Phytochemical And Pharmacological Evaluation Of Selected Medicinal Plant For Anti-Alzheimer's Activity In Experimental Animals

Authors

  • Munesh Mani
  • Ritika Sharma
  • Danish khan
  • Farhad F Mehta
  • Richa Saxena
  • Preeti Kumari Diwakar
  • Waghulde Sandeep
  • Pydiraju Kondrapu

Keywords:

Alzheimer's disease, Scopolamine, Morris water maze, Dalbergia sisso

Abstract

As the world's population ages, Alzheimer's Disease (AD), the most common cause of dementia worldwide, becomes more common.  Since AD is the main cause of dementia and neurodegenerative diseases, it is one of the biggest healthcare concerns of the twenty-first century.  Dementia is the term used to describe an acquired loss of cognitive function across multiple cognitive domains.  Understanding the mechanism of AD and available treatments may be aided by the animal experiments used in this study to ascertain whether chemical substances cause the disease.  In this study, the Wistar albino rat was used to test the effectiveness of an Alcoholic Aerial Parts Extract of Dalbergia sissoo (AEDS) against scopolamine-induced Alzheimer's disease. Alcoholic extract was not harmful up to 2000 mg/kg body weight, according to the acute toxicity study.  Rats were administered AEDS at 125 mg/kg body weight, 250 mg/kg body weight, and 500 mg/kg body weight, along with donepezil at a dose of 2.5 mg/kg.  The Morris water maze, the Y-maze, the novel object recognition test, and biochemical tests such as the neurotransmitter acetylcholinesterase activity, catalase activity, malonyl dialdehyde, and nitric oxide assays were used to evaluate the anti-Alzheimer activity. Findings indicated that extracts prevent Alzheimer's disease and raise acetylcholine and catalase levels. Phytochemical research revealed that the AEDS contains phenolic chemicals, flavonoids, and alkaloids.  The findings indicated that the presence of strong antioxidants such phenolic compounds, flavonoids, and alkaloids in the aerial sections of Dalbergia sissoo confers notable anti-Alzheimer activity.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Sanka N, Santhipriya N, Nadendla RR. An updated review on anti-Alzheimer’s herbal drugs. J Drug Deliv Ther. 2018;8(6):360-72. doi: 10.22270/jddt.v8i6.2049.

Weller J, Budson A. Current understanding of Alzheimer’s disease diagnosis and treatment. F1000Res. 2018;7. doi: 10.12688/f1000research.14506.1, PMID 30135715.

Kumar A, Singh A, Ekavali. A review on Alzheimer’s disease pathophysiology and its management: an update. Pharmacol Rep. 2015;67(2):195-203. doi: 10.1016/j.pharep.2014.09.004.

Galley HF, Webster NR. Physiology of the endothelium. Br J Anaesth. 2004;93(1):105-13.doi: 10.1093/bja/aeh163, PMID 15121728.

Vishvakrama P, Sharma S. Liposomes: an overview. Journal of Drug Delivery and Therapeutics. 2014 Jun 24:47-55.

Vishvakarma P. Design and development of montelukast sodium fast dissolving films for better therapeutic efficacy. Journal of the Chilean Chemical Society. 2018 Jun;63(2):3988-93.

Arcangeli A, Becchetti A. New trends in cancer therapy: targeting ion channels and transporters. Pharmaceuticals (Basel). 2010;3(4):1202-24. doi: 10.3390/ph3041202, PMID 27713296.

Vishvakarma P, Mandal S, Verma A. A review on current aspects of nutraceuticals and dietary supplements. International Journal of Pharma Professional’s Research (IJPPR). 2023;14(1):78-91.

Brijesh S, Daswani PG, Tetali P, Antia NH, Birdi TJ. Studies of Dalbergia sissoo (Roxb.) leaves: Possible mechanism(s) of action in infectious diarrhoea. Indian J pharmacol. 2006;38:120–4. [Google Scholar]

Ansari MA, Razdan RK, Mamta T, Padma V. Larvicidal and repellent actions of Dalbergia sissoo Roxb. (F. Leguminosae) oil against mosquitoes. Bioresour Technol. 2000;73:207–11. [Google Scholar]

Prabhakar Vishvakarma, Jaspreet Kaur, Gunosindhu Chakraborthy, Dhruv Kishor Vishwakarma, Boi Basanta Kumar Reddy, Pampayya Thanthati, Shaik Aleesha, Yasmin Khatoon. Nephroprotective Potential of Terminalia Arjuna Against Cadmium-Induced Renal Toxicity by In-Vitro Study. J. Exp. Zool. India Vol. 28, No. 1, pp. 939-944, 2025

Prabhakar V, Agarwal S, Chauhan R, Sharma S. Fast dissolving tablets: an overview. International Journal of Pharmaceutical Sciences: Review and Research. 2012;16(1):17

Ramkrishna NV, Kumar EK, Kulkarni AS, Jain AK, Bhat RG, Priks S, et al. Indian J chem. 2001;40:539–40. [Google Scholar]

Sharma PC, Yelne MB, Dennis TJ. Vol. 2. New Delhi: Central Council for Research in Ayurveda and Siddha; 2001. Database on medicinal plants used in ayurveda; pp. 481–9. [Google Scholar]

Suraj PS, Yuri A, Yuji N, Tadahiro T. Nitric Oxide Production Inhibitory Activity of Flavonoids Contained in Trunk Exudates of Dalbergia sissoo. J Nat Prod. 2008;71:98–10. doi: 10.1021/np070478h. [DOI] [PubMed] [Google Scholar]

World Alzheimer Report. The state of the art of dementia research: New frontiers, London: Published by Alzheimer’s Disease International; 2018. [Internet]

Singh SK, Srivastav S, Yadav AK, Srikrishna S, Perry G. Overview of Alzheimer’s disease and some therapeutic approaches targeting Aβ by using several synthetic and herbal compounds. Oxid Med Cell Longev. 2016;2016:7361613. doi: 10.1155/2016/7361613. [DOI] [PMC free article] [PubMed] [Google Scholar]

Palop JJ, Mucke L. Amyloid-β-induced neuronal dysfunction in Alzheimer’s disease: from synapses toward neural networks. Nat Neurosci. 2010;13:812–818. doi: 10.1038/nn.2583. [DOI] [PMC free article] [PubMed] [Google Scholar]

Nitta A, Itoh A, Hasegawa T, Nabeshima T. β-Amyloid protein-induced Alzheimer’s disease animal model. Neurosci Lett. 1994;170:63–66. doi: 10.1016/0304-3940(94)90239-9. [DOI] [PubMed] [Google Scholar]

Huang WJ, Zhang X, Chen WW. Role of oxidative stress in Alzheimer’s disease. Biomed Rep. 2016;4:519–522. doi: 10.3892/br.2016.630. [DOI] [PMC free article] [PubMed] [Google Scholar]

Butterfield DA, Swomley AM, Sultana R. Amyloid β-peptide (1-42)-induced oxidative stress in Alzheimer disease: importance in disease pathogenesis and progression. Antioxid Redox Signal. 2013;19:823–835. doi: 10.1089/ars.2012.5027. [DOI] [PMC free article] [PubMed] [Google Scholar]

Mukerjee SK, Saroj T, Seshadri TR. Dalbergichromene A new neoflavonoid from stem-bark and heartwood of Dalbergia sissoo. Tetrahedron. 1971;27:799–803.

Farag SF, Ahmed AS, Terashima K, Takaya Y, Niwa M. Isoflavonoid glycosides from Dalbergia sissoo. Phytochemistry. 2001;57:1263–8. doi: 10.1016/s0031-9422(01)00195-9. [DOI] [PubMed] [Google Scholar]

Ramabadran K, Bansinath M. A critical analysis of the experimental evaluation of nociceptive reaction in animals. Pharmaceutical res. 1986;3:263–70. doi: 10.1023/A:1016355200944. [DOI] [PubMed] [Google Scholar]

Khan MI, Khan MR. Gastroprotective potential of Dalbergia sissoo roxb. Stem bark against diclofenac-induced gastric damage in rats. Osong Public Health Res Perspect. 2013;4:271–277. doi: 10.1016/j.phrp.2013.09.006. [DOI] [PMC free article] [PubMed] [Google Scholar]

Srisook K, Srisook E, Nachaiyo W, Chan-In M, Thongbai J, Wongyoo K, et al. A simple method for extracting Clerodendreme inerme plant extract. J Ethnopharmacol. 2015;165:94-102. doi: 10.1016/j.jep.2015.02.043, PMID 25725433.

Sundaran J, Begum R, Vasanthi M, Kamalapathy M, Bupesh G, Sahoo U. A shortreview on pharmacological activity of Cissus quadrangularis. Bioinformation. 2020;16(8):579-85. doi: 10.6026/97320630016579, PMID 33214745.

Moto FC. Anxiolytic and antiepileptic properties of the aqueous extract of Cissus quadrangularis (Vitaceae) in mice pilocarpine model of epilepsy. Front Pharmacol. 2018;9:1-10.

Zeena F, Sahana KD, KS. Dattatreya1,A network pharmacology approach to explore the potential mechanism of Ficus religiosa against Alzheimer’s disease. 2022;12(3):996-1003.

Khooshbu P, Ansari I. Evaluation of anti-Alzheimer activity of alcoholic extract of costus pictus d. don leaves in wistar albino rats. Asian J Pharm Clin Res. 2019;13:36.

Aebi H. Catalase in vitro. Methods Enzymol. 1984;105:121-26. doi: 10.1016/ s0076-6879(84)05016-3, PMID 6727660.

Khare P, Chaudhary S, Singh L, Yadav G, Verma S. Evaluation of nootropic activity of Cressa cretica in scopolamine induced memory impairment in mice. Int J Pharmacol Toxicol. 2014;2:24-9.

Barage SH, Sonawane KD. Amyloid cascade hypothesis: pathogenesis and therapeutic strategies in Alzheimer’s disease. Neuropeptides. 2015;52:1-18. doi: 10.1016/j.npep.2015.06.008, PMID 26149638.

Shakya PR. Intellectual Heritage on folk medicine in Nepal: Proceedings of Nepal- Japan Joint Symposium. In: Watanebe T, Takano A, Bista MS, Saiju HK, editors. Kathmandu, Nepal: 2000. pp. 43–9. [Google Scholar]

Gilman Edward F., Watson Dennis G. Dalbergia sissoo Indian Rosewood. Fact Sheet ST-227. November. Environmental Horticulture Department, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida. 1993 [Google Scholar]

Swaroop TVSS, Banerjee S, Handral M. Neuroprotective evaluation of leaf extract of Dalbergia sissoo in 3-nitropropionic acid induced neurotoxicity in rats. Int J Pharm Sci Drug Res. 2014;6:41–47. [Google Scholar]

Biradar SM, Joshi H, Chheda TK. Biochanin A ameliorates behavioural and neurochemical derangements in cognitive-deficit mice for the betterment of Alzheimer’s disease. Hum Exp Toxicol. 2014;33:369–382. doi: 10.1177/0960327113497772. [DOI] [PubMed] [Google Scholar]

Wang J, Wu WY, Huang H, Li WZ, Chen HQ, Yin YY. Biochanin A protects against lipopolysaccharide-induced damage of dopaminergic neurons both in vivo and in vitro via inhibition of microglial activation. Neurotox Res. 2016;30:486–498. doi: 10.1007/s12640-016-9648-y. [DOI] [PubMed] [Google Scholar]

Bagheri M, Joghataei MT, Mohseni S, Roghani M. Genistein ameliorates learning and memory deficits in amyloid β (1-40) rat model of Alzheimer’s disease. Neurobiol Learn Mem. 2011;95:270–276. doi: 10.1016/j.nlm.2010.12.001. [DOI] [PubMed] [Google Scholar]

Wang N, Chen X, Geng D, Huang H, Zhou H. Ginkgo biloba leaf extract improves the cognitive abilities of rats with D-galactose induced dementia. J Biomed Res. 2013;27:29–36. doi: 10.7555/JBR.27.20120047.

Singh A, Kumar A. Microglial inhibitory mechanism of coenzyme Q10 against Aβ (1-42) induced cognitive dysfunctions: possible behavioral, biochemical, cellular, and histopathological alterations. Front Pharmacol. 2015;6:268. doi: 10.3389/fphar.2015.00268. [DOI] [PMC free article] [PubMed] [Google Scholar]

Rosales-Corral S, Reiter RJ, Tan DX, Ortiz GG, Lopez-Armas G. Functional aspects of redox control during neuroinflammation. Antioxid Redox Signal. 2010;13:193–247. doi: 10.1089/ars.2009.2629. [DOI] [PubMed] [Google Scholar]

Yiannopoulou KG, Papageorgiou SG. Current and future treatments for Alzheimer’s disease. Ther Adv Neurol Disord. 2013;6:19–33. doi: 10.1177/1756285612461679. [DOI] [PMC free article] [PubMed] [Google Scholar]

Farag SF, Ahmed AS, Terashima K, Takaya Y, Niwa M. Isoflavonoid glycosides from Dalbergia sissoo. Phytochemistry. 2001;57:1263–1268. doi: 10.1016/s0031-9422(01)00195-9. [DOI] [PubMed] [Google Scholar]

Downloads

Published

2025-05-16

How to Cite

1.
Mani M, Sharma R, khan D, F Mehta F, Saxena R, Diwakar PK, Sandeep W, Kondrapu P. Phytochemical And Pharmacological Evaluation Of Selected Medicinal Plant For Anti-Alzheimer’s Activity In Experimental Animals. J Neonatal Surg [Internet]. 2025May16 [cited 2025Sep.18];14(7):617-25. Available from: https://www.jneonatalsurg.com/index.php/jns/article/view/6006