Sevoflurane and the Neonatal Brain: A Statistical Meta-Analysis of Potential Impacts
DOI:
https://doi.org/10.63682/jns.v14i25S.6132Keywords:
Neonatal Anesthesia, Sevoflurane, Neurodevelopment, Meta-Analysis, Cognitive Outcome, Cerebral PalsyAbstract
We performed a systematic meta-analysis to determine the neurodevelopmental effects of sevoflurane anesthesia in neonates. Although sevoflurane has favorable pharmacokinetics, making it a mainstay in neonatal anesthesia, preclinical studies suggest sevoflurane may have potential neurotoxicity during critical brain development. We searched PubMed, Embase, and Cochrane Library from inception to April 2015 and, using a prespecified search strategy designed to identify studies of any clinical outcome, identified 376 records (354 PubMed/Embase, 22 other sources). After removing 36 duplicates, 2 articles were excluded if authors provided only data from sevoflurane–specific groups, and then we screened 340 titles/abstracts, of which 25 were assessed in full text; 22 were excluded due to lack of a control arm, no data on animals, and so on. Of the three studies included, one was a randomized controlled trial, and two were observational cohorts with 550 subjects (242 exposed and 308 controls). Standardized IQ scores (FSIQ), cerebral palsy, and motor deficits were extracted. Mean differences (MD; continuous outcomes) or odds ratios (OR; binary outcomes) with 95% confidence intervals (CI)
were applied in random‐effects models, and p < 0.05 denoted significance. There was no significant difference in cognitive outcomes: pooled MD in FSIQ was –0.24 points (95% CI: –3.60 to +3.12, p = 0.889; I² = 0%).
On the other hand, there was markedly increased odds of cerebral palsy (adjusted OR ≈ 5.09; p < 0.05; I² = 70%) and other motor impairments in infants extremely preterm exposed to sevoflurane. However, we were limited in the amount of behavioral problem data, but they suggested that difficulty may be in the modest direction for parent‐reported behaviors. Sevoflurane exposure during early neonatal life does not compromise global cognitive development by early childhood but may increase the risk of motor neurodevelopmental problems in vulnerable preterm populations. These findings support the continued use of sevoflurane in the neonate, provided careful monitoring is in place and support ongoing follow‐up and investigation into protective strategies for the high-risk infant.
Downloads
Metrics
References
Aita, M., Stremler, R., Feeley, N., Lavallée, A., & Clifford‐Faugère, G. D. (2017). Effectiveness of interventions during NICU hospitalization on the neurodevelopment of preterm infants: a systematic review protocol [Review of Effectiveness of interventions during NICU hospitalization on the neurodevelopment of preterm infants: a systematic review protocol]. Systematic Reviews, 6(1). BioMed Central. https://doi.org/10.1186/s13643-017-0613-5
Aksenov, D. P., Venkatasubramanian, P. N., Miller, M. J., Dixon, C. J., Li, L., & Wyrwicz, A. M. (2020). Effects of neonatal isoflurane anesthesia exposure on learning-specific and sensory systems in adults. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-70818-0
Andropoulos, D. B., Ahmad, H. B., Haq, T. R., Brady, K. M., Stayer, S. A., Meador, M. R., Hunter, J. V., Perez, C., Voigt, R. G., Turcich, M., He, C., Shekerdemian, L. S., Dickerson, H. A., Fraser, C. D., McKenzie, E. D., Heinle, J. S., & Easley, R. B. (2014). The association between brain injury, perioperative anesthetic exposure, and 12‐month neurodevelopmental outcomes after neonatal cardiac surgery: a retrospective cohort study. Pediatric Anesthesia, 24(3), 266. https://doi.org/10.1111/pan.12350
Azimaraghi, O., Sistani, M. N., Abdollahifar, M., Movafegh, A., Maleki, A., Soltani, E., Shahbazkhani, A., & Atef‐Yekta, R. (2018). Effects of repeated exposure to different concentrations of sevoflurane on the neonatal mouse hippocampus. Brazilian Journal of Anesthesiology (English Edition), 69(1), 58. https://doi.org/10.1016/j.bjane.2018.09.001
Chai, D., Cheng, Y., & Jiang, H. (2018). Fundamentals of fetal toxicity relevant to sevoflurane exposures during pregnancy [Review of Fundamentals of fetal toxicity relevant to sevoflurane exposures during pregnancy]. International Journal of Developmental Neuroscience, 72(1), 31. Wiley. https://doi.org/10.1016/j.ijdevneu.2018.11.001
Chen, A., Dietrich, K. N., Huo, X., & Ho, S. (2010). Developmental Neurotoxicants in E-Waste: An Emerging Health Concern [Review of Developmental Neurotoxicants in E-Waste: An Emerging Health Concern]. Environmental Health Perspectives, 119(4), 431. National Institute of Environmental Health Sciences. https://doi.org/10.1289/ehp.1002452
Chiao, S. S., & Zuo, Z. (2014). A Double-Edged Sword: Volatile Anesthetic Effects on the Neonatal Brain. Brain Sciences, 4(2), 273. https://doi.org/10.3390/brainsci4020273
Fehr, T., Janssen, W. G. M., Park, J., & Baxter, M. G. (2022). Neonatal exposures to sevoflurane in rhesus monkeys alter synaptic ultrastructure in later life. iScience, 25(12), 105685. https://doi.org/10.1016/j.isci.2022.105685
Feng, J., Lin, H., Zhao, Y., Yang, Y., Zhuang, X., Yu, Y., & Yu, Y. (2022). Tandem mass tag-based quantitative proteomic analysis of effects of multiple sevoflurane exposures on the cerebral cortex of neonatal and adult mice. Frontiers in Neurology, 13. https://doi.org/10.3389/fneur.2022.1056947
Flanigan, T. J., Law, C., & Ferguson, S. A. (2021). Minimal effects from a single exposure to sevoflurane in adult male and female Sprague-Dawley rats. Neurotoxicology and Teratology, 84, 106955. https://doi.org/10.1016/j.ntt.2021.106955
Garg, D., Mathur, V., Trivedi, P. C., Khare, A., & Sethi, S. K. (2019). Effect of intraoperative iv dexmedetomidine on emergence agitation after sevoflurane anaesthesia in children undergoing tonsillectomy with or without adenoidectomy. Indian Journal of Clinical Anaesthesia, 5(4), 496. https://doi.org/10.18231/2394-4994.2018.0095
Grewal, A. (2011). Dexmedetomidine: New avenues. Journal of Anaesthesiology Clinical Pharmacology, 27(3), 297. https://doi.org/10.4103/0970-9185.83670
Gustin, K., Tofail, F., Mehrin, F., Levi, M., Vahter, M., & Kippler, M. (2017). Methylmercury exposure and cognitive abilities and behavior at 10years of age. https://www.sciencedirect.com/science/article/pii/S0160412016307073
Hou, D., Lu, Y., Wu, D., Tang, Y., & Dong, Q. (2022). Minimally Invasive Surgery in Patients With Intracerebral Hemorrhage: A Meta-Analysis of Randomized Controlled Trials [Review of Minimally Invasive Surgery in Patients With Intracerebral Hemorrhage: A Meta-Analysis of Randomized Controlled Trials]. Frontiers in Neurology, 12. Frontiers Media. https://doi.org/10.3389/fneur.2021.789757
Houck, C. S., & Vinson, A. E. (2017). Anaesthetic considerations for surgery in newborns [Review of Anaesthetic considerations for surgery in newborns]. Archives of Disease in Childhood Fetal & Neonatal, 102(4). BMJ. https://doi.org/10.1136/archdischild-2016-311800
Huang, X., Ying, J., Yang, D., Pu, F., Wang, X., Zhou, B., Zhang, L., Yang, F., Yu, W., Liu, X., Zhen, Q., & Hua, F. (2021). The Mechanisms of Sevoflurane-Induced Neuroinflammation [Review of The Mechanisms of Sevoflurane-Induced Neuroinflammation]. Frontiers in Aging Neuroscience, 13. Frontiers Media. https://doi.org/10.3389/fnagi.2021.717745
Ing, C., Warner, D. O., Sun, L. S., Flick, R. P., Davidson, A., Vutskits, L., McCann, M. E., O’Leary, J. D., Bellinger, D. C., Rauh, V., Orser, B. A., Suresh, S., & Andropoulos, D. B. (2022). Anesthesia and Developing Brains: Unanswered Questions and Proposed Paths Forward [Review of Anesthesia and Developing Brains: Unanswered Questions and Proposed Paths Forward]. Anesthesiology, 136(3), 500. Lippincott Williams & Wilkins. https://doi.org/10.1097/aln.0000000000004116
Li, Y., Zhang, L., Wang, C., Tang, X., Chen, Y., Wang, X., Su, L., Hu, N., Xie, K., Yu, Y., & Wang, G. (2018). Sevoflurane-induced learning deficits and spine loss via nectin-1/corticotrophin-releasing hormone receptor type 1 signaling. Brain Research, 1710, 188. https://doi.org/10.1016/j.brainres.2018.12.010
Marlow, N. (2013). Anesthesia and long‐term outcomes after neonatal intensive care [Review of Anesthesia and long‐term outcomes after neonatal intensive care]. Pediatric Anesthesia, 24(1), 60. Wiley. https://doi.org/10.1111/pan.12304
McCann, M. E., Graaff, J. C. de, Dorris, L., Disma, N., Withington, D. E., Bell, G., Grobler, A., Stargatt, R., Hunt, R. W., Sheppard, S. J., Marmor, J., Giribaldi, G., Bellinger, D. C., Hartmann, P. L., Hardy, P., Frawley, G., Izzo, F., Ungern‐Sternberg, B. S. von, Lynn, A. M., … Suresh, S. (2019). Neurodevelopmental outcome at 5 years of age after general anaesthesia or awake-regional anaesthesia in infancy (GAS): an international, multicentre, randomised, controlled equivalence trial. The Lancet, 393(10172), 664. https://doi.org/10.1016/s0140-6736(18)32485-1
Meybodi, M. A., Cao, W., Luznik, L., Bashey, A., Zhang, X., Romee, R., Saber, W., Hamadani, M., Weisdorf, D. J., Chu, H., & Rashidi, A. (2019). HLA-haploidentical vs matched-sibling hematopoietic cell transplantation: a systematic review and meta-analysis [Review of HLA-haploidentical vs matched-sibling hematopoietic cell transplantation: a systematic review and meta-analysis]. Blood Advances, 3(17), 2581. Elsevier BV. https://doi.org/10.1182/bloodadvances.2019000614
Milner, K., Neal, E., Roberts, G., Steer, A. C., & Duke, T. (2015). Long-term neurodevelopmental outcome in high-risk newborns in resource-limited settings: a systematic review of the literature [Review of Long-term neurodevelopmental outcome in high-risk newborns in resource-limited settings: a systematic review of the literature]. Paediatrics and International Child Health, 35(3), 227. Taylor & Francis. https://doi.org/10.1179/2046905515y.0000000043
Ninan, K., Liyanage, S. K., Murphy, K. E., Asztalos, E., & McDonald, S. D. (2022). Evaluation of Long-term Outcomes Associated With Preterm Exposure to Antenatal Corticosteroids [Review of Evaluation of Long-term Outcomes Associated With Preterm Exposure to Antenatal Corticosteroids]. JAMA Pediatrics, 176(6). American Medical Association. https://doi.org/10.1001/jamapediatrics.2022.0483
O’Leary, J. D., Janus, M., Duku, E., Wijeysundera, D. N., To, T., Li, P., Maynes, J. T., & Crawford, M. W. (2016). A Population-based Study Evaluating the Association between Surgery in Early Life and Child Development at Primary School Entry. Anesthesiology, 125(2), 272. https://doi.org/10.1097/aln.0000000000001200
Parrish, J., & Fields, E. (2019). Cognitive Functioning in Patients with Pediatric-Onset Multiple Sclerosis, an Updated Review and Future Focus. Children, 6(2), 21. https://doi.org/10.3390/children6020021
Perrone, K. M., Simon-Dack, S. L., & Niccolai, L. (2015). Prenatal and Perinatal Factors Related to Autism, IQ, and Adaptive Functioning. The Journal of Genetic Psychology, 176(1), 1. https://doi.org/10.1080/00221325.2014.987201
Qiu, L., Zhu, C., Bodogan, T., Gómez‐Galán, M., Zhang, Y., Zhou, K., Li, T., Xu, G., Blomgren, K., Eriksson, L. I., Vutskits, L., & Terrando, N. (2015). Acute and Long-Term Effects of Brief Sevoflurane Anesthesia During the Early Postnatal Period in Rats. Toxicological Sciences, 149(1), 121. https://doi.org/10.1093/toxsci/kfv219
Ramage, T. M., Chang, F. L., Shih, J., Alvi, R. S., Quitoriano, G. R., Rau, V., Barbour, K., Elphick, S. A., Kong, C., Tantoco, N. K., Ben-Tzur, D., Kang, H., McCreery, M. S., Huang, P., Park, A., Uy, J. G. L., Rossi, M., Zhao, C., Geronimo, R. T. D., … Sall, J. W. (2013). Distinct long-term neurocognitive outcomes after equipotent sevoflurane or isoflurane anaesthesia in immature rats. British Journal of Anaesthesia, 110. https://doi.org/10.1093/bja/aet103
Stein, C. R., Savitz, D. A., & Bellinger, D. C. (2013). Perfluorooctanoate and Neuropsychological Outcomes in Children. Epidemiology, 24(4), 590. https://doi.org/10.1097/ede.0b013e3182944432
Su, X., Zhao, Z., Zhang, W., Tian, Y., Wang, X., Yuan, X., & Tian, S. (2024). Sedation versus general anesthesia on all-cause mortality in patients undergoing percutaneous procedures: a systematic review and meta-analysis [Review of Sedation versus general anesthesia on all-cause mortality in patients undergoing percutaneous procedures: a systematic review and meta-analysis]. BMC Anesthesiology, 24(1). BioMed Central. https://doi.org/10.1186/s12871-024-02505-w
Sun, M., Xie, Z., Zhang, J., & Leng, Y. (2021). Mechanistic insight into sevoflurane-associated developmental neurotoxicity [Review of Mechanistic insight into sevoflurane-associated developmental neurotoxicity]. Cell Biology and Toxicology, 38(6), 927. Springer Science+Business Media. https://doi.org/10.1007/s10565-021-09677-y
Talge, N. M., Holzman, C., Wang, J., Lucia, V. C., Gardiner, J. C., & Breslau, N. (2010). Late-Preterm Birth and Its Association With Cognitive and Socioemotional Outcomes at 6 Years of Age. PEDIATRICS, 126(6), 1124. https://doi.org/10.1542/peds.2010-1536
Tang, S., Huang, W., Zhang, K., Chen, W., & Xie, T. (2019). Comparison of effects of propofol versus sevoflurane for patients undergoing cardiopulmonary bypass cardiac surgery. Pakistan Journal of Medical Sciences, 35(4). https://doi.org/10.12669/pjms.35.4.1279
Useinovic, N., Maksimovic, S., Near, M., Quillinan, N., & Jevtović‐Todorović, V. (2022). Do We Have Viable Protective Strategies against Anesthesia-Induced Developmental Neurotoxicity? [Review of Do We Have Viable Protective Strategies against Anesthesia-Induced Developmental Neurotoxicity?]. International Journal of Molecular Sciences, 23(3), 1128. Multidisciplinary Digital Publishing Institute. https://doi.org/10.3390/ijms23031128
Walsh, B. H., Paul, R., Inder, T. E., Shimony, J. S., Smyser, C. D., & Rogers, C. (2020). Surgery requiring general anesthesia in preterm infants is associated with altered brain volumes at term equivalent age and neurodevelopmental impairment. Pediatric Research, 89(5), 1200. https://doi.org/10.1038/s41390-020-1030-3
Warner, D. O., & Flick, R. P. (2015, March 5). Effects of anesthesia and surgery on the developing brain: problem solved? In Pediatric Anesthesia (Vol. 25, Issue 4, p. 435). Wiley. https://doi.org/10.1111/pan.12624
Xiang, C., & Zhang, Y. (2023). Comparison of Cognitive Intervention Strategies for Individuals With Alzheimer’s Disease: A Systematic Review and Network Meta-analysis [Review of Comparison of Cognitive Intervention Strategies for Individuals With Alzheimer’s Disease: A Systematic Review and Network Meta-analysis]. Neuropsychology Review, 34(2), 402. Springer Science+Business Media. https://doi.org/10.1007/s11065-023-09584-5
Xu, L., Xie, J., Shen, J., Ying, M., & Chen, X. (2023). Neuron-derived exosomes mediate sevoflurane-induced neurotoxicity in neonatal mice via transferring lncRNA Gas5 and promoting M1 polarization of microglia. Acta Pharmacologica Sinica, 45(2), 298. https://doi.org/10.1038/s41401-023-01173-9
Yang, J., Yang, Z., Zeng, X., Yu, S., Gao, L., Jiang, Y., & Sun, F. (2023). Comparative effectiveness of different hepatocellular carcinoma screening intervals or modalities: a systematic review and meta-analysis [Review of Comparative effectiveness of different hepatocellular carcinoma screening intervals or modalities: a systematic review and meta-analysis]. Chinese Medical Journal. Lippincott Williams & Wilkins. https://doi.org/10.1097/cm9.0000000000002341
Zhao, S., Fan, Z., Hu, J., Zhu, Y., Lin, C., Shen, T., Li, Z., Li, K., Liu, Z., Chen, Y., & Zhang, B. (2020). The differential effects of isoflurane and sevoflurane on neonatal mice. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-76147-6
Zhong, L., Ma, X., Niu, Y., Zhang, L., Xue, Z., Yan, J., & Jiang, H. (2022). Sevoflurane exposure may cause dysplasia of dendritic spines and result in fine motor dysfunction in developing mouse through the PI3K/AKT/mTOR pathway. Frontiers in Neuroscience, 16. https://doi.org/10.3389/fnins.2022.1006175
Zhou, P., Zhang, C., Huang, G., Hu, Y., Ma, W., & Yu, C. (2021). The effect of sevoflurane anesthesia for dental procedure on neurocognition in children: a prospective, equivalence, controlled trial. BMC Pediatrics, 21(1). https://doi.org/10.1186/s12887-021-02649-5
Zhou, Z., Yang, X., Tang, Y., Zhou, X., ZHOU, L.-H., & Feng, X. (2016). Subclinical concentrations of sevoflurane reduce oxidative stress but do not prevent hippocampal apoptosis. Molecular Medicine Reports, 14(1), 721. https://doi.org/10.3892/mmr.2016.5336
Zhu, X., Yang, M., Mu, J., Wang, Z., Zhang, L., Wang, H., & Yan, F. (2022). The Effect of General Anesthesia vs. Regional Anesthesia on Postoperative Delirium—A Systematic Review and Meta-Analysis [Review of The Effect of General Anesthesia vs. Regional Anesthesia on Postoperative Delirium—A Systematic Review and Meta-Analysis]. Frontiers in Medicine, 9. Frontiers Media. https://doi.org/10.3389/fmed.2022.844371
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
You are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
Terms:
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.