (2000). Fatigue of biomaterials: a review. In International Journal of Fatigue (Vol. 22). www.elsevier.com/locate/ijfatigue
Verma, S., Sharma, N., Kango, S., & Sharma, S. (2021). Developments of PEEK (Polyetheretherketone) as a biomedical material: A focused review. In European Polymer Journal (Vol. 147). Elsevier Ltd. https://doi.org/10.1016/j.eurpolymj.2021.110295
Wang, Q., Xue, Q., & Shen, W. (1997). The friction and wear properties of nanometre SiO, filled polyetheretherketone (Vol. 30, Issue 3).
Wang, Y., Müller, W. D., Rumjahn, A., Schmidt, F., & Schwitalla, A. D. (2021). Mechanical properties of fused filament fabricated PEEK for biomedical applications depending on additive manufacturing parameters. Journal of the Mechanical Behavior of Biomedical Materials, 115. https://doi.org/10.1016/j.jmbbm.2020.104250
Wright, K. W. J., Dobbs, H. S., & Scales, J. T. (n.d.). Wear studies on prosthetic materials using the pin-on-disc machine.
Wu, W., Geng, P., Li, G., Zhao, D., Zhang, H., & Zhao, J. (2015). Influence of layer thickness and raster angle on the mechanical properties of 3D-printed PEEK and a comparative mechanical study between PEEK and ABS. Materials, 8(9), 5834–5846. https://doi.org/10.3390/ma8095271
Yang, C., Tian, X., Li, D., Cao, Y., Zhao, F., & Shi, C. (2017). Influence of thermal processing conditions in 3D printing on the crystallinity and mechanical properties of PEEK material. Journal of Materials Processing Technology, 248, 1–7. https://doi.org/10.1016/j.jmatprotec.2017.04.027
Yang, C., Zhang, P., Wang, T., & Kang, X. (2021). The role of simulated body fluid and force on the mechanical and tribological properties of α-tocopherol stabilized UHMWPE for biomedical applications. Polymer Bulletin, 78(11), 6517–6533. https://doi.org/10.1007/s00289-020-03438-3
Zalaznik, M., Kalin, M., & Novak, S. (2016). Influence of the processing temperature on the tribological and mechanical properties of poly-ether-ether-ketone (PEEK) polymer. Tribology International, 94, 92–97. https://doi.org/10.1016/j.triboint.2015.08.016
Zdero, R., Guenther, L. E., & Gascoyne, T. C. (2017). Pin-on-Disk Wear Testing of Biomaterials used for Total Joint Replacements. In Experimental Methods in Orthopaedic Biomechanics (pp. 299–311). Elsevier Inc. https://doi.org/10.1016/B978-0-12-803802-4.00019-6
Zhang, Z., Breidt, C., Chang, L., & Friedrich, K. (2004). Wear of PEEK composites related to their mechanical performances. Tribology International, 37(3), 271–277. https://doi.org/10.1016/j.triboint.2003.09.005
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
You are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
Terms:
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.